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Abstract: Heart failure with preserved ejection fraction (HFpEF) represents a global health challenge,
with limited therapies proven to enhance patient outcomes. This makes the elucidation of disease
mechanisms and the identification of novel potential therapeutic targets a priority. Here, we per-
formed RNA sequencing on ventricular myocardial biopsies from patients with HFpEF, prospecting
to discover distinctive transcriptomic signatures. A total of 306 differentially expressed mRNAs
(DEG) and 152 differentially expressed microRNAs (DEM) were identified and enriched in several
biological processes involved in HF. Moreover, by integrating mRNA and microRNA expression
data, we identified five potentially novel miRNA–mRNA relationships in HFpEF: the upregulated
hsa-miR-25-3p, hsa-miR-26a-5p, and has-miR4429, targeting HAPLN1; and NPPB mRNA, targeted
by hsa-miR-26a-5p and miR-140-3p. Exploring the predicted miRNA–mRNA interactions experi-
mentally, we demonstrated that overexpression of the distinct miRNAs leads to the downregulation
of their target genes. Interestingly, we also observed that microRNA signatures display a higher
discriminative power to distinguish HFpEF sub-groups over mRNA signatures. Our results offer
new mechanistic clues, which can potentially translate into new HFpEF therapies.

Keywords: heart failure; HFpEF; miRNA signature in HFpEF; miRNA–mRNA; intercellular
communication

1. Introduction

Heart failure (HF) affects close to 65 million people worldwide [1], being a leading
cause of mortality, morbidity, healthcare resource consumption, and the main cause of
hospitalization and disability among the elderly [1,2]. While the incidence of HF with
reduced ejection fraction (HFrEF) has decreased in the last decade, HF with preserved EF
(HFpEF) is growing with an incidence rate of 10% per decade and nowadays accounts for at
least 50% of all HF cases [3,4], reflecting the ageing of the population and higher prevalence
of cardiovascular comorbidities [3–5]. Importantly, both HFrEF and HFpEF present equally
ominous prognoses, with a five-year mortality rate of 75% [6]. However, from a treatment
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perspective, HFpEF is notably more challenging, as traditional HF therapies targeting
neurohumoral activation (e.g., beta-blockers and ACEi/ARBs) have not clearly shown
clinical benefits in HFpEF.

Several pathophysiological mechanisms underlying HFpEF have been proposed.
These include increased cardiomyocyte and extracellular stiffness, microvascular dys-
function, disturbances of cell communication, and gene expression programs involving
multiple cell types (e.g., endothelial cells, fibroblasts, macrophages) [7–10]. Nevertheless,
the precise molecular basis of these mechanisms in humans continues to be largely elu-
sive. A substantial portion of our existing knowledge is reliant on animal models, which,
although useful, are known to inadequately mimic the complexity and depth of human
HFpEF, both in their clinical manifestations and molecular mechanics. This limitation
becomes especially evident when considering non-coding RNA-related mechanisms, which
are known to be poorly conserved across different species.

Here, we integrated left ventricular mRNA and microRNA expression data from
patients with HFpEF and from a control group composed of aortic stenosis patients. We
identified and experimentally validated five potentially relevant miRNA–mRNA inter-
actions in HFpEF: the upregulated hsa-miR-25-3p, hsa-miR-26a-5p, and has-miR4429,
targeting HAPLN1; and NPPB mRNA, targeted by hsa-miR-26a-5p and miR-140-3p. More-
over, we observed that microRNA signatures distinguished HFpEF sub-groups far better
than mRNA signatures, most probably due to the noise introduced by comorbidities. These
results might be considered in developing targeted therapies addressing HFpEF.

2. Materials and Methods
2.1. Patients

Cardiac biopsies were obtained from patients recruited to undergo cardiac surgery
at Centro Hospitalar São João, as described previously [11]. All procedures were realized
according to the Declaration of Helsinki and were approved by the local ethics committee
and data protection authority (CES2006, 35/2017, and 1774/2017). All patients were
assessed in terms of clinical characteristics, echocardiography, and blood sampling [11],
and they were categorized into two groups: HFpEF according to ESC guidelines [2] and a
non-HFpEF control group composed of aortic stenosis patients, from now on designated
as “Control”.

2.2. Tissue Collection and RNA Extraction

Left ventricle tissue samples (~5 mg) were collected as described previously [11].
Total RNA was isolated from liquid nitrogen frozen samples using the Norgen Biotek kit
(Norgen Biotek, Thorold, Canada), including a DNase treatment step. RNA concentration
was measured with Nanodrop (Thermo Fisher Scientific, Waltham, MA, USA), and RNA
quality was assessed with Agilent Fragment Analyzer (Agilent, Santa Clara, CA, USA).

2.3. RNA Sequencing

Only good quality total RNA (RIN > 6.5 and absorbance ratio 260/280 ~2) were used
for library preparation. The preparation of the RNA seq and miR seq libraries and their deep
sequencing were carried out by EMBL Genomics Core service facilities. Uni-directional
deep sequencing of miR seq enabled ~10 million reads per library. A total of 60 million
reads per library were obtained by total RNA seq.

2.4. mRNA Sequencing Analysis

For mRNA sequencing, the quality checking of the raw reads was performed with
FASTQC v0.11.7 [12], and the parameters were adjusted to improve the quality of the
reads with Trimmomatic v0.36 [13]. Then, the reads were mapped against the human
reference genome (release-99/GRCh38, EBI) using STAR v2.7 [14]. Later, the mapped
reads were tracked to protein-coding genes and counted using Stringtie v2.1.1 [15]. The
genes were categorized into different biotypes and their distribution over the reference
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genome (EnsDb.Hsapiens.v86) using the NOISeq R package [16]. The raw counts were
submitted to an in-house pipeline implemented using the DESeq2 R package [17]. Genes
with no expression or those expressed in a single sample were excluded from further
analysis. Standard DESeq2 normalization with RIN and human housekeeping genes
(www.housekeeping.unicamp.br) (accessed on 19 June 2023) was carried out to reduce
the statistical bias before differential gene expression analysis [18,19]. Principal compo-
nent analysis (PCA) and unsupervised hierarchical clustering were performed with vst
transformation (only for visualization purposes) using the prcomp and hclust R functions,
respectively. Significant DEGs were identified by comparing samples of the HFpEF and
control patient groups using a cut-off of false discovery rate (FDR) < 0.05.

2.5. miRNA Sequencing Analysis

For miRNA sequencing, after the reads’ quality control, an analysis was carried out
using the QuickMIRSeq software [20] package, which uses Bowtie to perform the alignment
and mapping against a database created with miRNA, hairpin, smallRNA, and mRNA
sequences (with strand information), as concatenated from the latest versions of miRbase,
GtRNAdb, and Ensembl. Subsequently, the program remaps the reads against the reference
genome (UCSC database-version: hg38) considering mismatches–isomiRs to reduce the
false hits. Afterward, to reduce background reads and improve miRNA detection, the
program removes miRNA reads, which have an average number of counts of less than
2 per sample and are absent in more than 60% of the samples. Again, the raw counts
were submitted to an in-house pipeline using the DESeq2 R package [17]. miRNAs with
no expression or those expressed in a single sample were excluded from further analysis.
Standard DESeq2 normalization was carried out including RIN values [19]. Principal
component analysis (PCA) and unsupervised hierarchical clustering were performed
with vst transformation (only for visualization purposes) using the prcomp and hclust R
functions, respectively. Significant DEMs were identified by comparing samples of the
HFpEF and control patient groups (FDR < 0.05).

2.6. miRNA–mRNA Interaction Analysis

Regarding the miRNA–mRNA interaction, first, normalized matrices were prepared
from the mRNA and miRNA with the respective lists of DEGs and DEMs (FDR < 0.05). The
miRComb R package [21] was used to find significant negative, positive, and two-sided
correlations between the miRNA and mRNA normalized expression values. miRNA–
mRNA pairs were considered significant when FDR < 0.05 and if their putative interaction
information was present in at least one of the recommended databases (TargetScan_v6.2_20
and MicroCosm_v5_20), as recommended by mirComb authors.

2.7. Gene Enrichment, Network, and Pathways Analyses

Gene set enrichment analysis of gene ontology (GO) terms, with a focus on the biolog-
ical process (BP), molecular function (MF), and cellular component (CC), was performed
for DEGs using the clusterProfiler R package. For the pathway analysis, the Reactome web
tool (https://reactome.org/) was used with mRNAseq and miRNAseq results. Addition-
ally, network analyses and circos plots (miRComb package) were built to highlight the
miRNA–mRNA interactions.

2.8. Cardiac Myocyte Culture

Primary human cardiac myocytes (HCMs) were commercially obtained from Promo-
Cell, Heidelberg, Germany. HCMs were cultured in myocyte growth medium (PromoCell,
Heidelberg, Germany) supplemented with 10% of Fetal Bovine Serum (Sigma-Aldrich, St.
Louis, MI, USA) and incubated at 37 ◦C in a humidified atmosphere (95% air, 5% CO2). The
medium was renewed daily, and cells were cultured in T-flasks and passaged to a 12-well
plate using TrypLE Select (Thermo Fisher Scientific, Waltham, MA, USA) upon reaching
90% confluence.

www.housekeeping.unicamp.br
https://reactome.org/
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2.9. miRNA Transfection

HCMs were plated on 12-well plates at a density of 15 × 104 per well for 24 h before
transfection in 1 mL of media without Pen/Strep. On the following day, upon reaching
90% confluence, cells were transfected with a mix of miRNA and Lipofectamine™ 3000
(Thermo Fisher Scientific, Waltham, MA, USA) at a final volume of 200 µL of Opti-MEM®

medium (Thermo Fisher Scientific, Waltham, MA, USA) without P/S and incubated for
24 h at 37 ◦C in a humidified atmosphere (95% air, 5% CO2). Several miRNAs were used
for the transfection, including scramble as the negative control, as well as hsa-miR-25-3p,
hsa-miR-26a-5p, hsa-miR-140-3p, and hsa-miR-4429 (Thermo Fisher Scientific, Waltham,
MA, USA); their mature sequences are listed in Table 1. These miRNAs were used at a final
concentration of 100 nM with five replicates each.

Table 1. The mature sequences of miRNA.

miRNA Mature Sequences

hsa-miR-25-3p 5′ CAUUGCACUUGUCUCGGUCUGA 3′

hsa-miR-26a-5p 5′ UUCAAGUAAUCCAGGAUAGGCU 3′

hsa-miR-140-3p 5′ UACCACAGGGUAGAACCACGG 3′

hsa-miR-4429 5′ AAAAGCUGGGCUGAGAGGCG 3′

2.10. Isolation of Total RNA from Cell Cultures and Quantitative Real-Time PCR

After 24 h of transfection, the total RNA from HCMs subjected to a transfection pro-
tocol was extracted with the TRI Reagent® (Sigma-Aldrich, St. Louis, MI, USA) and the
Direct-zolTM RNA MiniPrep Kit (Zymo Research, Irvine, CA, USA) according to the manu-
facturer’s instructions. The quantity and quality of RNA samples were assessed using a
spectrophotometer (Nanodrop 2000, Thermo Fisher Scientific, Waltham, MA, USA). cDNA
strands were synthesized through reverse transcription reaction using RevertAid Reverse
Transcriptase, Oligo (dT) primers, RiboLock RNase Inhibitor, and dNTP (Thermo Fisher
Scientific, Waltham, MA, USA). Amplification and fluorescent quantification were obtained
from an ABI QuantStudio 5 Real-Time PCR System (Thermo Fisher Scientific, Waltham,
MA, USA) using a SensiFAST SYBR Lo-ROX mix (BIOLINE, London, UK). RT-qPCR re-
actions were performed in triplicate. For normalization of the miRNA analysis, GAPDH
and β-ACTIN were used as housekeeping genes. In addition, the relative quantification
of target gene expression was performed using the ddCt method [22]. All primers used
for amplification are listed in Table 2. Lastly, data were analyzed using GraphPad Prism
version 8.0 for Mac (GraphPad Software). Statistical significance was determined using un-
paired Student’s t-test. Differences were considered statistically significant when ** p < 0.01,
*** p < 0.001.

Table 2. The sequences of primers used for quantitative real-time RT-PCR.

Target Gene Sequence Annealing Temperature (◦C)

NPPB Fwd 5′ CCCCGGTTCAGCCTCGGACT 3′

Rv 5′ ACGGATGCCCTCGGTGGCTA 3′ 60

HAPLN1 Fwd 5′ GATACTGTTGTGGTAGCACTGG 3′

Rv 5′ TGCTGCGCCTCGTGAAAATTGAG 3′ 59.8

GAPDH Fwd 5′ GCTGGTAAAGTGGATATTGTTGCCAT 3′

Rv 5′ TGGAATCATATTGGAACATGTAAACC 3′ 57.9

β-ACTIN Fwd 5′ GCAAAGACCTGTACGCCAAC 3′

Rv 5′ AGTACTTGCGCTCAGGAGGA 3′ 55
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3. Results
3.1. Patients

The clinical characteristics of the ten patients enrolled in this study are summarized
in Table S1. They were divided into two groups, HFpEF (six patients) and Control
(four patients), both with equal gender distribution (50% male and 50% female). The
HFpEF group had a median age of 76 years, and the median age in the Control group was
58 years (p = 0.062). Hypertension (83% and 100%; p > 0.99) and diabetes (50% and 50%;
p > 0.99) were present in the clinical history of HFpEF and Control groups, respectively.

3.2. mRNA Expression Profiles in HFpEF and Control LV Cardiac Biopsies

The filtered RNA seq read set mapped an average of 26 million reads in all samples,
varying from 23 to 30 million (Figure 1A). Regarding the relative abundance of the biotype
(in percentage), the protein-coding genes were below 50%, the miRNA was around 1%, and
the lincRNA and antisense were below 10% (Figure 1B). For further analysis, in addition
to DESeq2 internal normalization, which corrects for library size and DNA composition
bias, we used the RIN value and human housekeeping genes (HSKG) to complement the
normalization of the samples (Figure 1C). Principal component analysis (PCA) distributed
the patients (HFpEF and Control) homogeneously, separating only two HFpEF patients
(Figure 1D). Unsupervised hierarchical cluster analysis also displayed the same similarity
within the cohort (Figure 1E).

We identified a total of 306 differentially expressed mRNA genes (DEGs) (FDR < 0.05)
between the HFpEF and Control groups: 255 upregulated and 51 downregulated (Figure 2A).
These 306 genes were further analyzed in terms of the enrichment GO terms in order to
obtain a functional insight into these genes. We observed that the mRNA DEGs in the HFpEF
group are enriched regarding the cellular response to the tumor necrosis factor, fat cell
differentiation, and cellular response to the fibroblast growth factor (Figure 2B); can function
as transcription factors (Figure 2C); and are more related to the myosin complex and the
extracellular matrix (Figure 2D). Overall, LGI1, RYR1, and EFNB3 were the molecules, whose
expression was particularly highlighted in the HFpEF group. Interestingly, LGI1, encoding
Leucine-rich glioma-inactivated protein 1, RYR1, Ryanodine receptor 1, and the ephrin
EFNB3 are all molecules involved in the regulation of voltage-gated channels associated
with HF.

3.3. miRNA Expression Signatures in LV Tissue in HFpEF Patients

The results revealed an ordinary share of 25% of unaligned reads, and a more sig-
nificant number of the mapped reads were miRNA (Figure 3A). Likewise, for mRNA
normalization, the RIN information was used as a covariate, and a homogenized cluster for
both the Control and HFpEF samples was obtained (Figure 3B).

The most abundant microRNAs were hsa-miR-944, hsa-miR-335-3p, hsa-miR-193b-3p,
and hsa-miR-21-3p. PCA separated all expressed microRNA into two distinct groups
matching the HFpEF and Control patients (Figure 3C). Moreover, the unsupervised hierar-
chical cluster analysis also identified the same two clusters within the cohort (Figure 3D).
Regarding DEMs, 152 differentially expressed DEMs were identified among HFpEF and
Control patients, with 78 DEMs upregulated and 74 downregulated among the HFpEF
samples (Figure 3E).

3.4. miRNA–mRNA Interactions in HFpEF Patients

To identify miRNA–mRNA regulatory interactions in HFpEF, we used the previously
determined 306 DEGs and 152 DEMs. The miRNA target prediction analysis identified a
total of 46,512 possible significant interactions using the Pearson methodology. Using this
criterion, correlations can be divided into positive, negative, or two-sided. Focusing our
analysis on the negative correlations, we identified eight significant correlations (Figure 4A),
one downregulated miRNA (miR-125b-1-3p), which leads to the upregulation of its target
mRNA (positive logratio.mRNA), and five upregulated miRNA (miR-140-3p; miR-148a-3p;
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miR-25-3p; miR-26a-5p; and miR4429), inhibiting one or more target mRNAs (negative
logratio.mRNA) (Figure 4B).
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Figure 1. Gene expression differences between HFpEF and Control groups. (A) Bar plot showing the
proportion of uniquely mapped, multiple mapped, and unmapped reads. The x-axis identifies the
samples, and the y-axis shows the number of reads per million. (B) Bar plot comparing the relative
abundance of each biotype (y-axis) in both sample types (x-axis). Green: Control; Red: HFpEF.
(C) Distribution of read counts (log2) per sample (A) before normalization and (B) after
normalization—HSKG normalization and RIN adjustment. Green: Control; Red: HFpEF. (D) Prin-
cipal component analysis (PCA) of the mRNA from cardiac biopsy samples. Green: Control; Red:
HFpEF. (E) Hierarchical clustering dendrogram using the Euclidean method for the 10 samples.
Green: Control; Red: HFpEF.
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Figure 2. Functional classification of the DEGs. (A) Density plot showing the number of differentially
expressed genes between HFpEF and Control groups with a false discovery rate (FDR) adjusted
p-value < 0.05. The x-axis represents significantly dysregulated genes, and the y-axis shows the
density of the log2 fold change. Downregulated genes are represented in red and upregulated
genes in green. (B) GO biological process (BP) enrichment analysis, (C) GO molecular function (MF)
enrichment analysis, and (D) GO cellular component (CC) enrichment analysis of the 306 significant
DEGs from HFpEF vs. Control. The color of the dots indicates significance; the size of the dots
indicates the gene count for each category; and the gene ratio indicates the enrichment level.



Biomedicines 2023, 11, 2131 8 of 14

Biomedicines 2023, 11, x FOR PEER REVIEW 8 of 15 
 

enrichment analysis, and (D) GO cellular component (CC) enrichment analysis of the 306 significant 
DEGs from HFpEF vs. Control. The color of the dots indicates significance; the size of the dots indi-
cates the gene count for each category; and the gene ratio indicates the enrichment level. 

3.3. miRNA Expression Signatures in LV Tissue in HFpEF Patients 
The results revealed an ordinary share of 25% of unaligned reads, and a more signif-

icant number of the mapped reads were miRNA (Figure 3A). Likewise, for mRNA nor-
malization, the RIN information was used as a covariate, and a homogenized cluster for 
both the Control and HFpEF samples was obtained (Figure 3B). 

 
Figure 3. microRNA expression differences between HFpEF and Control groups. (A) Percentage of 
the reads mapped to different types of RNA and unaligned reads. (B) Distribution of the read counts 
(log2) per sample (A) before normalization and (B) after normalization—HSKG normalization and 
RIN adjustment. Green: Control; Red: HFpEF. (C) PCA score plot of the microRNA samples. Green 
and red colors represent the Control and HFpEF patients, respectively. (D) Hierarchical clustering 
dendrogram using the Euclidean method for the 10 microRNA samples. Green: Control; Red: 
HFpEF. (E) Summary of genes considered for microRNA–mRNA interaction analysis. 

Figure 3. microRNA expression differences between HFpEF and Control groups. (A) Percentage of
the reads mapped to different types of RNA and unaligned reads. (B) Distribution of the read counts
(log2) per sample (A) before normalization and (B) after normalization—HSKG normalization and
RIN adjustment. Green: Control; Red: HFpEF. (C) PCA score plot of the microRNA samples. Green
and red colors represent the Control and HFpEF patients, respectively. (D) Hierarchical clustering
dendrogram using the Euclidean method for the 10 microRNA samples. Green: Control; Red: HFpEF.
(E) Summary of genes considered for microRNA–mRNA interaction analysis.

Further, we explored the predicted miRNA–mRNA interactions experimentally.

3.5. Transfection of miRNAs Confirms the in Silico Analysis

To validate the results obtained in silico, we proceeded to perform a functional analysis
of the interaction in the HCMs cell line through miRNAs’ overexpression. In order to
confirm the effect of miRNAs’ overexpression on the target genes, we performed real-
time quantitative PCR. For this study, we focused on the genes NPPB and HAPLN1. The
Natriuretic Peptide B (NPPB) gene is a member of the natriuretic peptide family and
encodes a secreted protein, which functions as a cardiac hormone and has been widely
used to diagnose HF [23]. The Hyaluronan and Proteoglycan Link Protein 1 (HAPLN1)
gene has also been proposed to be involved in the process of HF for the first time [24].
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Both genes have also been described to be expressed in the heart, more specifically in
the cardiomyocytes [25], hence the use of the HCMs line for this functional analysis. The
relationship between mRNA and miRNA sequencing performed previously predicted that
the NPPB gene is a target of hsa-miR-26a-5p and hsa-miR-140-3p. The RT-qPCR analysis of
this gene confirmed that transfection of HCMs with these miRNAs led to a downregulation
of NPPB mRNA by 32 and 15%, respectively, compared with the negative control (scramble)
(Figure 5). Regarding the HAPLN1 gene, when the HCMs were transfected with three
different miRNAs, we observed a downregulation of mRNA both in hsa-miR-25-3p and
miR-26a-5p compared with the scramble, decreasing around 30 and 37%, respectively.
On the other hand, there was a slight decrease of 7% when HCMs were transfected with
hsa-miR-4429 (Figure 5). Overall, the RT-qPCR confirmed that overexpression of the several
miRNAs mentioned above leads to inhibition and consequent downregulation of these
two target genes, NPPB and HAPLN1 (Figure 5).
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Figure 4. Correlation between each mRNA and corresponding miRNA(s). (A) Venn diagram of
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significant negative correlations (padj < 0.05). Circles represent miRNAs and squares mRNAs. Red fill
means upregulated miRNA/mRNA, while green fill means downregulated miRNA/mRNA. Arrows
indicate miRNA–mRNA pairs. Arrow color represents the score of the interaction; in this case, only
weak-to-strong negative interactions (red arrows) are represented. Arrow width is proportional to
the number of appearances in the database.
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Figure 5. Relative mRNA expression of HAPLN1 and NPPB genes in human cardiac myocyte line
transfected with hsa-miR-25-3p, hsa-miR-26a-5p, hsa-miR-140-3p, or hsa-miR-4429. Results represent
the mean ± SD of five replicates. Unpaired Student’s t-test was applied to compare the differences
between conditions. Results were considered statistically significant when ** p < 0.01 and *** p < 0.001.

4. Discussion

The substantial heterogeneity among HFpEF patients could be a significant factor
contributing to the ongoing challenges in effectively treating the disease. At present, the
therapeutic approach primarily involves the use of SGLT2 inhibitors, coupled with rigorous
management of the risk factors, such as hypertension, diabetes, hyperlipidemia, and weight
control [26]. Therefore, an improved understanding of the different HFpEF phenotypes
might elucidate the underlying mechanism of the disease and help in the development of
effective therapeutic approaches.

Aortic stenosis (AS) is a degenerative disease, which affects the aortic valve, resulting
in chronic pressure overload on the left ventricle. While there may be some overlap with
HFpEF in terms of age, prevalence of certain cardiovascular comorbidities, and a few
cardiac structural features, AS is better understood from a mechanistic standpoint and is
believed to primarily rely on pressure overload [27]. By studying the contrasting mecha-
nisms at work in the myocardium between HFpEF and AS, as opposed to comparing them
with young and healthy individuals, we gain valuable insights into the pathophysiology
of HFpEF.

In this study, we sorted both differentially expressed genes (DEGs) and microRNA
signatures from ventricular biopsies from HFpEF patients subjected to cardiac surgery.
Importantly, these datasets allowed us to identify valuable microRNA–mRNA interactions,
which one might consider apt for interventional targeting.

Of the 306 DEGs identified in HFpEF, the expression levels of LGI1, RYR1, and EFNB3
were particularly increased in the HFpEF group. The LGI1 gene encodes the Leucine-
rich glioma-inactivated protein 1, which regulates voltage-gated potassium channels and
is associated with sudden cardiac death [28,29]. Ryanodine receptor 1, RYR1, plays a
role in regulating calcium channel opening and is behind the pathological mechanism
involved in muscle weakness and impaired physical activity observed in patients with
heart failure [30,31]. EFNB3 has been associated with cardiovascular disease, mostly in
blood pressure regulation [32]. At the molecular level, this ephrin is involved in myosin
light chain kinase phosphorylation, which controls sensitivity to Ca2+ flux in vascular
smooth muscle cells [32]. As a gene related to blood pressure regulation, such elevated
expression of EFNB3 in the HFpEF group is quite interesting, since the Control group
patients were also hypertensive. Therefore, future investigation of the EFNB3 function is
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necessary to further elucidate this ephrin’s role in HFpEF progression. Moreover, to our
knowledge, none of the most significant DEGs identified in this study have been reported
elsewhere, which demonstrates the heterogeneity among HFpEF patients [33–35]. Our
PCA analysis also corroborates this observation, indicating that no consensus exists on
the full myocardial gene expression signature in HFpEF. Nevertheless, RYR and EFN are,
among others, the genes involved in calcium flux handling, which is important in diastole
for removing Ca2+ from the cytosol, promoting cardiomyocyte relaxation [36].

For the differentially expressed microRNA (DEMs) identified, we found 152 signifi-
cantly differentially expressed microRNA between the HFpEF and Control groups. The
upregulated hsa-miR-21-3p and hsa-miR-193b-3p and the downregulated hsa-miR-8485
are microRNA associated with several mechanisms prompting heart failure [37–39]. The
elevated expression of hsa-miR-21-3p in HFpEF patients was reported in a prior study [40]
and was implicated in cardiac fibrosis in a HFpEF rat model [41]. The expression level
of hsa-miR-193b-3p was found to be downregulated in the plasma of patients presenting
HF [38]. However, in our analysis, this microRNA was found significantly overexpressed
in the cardiac biopsies from HFpEF patients, suggesting diverse roles for hsa-miR-193b-3p
in cardiac disease development. hsa-miR-8485 has been demonstrated to interact with the
RNA-binding Protein TDP-43, whose aggregates are described as cardiac muscle degenera-
tion markers [42]. However, the molecular mechanism of the downregulated has-miR-8485
in HFpEF remains to be determined. Interestingly, microRNA signatures have been demon-
strated to distinguish HFpEF sub-groups with higher discriminative power [43]. Indeed,
our PCA separated the expressed microRNA from the cardiac biopsies into two clear,
distinct groups, matching HFpEF and Control patients. Therefore, microRNA signature
may be usable as a potential therapeutic target enabling novel HFpEF therapies.

These microRNAs are part of an important class of RNAs, which regulate protein pro-
duction post-transcriptionally, influencing the translation or the stability of the target gene
mRNA. From a total of 46,512 miRNA–mRNA relationships, we found some significant
miRNA–mRNA interactions already associated with cardiac diseases. For instance, inhibi-
tion of KCNQ1OT1 by hsa-miR-140-3P exacerbates ischemia–reperfusion injury [44], and
hsa-miR-140-3p inhibits cardiac hypertrophy through targeting Gata4 [45]. Additionally,
hsa-miR-148a-3p therapeutic delivery protected the mouse heart from pressure-overload-
induced systolic dysfunction by preventing the transition of concentric hypertrophic remod-
eling, targeting the cytokine co-receptor glycoprotein 130 (gp130) connecting cardiomyocyte
responsiveness to extracellular cytokines by modulating STAT3 signaling [46]. Importantly,
we identified five potentially novel miRNA–mRNA relationships in HFpEF: the upregu-
lated hsa-miR-25-3p, hsa-miR-26a-5p, and has-miR4429, targeting HAPLN1; and NPPB
mRNA, targeted by hsa-miR-26a-5p and miR-140-3p. The hyaluronic acid (HA)-organizing
factor HAPLN1 is required to produce hyaluronic-rich extracellular matrix needed for
heart morphogenesis and injury-induced remodeling [47]. Moreover, the depletion of cells
expressing HAPLN1 impairs cardiomyocyte and cardiac fibroblast proliferation and inhibits
heart regeneration or fibrotic remodeling [47]. NPPB is a cardiac gene encoding brain natri-
uretic peptide (BNP), which is expressed in both atrial and ventricular myocardium during
heart development and strongly expressed in ventricular cardiomyocytes when the heart is
overloaded [48]. Moreover, it has been shown that after heart failure, this cardioprotective
hormone plays an important role in restoring the intravascular blood volume and vascular
tone to physiologic levels [49]. Experimentally, we demonstrated that overexpression of
hsa-miR-25-3p, hsa-miR-26a-5p, and has-miR4429, and hsa-miR-26a-5p and hsa-miR-140-
3p drives the downregulation of the HAPLN1 and NPPB genes, respectively. Despite the
elevated levels of circulating B-type natriuretic peptide (BNP) observed in HFpEF patients,
it is plausible to propose that this could interfere with the mechanotransduction mecha-
nism, which regulates BNP production. This potential disruption can potentially decouple
natriuretic peptide production from wall tension, thereby sustaining high filling pressures.
The evaluation of these miRNA–mRNA relationships makes it clear that the development
of therapeutic agents targeting these microRNA might be a promising strategy in HFpEF
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therapy. Therefore, the present study successfully identified the key miRNAs implicated
in HFpEF patients with different comorbidities, aiming to provide new insight into the
underlying pathophysiological mechanisms of HFpEF.

Supplementary Materials: The following supporting information can be downloaded at: https:
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