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Abstract: Somatostatin (SST) released from capsaicin-sensitive sensory nerves in response to stimula-
tion exerts systemic anti-inflammatory, analgesic actions. Its elevation correlates with the extent of
tissue injury. We measured plasma SST alterations during spine operations (scoliosis and herniated
disc) to determine whether its release might be a general protective mechanism during painful
conditions. Sampling timepoints were baseline (1), after: soft tissue retraction (2), osteotomy (3),
skin closure (4), the following morning (5). Plasma SST-like immunoreactivity (SST-LI) determined
by radioimmunoassay was correlated with pain intensity and the correction angle (Cobb angle). In
scoliosis surgery, postoperative pain intensity (VAS 2.) 1 day after surgery significantly increased
(from 1.44 SEM ± 0.68 to 6.77 SEM ± 0.82, p = 0.0028) and positively correlated with the Cobb angle
(p = 0.0235). The baseline Cobb degree negatively correlated (p = 0.0459) with the preoperative
SST-LI. The plasma SST-LI significantly increased in fraction 3 compared to the baseline (p < 0.05),
and significantly decreased thereafter (p < 0.001). In contrast, in herniated disc operations no SST-LI
changes were observed in either group. The VAS decreased after surgery both in the traditional (mean
6.83 to 2.29, p = 0.0005) and microdiscectomy groups (mean 7.22 to 2.11, p = 0.0009). More extensive
and destructive scoliosis surgery might cause greater tissue damage with greater pain (inflammation),
which results in a significant SST release into the plasma from the sensory nerves. SST is suggested to
be involved in an endogenous postoperative analgesic (anti-inflammatory) mechanism.

Keywords: neuropeptides; pain; inflammation; tissue damage; scoliosis and disc herniation; Cobb
angle; microdiscectomy; orthopedic and neuro-spine surgery; radioimmunoassay

1. Introduction

Sensory neuropeptides released from the capsaicin-sensitive peptidergic sensory
nerves play crucial roles in regulating various physiological functions, including tissue
homeostasis, immune responses, endocrine signalling, and neural processes associated
with pain and inflammation. These sensory fibres do not only transmit sensory input and
pain signals to the central nervous system (afferent functions), but they also have important
local and systemic efferent actions [1–6]. Understanding the role of these neuropeptides can
provide valuable insights into the mechanisms underlying nociception and inflammation,
paving the way for potential therapeutic interventions.
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Proinflammatory neuropeptides, such as tachykinins (substance P, neurokinin A) and
calcitonin gene-related peptide (CGRP) mediate vasodilation, plasma protein extravasation,
and immune cell activation in the innervated area collectively called neurogenic inflamma-
tion [2,3]. Moreover, inhibitory peptides, with somatostatin (SST) being the most prominent
among them, are released from the same nerve terminals in response to inflammation
and tissue damage. The actions of SST extend beyond its local effects, it reaches remote
sites through the systemic circulation, and suggests a therapeutic potential to modulate
inflammation and pain [3–5,7]. SST acts as a modulator of inflammation by inhibiting the
release of proinflammatory cytokines, chemokines, neuropeptides, and other mediators.
It suppresses the activity of immune cells and reduces the recruitment and activation of
inflammatory cells, thus attenuating the inflammatory response. SST helps to limit tis-
sue damage and promote the resolution of inflammation. All these divergent protective
actions of SST are mediated through interactions with five Gi-protein-coupled receptors
(sst1–sst5) [8–10]. Among these receptors, sst1 and sst4 have been identified as key targets
in mediating the anti-inflammatory and analgesic effects of SST [11]. These receptors are
located on various immune cells, vascular endothelial cells, and nerve terminals. When
SST binds to these receptors, it triggers intracellular signalling pathways that inhibit adeny-
late cyclase and the production of cAMP, which results in a consequent inflammatory
mediator release.

We have shown earlier both in animal models and humans that SST is released from
the capsaicin-sensitive afferents in response to inflammatory processes (arthritis, sepsis)
and tissue damage (e.g., surgery) [12,13]. Data obtained in experiments conducted on
rats, mice, and guinea pigs demonstrated that the released SST does not only interact
with inflammatory cells locally, but also enters the systemic circulation. This enables it
to exert anti-inflammatory and antinociceptive “sensocrine” effects in distant areas of the
body [14,15]. Selective electrical or capsaicin-induced chemical activation of the peptider-
gic nociceptive fibres in rats inhibits the cardiorespiratory reflex responses (elevation of
blood pressure, heart rate, and respiratory rate) [16]. In the adjuvant-induced chronic
arthritis rat model, SST is released from the capsaicin-sensitive sensory nerves, inducing
a four-fold elevation in its plasma concentration by the end of the 21-day examination
period, which inhibits oedema formation and pain behaviour [11]. Exogenous SST and
its synthetic analogues reduce both neurogenic and non-neurogenic inflammatory and
nociceptive mechanisms [17–20], as well as inhibit the severity and increase the survival
rate of experimental sepsis [21–23]. In addition to all these extensive animal experimental
investigations, we demonstrated in humans that the plasma SST level increases during and
after abdominal [24], thoracic, and some orthopaedic surgical interventions, as well as in
sepsis [12,13,25]. These data might suggest a general endogenous protective mechanism
mediated by SST released from the capsaicin-sensitive nerves.

In light of the dense innervation of the spinal column and intervertebral joints by
peptidergic nociceptive fibres, our study aimed to assess changes in plasma SST-like im-
munoreactivity (SST-LI) during scoliosis orthopaedic surgery and disc hernia neurosurgical
interventions, both conducted under general anaesthesia. During these operations, we
monitored the levels of SST-LI in the bloodstream to understand the dynamics of SST
release in response to the surgical procedure and pain. The objectives were to establish the
correlation between the plasma SST levels and the intensity of pain, as well as the extent of
the tissue damage incurred during the procedures and to investigate whether the release of
SST could potentially serve as a general protective mechanism during painful conditions
and surgical procedures.

2. Materials and Methods
2.1. Patients

Altogether 30 spine surgery patients undergoing orthopaedic and neurosurgical in-
terventions were enrolled in our study, which lasted for 8 weeks. Patient numbers in the
different groups and their mean ages are summarized in Table 1. Written informed consents
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were obtained prior to participation in all cases. The study established exclusion criteria
that encompassed several factors, including patients who were below the age of 18, individ-
uals suffering of any forms of autoimmune disease, pregnant women, and those who did
not provide informed consent for participation in the research. The study was conducted
in accordance with the Declaration of Helsinki, the protocol was approved by the Ethics
Committee of the University of Pécs with the permission number 3362/5636-PTE-2017.

Table 1. Number of patients and mean age in the scoliosis and disc hernia groups.

Scoliosis
Patients

Disc Hernia Patients
(Traditional Group)

Disc Hernia Patients
(Microdiscectomy Group)

Males 2 8 5

Females 7 4 4

Total 9 12 9

Mean age 18.75 ± 9.06 55.2 ± 14.13

2.2. Surgical Treatment for Scoliosis, Disc Hernia, and Visual Analog Scale (VAS)

Orthopaedic surgery offers a treatment approach for scoliosis through the utilization
of segmental fixation of the spine with Cotrel–Dubousset instrumentation. This technique
provides patients with the ability to swiftly return to their normal lives and activities
following the procedure. To assess the severity of spinal deformities in scoliosis, the Cobb
angle is commonly employed. This measurement involves determining the sum of the tilt
angles of the upper and lower end vertebrae, providing a quantitative evaluation of the
magnitude of the deformity.

In neurosurgery, disc hernia operations aim to alleviate nerve compression by remov-
ing small fragments of the intervertebral disc, bone, and ligaments. The primary goal
of these procedures is to free the affected nerve root by eliminating any disc fragments
and degenerated disc material that may be causing compression. Traditional discectomy
techniques typically involve larger incisions and significant muscle retraction. However,
the advent of microdiscectomy has revolutionized the treatment of herniated discs, offering
a minimally invasive alternative. This procedure requires only a small incision and employs
surgical glasses or a microscope to magnify the operative site, facilitating the meticulous
manipulation of the nerve root. By utilizing microsurgical tools, the surgeon can operate
within the confined space of the spine. This approach allows for the precise removal of the
disc material causing the compression while minimizing trauma to the surrounding tissues.

We assessed pain intensity using a standardized visual analogue scale (VAS). VAS is
a commonly used tool for clinicians to assess the pain intensity of patients after surgery.
VAS is a simple method to use, it is a straight line with two endpoints: it starts from a low
intensity value (no pain at all: 0) and ends with an extreme level of pain (unbearable pain
sensation: 10). There is a numerical scale between the two endpoints, and the patient has to
assess a value according to the pain sensation. A higher measurable value illustrates higher
pain intensity, while a lower value points out less pain sensation.

2.3. Medication

Prior to the surgical procedure, premedication was administered to the patients, in-
volving the use of midazolam torrex (0.07 mg/kg body weight; Chiesi Pharmaceuticals
GmbH, Vienna, Austria) and atropine (0.01 mg/kg; EGIS Gyógyszergyár Zrt., Budapest,
Hungary). The induction of general anaesthesia was initiated through the intravenous
administration of 1% propofol (1.5–2.5 mg/kg; Fresenius Kabi Deutschland GmbH, Bad
Homburg, Germany) and fentanyl (0.0015 mg/kg; Richter Gedeon Nyrt., Budapest, Hun-
gary). Following intubation, the patients were placed on mechanical ventilation to maintain
adequate oxygenation. A balanced inhalation anaesthesia approach was employed, utiliz-
ing a mixture of oxygen and medical air in a 1:2 volume ratio, along with sevoflurane at
a concentration of 1.6–2% (v/v; Abbott Laboratories, Wiesbaden, Germany). During the
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surgical procedure, the major opioid analgesic fentanyl was administered intravenously at
doses ranging from 25 to 50 µg according to the patient’s physiological parameters.

Muscle relaxation was achieved using atracurium (0.5 mg/kg; GlaxoSmithKline Phar-
maceuticals S.A., Poznań, Poland) during induction, and a maintenance dose of 10 mg
every 20 min was administered intravenously. Towards the end of the operation, the effect
of the muscle relaxant was reversed by administering a combination of neostigmine and
atropine intravenously (2.5 mg/0.5 mg; Pharmamagist Kft., Budapest, Hungary and EGIS
Gyógyszergyár Zrt., Budapest, Hungary).

For effective postoperative pain management, intravenous morphine (1%; 1–2 mg;
TEVA, Hungary) was administered as needed. Furthermore, intravenous doses of Tramadol
(50–100 mg; Grünenthal GmbH, Aachen, Germany), Diclofenac (50–75 mg; Novartis, Basel,
Switzerland), and Paracetamol (1 g; Fresenius Kabi Hungary Kft., Budapest, Hungary)
were given according to pharmaceutical instructions to address pain as required after
the operation.

2.4. Blood Sampling

The procedures were conducted under the administration of general anaesthesia,
which was augmented with the use of parenteral opioids for pain management. Prior to the
surgical procedures, patients adhered to our hospital’s established surgical protocols, which
involved fasting in accordance with the “nil by mouth” guideline starting from midnight on
the day preceding the scheduled surgery. In both groups of orthopaedic and neurosurgical
patients, blood samples were collected on five separate occasions to measure the levels of
SST-like immunoreactivity (SST-LI) in the plasma. The first sample was obtained at the
outset, before any surgical intervention took place (sample 1). Subsequently, additional
samples were taken after the retraction of muscles, ligaments, and soft tissues (sample 2),
following osteotomy or herniotomy (sample 3), at the time of closing the skin (sample 4),
and the next morning at 8 o’clock (sample 5). To prevent clotting, two separate 5 mL
blood samples were immediately collected in Vacutainers containing EDTA (18 mg REF
367525 and 143 I.U. REF 367674) that were maintained at a low, ice-cold temperature.
Furthermore, to inhibit enzymatic degradation, 200 µL of the peptidase inhibitor aprotinin
(Trasylol, Bayer Health-Care, Leverkusen, Germany) was promptly added to the sample
intended for somatostatin measurement. Following centrifugation at 1000 rpm for 5 min
and subsequently at 4000 rpm for 10 min, the plasma was frozen and stored at −70 ◦C until
further analysis. All samples were analysed under standardized conditions at the end of
the study.

It should be noted that previous investigations have indicated that a precise deter-
mination of SST-LI using the radioimmunoassay (RIA) requires 10 mL of blood and the
subsequent acquisition of 6 mL of plasma. In cases where smaller volumes are used, the
radioactivity measurements may not reliably align with the standard curve of the assay.

2.5. Determining Plasma SST-LI by RIA

The RIA method has been broadly used as a laboratory technique in clinical practice
and research to precisely measure the concentration of different peptides and proteins. Its
specificity and sensitivity allow this method to determine low concentrations of substances
in biological samples (e.g., in the blood plasma). A highly specific antibody binds to the
molecule, a radioactive tracer (labelled radioactive isotope) helps to measure the formed
antigen-antibody complexes. After a certain incubation time, the antibodies compete with
the radioactive antigen for the binding sites. Unbound antigens have to be removed from
the complexes and the radioactivity of the separated complexes is measured. The higher
the concentration of the substances, the lower the quantity of the radioactive labelled
antigen that will be bound to the specific antibodies. After a calibration method the actual
concentration of the substance can be measured. Plasma SST-LI was determined with a
specific and sensitive RIA technique developed and validated by us as described earlier in
detail [12,13,26]. We employed a C-terminal sensitive antiserum specific to SST-14, which
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demonstrated its ability to bind both biologically active forms of SST containing 14 and
28 amino acids. To extract the peptide from plasma, we utilized absolute alcohol in a
ratio of 3:1. Following precipitation and centrifugation (2000 rpm for 10 min at 4 ◦C), the
samples were dried using a nitrogen flow. Prior to RIA determination, the dried samples
were reconstituted in an assay buffer. Our extraction and sample preparation technique
exhibited a recovery rate of 79.8%.

2.6. Statistical Analysis

Statistical analysis was performed using the GraphPad Prism 6.0 (GraphPad Software,
San Diego, CA, USA) software. Results are expressed as means ± standard errors of the
mean (SEM). Comparisons between the SST levels measured at different time points within
the same group were performed by repeated measures one-way ANOVA, followed by
Tukey’s multiple comparison test. The VAS changes within groups were analysed by paired
samples t-test. Correlations between the plasma SST levels and other laboratory parameters
were assessed by linear regression and Pearson correlation. Plasma SST-LI data were tested
for outlier values using the ROUT method in all groups in an identical manner. For all
statistical analyses p < 0.05 was accepted as significant.

3. Results
3.1. Pain Intensity Significantly Increases and Positively Correlates with the Cobb Angle after
Scoliosis Surgery

We made an assessment individually for each patient regarding the initial pain inten-
sity (VAS 1.) and the level of pain after scoliosis surgery on day 1 (VAS 2.) using the VAS
method. VAS 2. significantly increased in patients after scoliosis surgery (Figure 1A) on
day 1 to the initial values. In patients undergoing scoliosis surgery, postoperative pain
intensity (VAS 2.) positively correlated with the level of surgical correction (Cobb angle)
among the patients (Figure 1B). The higher the Cobb angle (level of correction), the greater
the postoperative pain intensity.
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Figure 1. (A): Postoperative pain intensity increasing after scoliosis surgery on day 1. VAS 1. repre-
sents the initial pain and VAS 2. refers to the postoperative day 1 (paired samples t-test, mean ± SEM,
** p < 0.01). (B): Postoperative pain intensity positively correlates with the Cobb angle in scoliosis
patients (Cobb = Cobb2 − Cobb1). (VAS = visual analogue scale, Cobb = quantifies the magnitude of
deformity, parametric (Pearson) correlation and regression analysis * p < 0.05).

3.2. Plasma SST-LI Significantly Increases and Negatively Correlates with the Initial Cobb Angle
in Scoliosis Surgery

As we measured the level of plasma SST-LI activity during the operation on five dif-
ferent occasions, the plasma SST-LI activity significantly increased in fraction 3 compared
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to fraction 1. Plasma SST-LI activity peaked in fraction 4, followed by a significant drop
in fraction 5, (Figure 2A). Plasma SST-LI negatively correlated to the initial Cobb angle
(Cobb1: deformity of the spinal column). The higher the level of deformity (Cobb1 angle),
the lower the plasma SST-LI (Figure 2B).
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3.3. VAS 2. Significantly Decreases in Both Traditional and Microdiscectomy Groups after Disc
Hernia Surgery

In disc hernia operations, initial pain intensity (VAS 1.) was high in both the traditional
and microdiscectomy surgical groups, which is basically attributed to the nature of the
original disease in these patients. Pain after the operation (VAS 2.) significantly and
similarly decreased after both types of interventions (Figure 3A,B).
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3.4. Plasma SST-LI Does Not Change Significantly after Traditional or after Microdiscectomy Type
of Disc Hernia Operations

Plasma SST-LI did not alter in disc herniated patients regardless of the type of the
operation (Figure 4A,B). No significant change of SST-LI was detected in either group
at any of the different sampling time points. There was a slight and steady increasing
tendency of SST-LI in the microsdiscectomy group, which did not reach the level of
statistical significance.
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4. Discussion

The present pilot clinical study provides the first findings for the significant increase in
plasma SST-LI during the orthopaedic scoliosis operation. However, a remarkable change
in the plasma SST-LI was not detected after either a traditional or microdiscectomy type
of disc hernia neurosurgical intervention performed under general anaesthesia. It is well-
established that SST released from the peptidergic nociceptive fibers exhibits analgesic and
anti-inflammatory effects [3–5,7,27,28]. Therefore, we hypothesized that its release might
be an adaptive mechanism aimed at alleviating pain and reducing tissue damage. These
observations are in agreement with earlier human data findings in other types of abdominal,
thoracic, and orthopaedic surgeries and systemic inflammation (sepsis) demonstrating
plasma SST-LI elevations [3,12,13,24]. The studies have reported findings indicating a
noticeable yet statistically significant increase of approximately 10% in SST-LI within the
systemic circulation following laparoscopic cholecystectomy, inguinal hernia repair, and
abdominal wall hernia repairs [24]. Notably, we demonstrated earlier that the elevation of
SST-LI appears to be even more prominent in cases of thoracic and orthopaedic surgeries
characterized by more substantial tissue damage [12,13].

We suggest that SST is released from the activated peptidergic capsaicin-sensitive
fibres in response to tissue injury and/or inflammatory mediators and enters into the
bloodstream, inducing systemic analgesic/anti-inflammatory effects. Although we have
no direct evidence for this theory by our descriptive results, a broad range of earlier
animal experimental data in inflammation and pain models might provide a sufficient
explanation [3–7,11,29]. However, besides the activated sensory nerves, it is important to
note that SST can also be released from the inflammatory cells within the site of surgery.
Since the blood samples were collected from patients who had undergone a 12-h fasting
period, it is highly unlikely that gastrointestinal SST release contributed to the elevated
levels [30].

During scoliosis surgery, plasma SST-LI significantly increased, presumably in re-
sponse to tissue damage throughout the whole operative procedure, but no increase was
observed in disc hernia operations. Scoliosis surgery caused more extensive tissue damage
and remarkable pain, as shown by the significantly increased VAS 2. values during the
first postoperative day. The greater the correction degree of the spinal column (Cobb
angle), the higher the pain intensity, which is explained by the more extensive and stressful
surgical procedure resulting in greater damage on skeletal muscles, joints, and tendons.
This triggers inflammatory processes with consequent sensory nerve activation and SST
release into the circulation. The neurosurgical interventions to remove the ruptured and
herniated intervertebral discs represent remarkably smaller tissue damage and sensory
nerve stimulation [31]. Furthermore, in disc hernia patients, the initial pain score is higher,
but it is reduced after the operation when the etiological factor is eliminated.
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The plasma SST-LI level negatively correlates with the initial Cobb angle (Cobb 1): the
greater the deformity of the spinal column, the lower the plasma SST-LI level of the patients.
SST might be depleted from the sensory nerves in patients with a greater deformity of the
spinal column in response to continuous activation and ongoing chronic pain. Moreover,
scoliosis is likely to be due to genetic defects and environmental factors [32], which might
lead to a dysfunction of the sensory and sympathetic nervous systems [33].

SST inhibits activity-dependent nociceptors, and reduces pain sensation and percep-
tion following intrathecal and epidural administration [34], therefore, it was suggested as
an alternative for opioid analgesics after minor surgical procedures, as well as in arthritis
and neuropathy [27,34,35].

The role of SST in pain and inflammation is complex, involving multiple signalling
molecules and pathways in neuronal and immune cells. Identifying the specific role and
effects of SST within the intricate network can be very challenging. When tissue damage or
an inflammatory stimulus occurs, immune cells, such as macrophages and lymphocytes,
are activated and release various signalling molecules including cytokines and chemokines,
as well as further neuropeptides. These molecules modulate pain and inflammation by
acting on immune cells at the site of injury/surgical site. Moreover, SST reduces the release
of inflammatory mediators such as cytokines and histamine from immune cells [36,37], and
modulates the activity of T cells and macrophages, which are involved in the inflammatory
responses [38–40]. The local administration of SST in animal studies significantly reduced
pain behaviours, which can potentially be attributed to beta-endorphin release [28]. Based
on the findings of this study, it can be inferred that the release of SST into the systemic
circulation, most likely originating from the sensory nerves, appears to function as a
widespread protective mechanism during the operative procedures. These interventions
encompass scoliosis orthopaedic surgery and disc hernia neurosurgical interventions,
which are characterized by substantial tissue damage, intense pain, and the presence of
inflammatory responses. SST release during these interventions suggests its potential role
in mitigating the detrimental effects, thereby highlighting its significance as a potential
protective agent against tissue injury, pain, and inflammation in the context of surgery.

A limitation of the present research is the relatively small sample size involved in
the study, which might not be well representative and conclusive for a larger population.
Another limitation is that it did not thoroughly address the specific types of pain medica-
tion, including various analgesic drugs that patients had been using prior to the surgery.
Therefore, it leaves a gap in the understanding and analysing the potential influence or in-
teractions between pre-existing medication regimens and postoperative pain management
strategies. Nevertheless, in the future, we aim to increase the number of patients and carry
out further investigations including pharmacotherapy-based subgroup analysis.

In our study we could establish a link between SST levels and the intensity of patients’
pain, as well as the extent of tissue damage resulting from medical procedures. Further data
could help to understand the multifaceted role of SST in inflammation and pave the way for
its potential clinical implementation as a valuable intervention in the field of postoperative
pain management.

5. Conclusions

SST release into the systemic circulation presumably from the sensory nerves is likely to
be a general protective mechanism during spinal surgical procedures: scoliosis orthopedic
surgery and disc hernia neurosurgical interventions with extensive tissue injury, pain, and
inflammation. Tissue damage and pain sensation might increase plasma SST levels in
patients during surgery.

The results of this study have the potential to enhance our understanding of the neu-
rophysiological mechanisms underlying pain and tissue response during spinal operations.
By elucidating the role of SST, we can potentially explore novel therapeutic approaches
that target the modulation of neuropeptide signaling to optimize pain management and
improve patient outcomes in the context of surgical interventions.
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Glossary
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peptide; Cobb = Cobb angle; VAS = visual analogue scale; RIA = radioimmunoassay.
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