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Abstract: Immunotherapy represents an attractive avenue for cancer therapy due to its tumour speci-
ficity and relatively low frequency of adverse effects compared to other treatment modalities. Despite
many advances being made in the field of cancer immunotherapy, very few immunotherapeutic
treatments have been approved for difficult-to-treat solid tumours such as triple negative breast
cancer (TNBC), glioblastoma multiforme (GBM), and advanced prostate cancer (PCa). The anatomical
location of some of these cancers may also make them more difficult to treat. Many trials focus solely
on immunotherapy and have failed to consider or manipulate, prior to the immunotherapeutic
intervention, important factors such as the microbiota, which itself is directly linked to lifestyle
factors, diet, stress, social support, exercise, sleep, and oral hygiene. This review summarises the
most recent treatments for hard-to-treat cancers whilst factoring in the less conventional interventions
which could tilt the balance of treatment in favour of success for these malignancies.

Keywords: glioblastoma; triple negative breast cancer; advanced prostate cancer; microbiota; stress;
exercise; immunotherapy; vaccine

1. Introduction

Immunotherapy, such as the use of checkpoint inhibitors, oncolytic virus, bispecific
antibodies, and adoptive cell transfer, has revolutionised the treatment of many cancers.
Today, many of these approaches have been FDA approved for the treatment of several
cancers [1]. Talimogene laherparepvec (T-VEC) is an oncolytic virus, FDA approved in 2015,
for the treatment of advanced melanoma (stage IIIB-IV) [2] and Mosunetuzumab-axgb
is a bispecific antibody approved for the treatment of adults with relapsed or refractory
follicular lymphoma; in addition, three other bispecific antibodies have recently been ap-
proved for the treatment of acute lymphoblastic leukaemia (Blincyto), for non-small cell
lung cancer (Rybrevant), and for uveal melanoma (Kimmtrak). In terms of cellular therapy,
FDA-approved treatment using chimeric antigen receptor T (CAR-T) has been limited to
B cell malignancies expressing CD19 and, while these harbour high potential for solid tu-
mours, they also have significant toxicity, including severe cytokine release syndrome (CRS)
and substantial neurotoxicity. Additionally, PROVENGE is the only FDA-approved im-
munotherapy for the treatment of advanced prostate cancer (PCa) without DNA mismatch
repair deficiency (dMMR); however, while the therapy is well tolerated, it remains expen-
sive and limited in its efficacy. A vast number of additional approaches (neoantigens with
adjuvants, dendritic cell (DC) vaccines, peptide/mRNA vaccines. . .) are being investigated,
including any combinations of the aforementioned, FDA-approved treatments.

The immune system is known to be strongly affected by both intrinsic (age, sex, and
genetics) and extrinsic (environmental and lifestyle) factors. While one cannot change an
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individual’s intrinsic factors, external factors, especially those linked to lifestyle, can be
manipulated. Yet very few studies have attempted to combine “conventional approaches”
with any of these. In this review, we summarise the difficulties faced when treating glioblas-
toma (GBM), triple negative breast cancer (TNBC), and PCa, and how environmental and
lifestyle factors represent emerging parameters that strongly influence the progression of
these diseases. We also discuss how some of these parameters have the potential to be
added prior to and along with conventional therapy to increase overall survival and/or
quality of life for the patients.

2. Glioblastoma (GBM)

GBM is the most frequently occurring primary brain tumour with an incidence rate of
~3 in 100,000. It affects both children and adults, although it is primarily a disease associ-
ated with increased age, with the average age of diagnosis being ~65 years. GBM carries a
poor prognosis and is nearly always fatal, with only around 3–5% of patients surviving
for a period of five years or more [3,4]. Current therapy involves surgical resection (where
possible) followed by concomitant radiotherapy and temozolomide chemotherapy. Despite
aggressive multimodal therapy, nearly all tumours recur close to the site of resection. Com-
plete surgical resection is almost impossible due to the highly infiltrative nature of GBM [5].
In addition, not all tumours are responsive to temozolomide chemotherapy, and some
patients’ tumours may express the enzyme O6-methylguanine-DNA-methyltransferase
(MGMT). MGMT repairs the DNA damage induced by temozolomide, making patients
whose tumours express MGMT resistant [6]. Very few new therapies have been approved
for GBM in recent years and, due to the poor prognosis associated with GBM, new ther-
apeutic interventions are desperately required. Immunotherapy represents an attractive
therapy option due to its tumour specificity and the ability of activated immune cells to ac-
cess the brain and target intracranial tumours. Numerous immunotherapeutic approaches
are being trialled in the GBM setting (Table 1); however, currently there are no approved
immunotherapies for GBM. While numerous successes have been seen in other cancers, as
yet no immunotherapy has been approved for use in GBM, with several therapies failing
to show efficacy during phase 3 testing (e.g., Rindopepimut) [7]. This could be due to a
highly immunosuppressive tissue microenvironment, the inability of large molecules to
cross the blood–brain barrier and penetrate tumours, and the low mutation rates compared
to other tumours. T-cell dysfunction is also frequently seen in the GBM setting with cells
often expressing exhaustion markers and having an altered metabolism [8–10]. Standard
therapies used to manage GBM are also known to dampen the immune response, with one
such example being corticosteroids used to treat GBM-associated oedema.

Table 1. Immunotherapy trials for GBM.

ClinicalTrials.gov ID Vaccine Phase Stage Reference

NCT02049489 ICT-121 I Completed [11]

NCT00323115 aDCs 1 + RT 2 + TMZ 3 II Completed [12]

NCT04277221 aDCs/tumour antigen + RT + TMZ III Unknown [13]

NCT01213407 Trivax + RT + TMZ II Completed [14]

NCT02772094 aDCs/tumour antigen + TMZ II Unknown [15]

NCT01280552 ICT-107 II Completed [16]

NCT01006044 aDCs II Completed [17]

NCT03382977 VBI-1901 I/II Active, not recruiting [18]

NCT02864368 PEP-CMV + TMZ I Terminated

NCT02146066 DCVax-L + TMZ E.A. 4 Available
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Table 1. Cont.

ClinicalTrials.gov ID Vaccine Phase Stage Reference

NCT04968366 aDCs pulsed with multiple neoantigen peptides I Recruiting

NCT02709616 mRNA-pulsed DCs + RT + TMZ I Completed [19]

NCT02808364 mRNA-pulsed aDCs I Completed [19]

NCT02649582 mRNA-pulsed DCs + RT + TMZ I/II Recruiting [20]

NCT02078648 SL-701 I/II Completed [21]

NCT05685004 TVI-Brain-1 + RT + TMZ II/III Not yet recruiting

NCT02510950 Personalised peptide + Poly-ICLC + TMZ I Terminated

NCT02465268 pp65-shLAMP DC II Active, not recruiting [22]

NCT04801147 aDCs I/II Recruiting

NCT01902771 DCs + tumour lysate + Imiquimod I Terminated

NCT04002804 aDCs + autologous tumour lysate I Terminated

NCT03665545 IMA950 I/II Active, not recruiting [23]

NCT04842513 Multipeptide plus XS15 + RT + TMZ I Recruiting

NCT01290692 TVI-Brain-1 II Completed [24]

NCT02366728 CMV pp65 -LAMP mRNA-pulsed aDCs +
TMZ + Basiliximab II Completed [25]

NCT04116658 EO2401 + Nivolumab/Nivolumab + Bevacizumab Ib/IIa Active, not recruiting [26]

NCT03916757 V-Boost II Unknown [27]

NCT01567202 aDCs + Autogeneic glioma stem-like cells (A2B5+) +
RT + TMZ II Unknown [28]

NCT02010606 Allogenic GBM stem-like lysate-pulsed aDCs I Completed [29]

NCT00643097 PEP-3-KLH + GM-CSF + TMZ II Completed

NCT04963413 pp65-fLAMP RNA-loaded aDCs + GM-CSF + TMZ I Active, not recruiting

NCT01957956 Allogenic tumour lysate-pulsed aDCs Early I Active, not recruiting [30]

NCT01808820 aDCs + Allogenic tumour lysate + Imiquimod I Completed

NCT04015700 GNOS-PV01 + INO-9012 I Active, not recruiting

NCT00639639 pp65-LAMP mRNA-loaded DCs + Ttd 5 I Completed [31]

NCT03360708 Allogenic tumour lysate-pulsed aDCs Early I Active, not recruiting

NCT01081223 TVI-Brain-1 + IL-2 I/II Completed [24]

NCT02722512 HSPPC-96 + RT I Terminated

NCT02455557 SurVaxM II Active, not recruiting [32]

NCT03914768 Genetically modified tumour
cells/antigens-pulsed aDCS I Unknown

NCT03615404 aDCs + CMV RNA + CM-CSF + Ttd I Recruiting

NCT02149225 APVAC + Poly-ICLC + GM-CSF I Completed [33]

NCT03223103 Personalised vaccine + Poly-ICLC I Active, not recruiting [34]

NCT05743595 Personalised neoantigen DNA + Retifanlimab I Not yet recruiting

NCT03688178 aDCs + CMV pp65 + TMZ + Varlilumab II Recruiting

NCT04888611 GSC-DCV + Camrelizumab II Recruiting

NCT00890032 aDCs + Autologous tumour mRNA I Completed

NCT00589875 AdV-tk + Valacyclovir II Completed [35]
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Table 1. Cont.

ClinicalTrials.gov ID Vaccine Phase Stage Reference

NCT01403285 IMA950 + Cyclophosphamide + GM-CSF I Terminated

NCT03927222 aDCs + pp65-LAMP CMV mRNA + GM-CSF + Ttd II Terminated

NCT00576537 aDCs + Allogenic tumour lysate II Completed [36]

NCT04573140 RNA-LP I Recruiting

NCT00751270 GliAtak I Completed [37]

NCT03422094 NeoVax + Nivolumab + Ipilimumab I Terminated

NCT04642937 GBM6-AD + Hp1a8 + Imiquimod I Active, not recruiting [38]

NCT02052648 Indoximod + TMZ I/II Completed [39]

NCT01222221 IMA950 + TMZ + RT I Completed

NCT02529072 DCs + Nivolumab I Completed

NCT00846456 CSC-mRNA transfected DCs I Completed [40]

NCT01814813 MDNA-55 II Terminated [41]

NCT02287428 NeoVax + Pembrolizumab I Recruiting

NCT03018288 HSPCC-96 + Pembrolizumab + RT + TMZ I Completed

NCT04201873 aDCs + Pembrolizumab + Poly-ICLC I Recruiting

NCT04280848 UCPvax II Recruiting [42]

NCT01967758 ADU-623 I Completed [43]

NCT02820584 aDCs + GSC I Completed

NCT04552886 aDCs I Recruiting

NCT02718443 VXM01 I Completed [44]

NCT04523688 aDCs II Recruiting

NCT01759810 DCs I Unknown

NCT03750071 VXM01 + Avelumab I/II Active, not recruiting [45]

NCT03879512 aDCs + Tumour lysate + Cyclophosphamide +
Nivolumab + Ipilimumab I/II Recruiting

NCT03395587 aDCs + SoC 6 II Recruiting

NCT00045968 DCVax-L III Active, not recruiting [46]

NCT01498328 CDX-110 + Bevacizumab II Completed [47]

NCT05698199 ITI-1001 I Not yet recruiting

NCT03149003 DSP-7888 + Bevacizumab III Completed [48]

NCT00905060 HSPPC-96 + TMZ + Surgery II Completed [49]

NCT00003185 Autologous tumour cells + Sargramostim II Completed [50]

NCT00626015 PEP3-KLH + Daclizumab + TMZ I Completed [51]

NCT00626483 DCs loaded with CMV pp65-LAMP mRNA I Completed [52]

NCT00458601 CDX-110 + TMZ + GM-CSF II Complete [53]

NCT05100641 AV-GBM-1 III Not recruiting yet

NCT01250470 SurVaxM I Complete [54]

NCT03400917 AV-GBM-1 II Active, not recruiting [55]

NCT05163080 SurVaxM + Montanide + Sargramostim II Recruiting

NCT01480479 CDX-110 + TMZ + GM-CSF III Completed [56]

NCT00576641 aDCs + Autologous tumour lysate I Completed [36]
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Table 1. Cont.

ClinicalTrials.gov ID Vaccine Phase Stage Reference

NCT01204684 Resiquimod + Poly-ICLC II Active, not recruiting

NCT01491893 PVSRIPO I Completed [57]

NCT05557240 NPVAC1/2 + Poly-ICLC I Recruiting

NCT04388033 aDCs + IL-12 I/II Recruiting

NCT05356312 Personalised neoantigen vaccine E.A. 4 Available

NCT05283109 P30-EPS + Hiltonol I Not yet recruiting

NCT02498665 DSP-7888 I Completed [58]

NCT02800486 Cetuximab II Recruiting

NCT04978727 SurVaxM I Recruiting

NCT01920191 IMA950 + Poly-ICLC + TMZ I/II Completed [59]

NCT00612001 aDCs I Completed [60]

NCT00068510 aDCs loaded with tumour lysate I Completed [61]

NCT04214392 CAR T-Cells I Recruiting

NCT00293423 GP96 I Completed [62]

NCT01522820 DEC-205/NY-ESO-1 Fusion Protein
CDX-1401 + Sirolimus I Completed

NCT04808245 H3K27M peptide + Imiquimod I Recruiting

NCT00069940 Telomerase: 540–548 peptide + GM-CSF I Completed

NCT03043391 PVSRIPO Ib Active, not recruiting [63]

NCT00014573

Surgery + Paclitaxel + Cyclophosphamide + Filgrastim +
Autologous tumour cells + Sargramostim + Cisplatin +
Carmustine + IL-2 + Autologous bone
marrow/PBMC transplantation

II Completed

NCT01621542 WT2725 I Completed [64]

NCT00004024 Autologous tumour cells + Muromonab-CD3 +
GM-CSF + IL-2 II Completed

1 Autologous dendritic cells; 2 radiotherapy; 3 temozolomide; 4 early access; 5 tetanus toxoid; 6 standard of care.

Research has begun to highlight the importance of several lifestyle factors when
utilising the immune system to fight GBM. The gut microbiome has been identified as an
important component of the immune system and a predictor of response to immunotherapy
in the cancer setting. Indeed, the gut microbiome has been shown to be a predictor of
response to anti-PD-1 immune checkpoint blockade in the murine GBM setting, with the
presence of Bacteroides cellulosilyticus being linked with response to anti-PD-1 immune
checkpoint therapy [65].

The alteration of patient diets has been examined as a therapeutic intervention in the
cancer setting [66]. Several studies have looked at utilising a ketogenic diet to treat GBM
with the aim of reducing carbohydrate intake and therefore starving the tumour cells of
glucose. Furthermore, it seems as if a ketogenic diet can enhance immunity in a murine
GBM model. Mice harbouring intracranial GL261-Luc2 tumours were given a ketogenic
diet and it was found that these mice had a significant reduction in immune inhibitory
receptors such as PD-1 and CTLA-4 among their tumour-infiltrating lymphocytes [67].
This information points to a potential combinatorial role for the ketogenic diet with active
immunotherapy.

Exercise also appears to have a potential role in the therapy of GBM. A case study
reported that exercise improved the quality of life for a patient undergoing radiation
treatment and she displayed signs of increased physical fitness such as muscle strength,
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balance, and aerobic capacity [68]. These impacts on the quality of life can also improve
the psychological status of the patient, which may also have a knock-on effect on the anti-
tumour immune response. Furthermore, irisin, a myokine associated with exercise, was
shown to have anti-GBM properties in vitro, leading to cell cycle arrest in a panel of three
cell lines. In vivo injection of irisin into a U-87 MG tumour led to a reduction in tumour
size compared to untreated tumours and, even more impressively, mice that exercised on a
running wheel also had reduced tumour growth compared to controls [69].

Several clinical trials investigate the effects of exercise, diet, and the microbiome
on GBM (Table 2). Many of these holistic approaches have been examined as potential
therapies on their own; however, several of these therapies could be used with active
immunotherapy to boost the anti-tumour immune response and improve patient outcomes.

Table 2. Trials assessing exercise, diet, and microbiome in GBM patients.

ClinicalTrials.gov ID Intervention Phase Stage Reference

NCT03390569 Exercise N/A 1 Completed

NCT05015543 Personal training programme N/A Recruiting

NCT02129335 Impact of exercise on stress N/A Terminated [70]

NCT05431348 Impact of stress and exercise on chemoradiation outcome N/A Recruiting [71]

NCT05116137 Circuit-based resistance exercise N/A Enrolling by invitation [72]

NCT03501134 NovoTTF 2 device N/A Completed

NCT01865162 Ketogenic diet I Completed [73]

NCT05708352 Ketogenic diet II Not yet recruiting [74]

NCT02286167 Atkins-based diet N/A Completed [75]

NCT02939378 Ketogenic diet I/II Unknown

NCT03075514 Ketogenic diet N/A Completed [76]

NCT02302235 Ketogenic diet II Completed [73]

NCT00508456 Methionine-restricted diet I Terminated

NCT04730869 Metabolic therapy programme N/A Recruiting [77]

NCT00575146 Ketogenic diet I Completed [78]

NCT04691960 Ketogenic diet + Metformin II Recruiting

NCT01535911 Metabolic nutritional therapy N/A Active, not recruiting [79]

NCT02046187 Ketogenic diet I/II Terminated [80]

NCT03451799 Ketogenic diet I Active, not recruiting [81]

NCT05183204 Ketogenic diet + Metformin + Paxalisib II Recruiting

NCT03160599 Ketogenic diet N/A Unknown

NCT03278249 Modified Atkins ketogenic diet N/A Active, not recruiting

NCT02768389 Modified Atkins diet + Bevacizumab Early I Completed

NCT01754350 Calorie-restricted ketogenic diet + Transient fasting N/A Completed [82]

NCT00243022 Boswellia serrata extract + Vitamin B12 II Terminated [83]

NCT05326334 Chemoradiation + Chemotherapy +
Microbiome evaluation N/A Recruiting

NCT00003751 Penicillamine + Low copper diet II Completed [84]

NCT03631823 Chemotherapy and/or radiotherapy + Correlation
between microbiome and prognosis N/A Unknown

1 Not applicable; 2 tumour treating fields.
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3. Triple Negative Breast Cancer (TNBC)

TNBC is a hard-to-treat type of breast cancer characterised by the lack of oestrogen
receptor alpha (ERa), progesterone (PR), and HER2 receptors. Around 15% of all breast
cancers fall under the category of triple negative [85], are more prevalent in black women,
premenopausal women, women under 40 years of age, and women carrying BRCA1 muta-
tions [86], and are extremely rare in men [87]. According to the Surveillance, Epidemiology,
and End Result Program (SEER) database, TNBC bears an overall 5-year survival rate
of 77% which drops down to 12% when the disease is at the metastatic stage [88]. In
non-metastatic TNBC, between 30 and 40% of cases will result in relapse often leading to
metastasis [89,90].

Compared to other types of breast cancer, the treatment options for TNBC are limited
due to the lack of targetable receptors. ERa, PR, and HER2 are well known to play critical
roles in the tumorigenesis of breast cancers, acting as therapeutic targets for a large pro-
portion of patients [91,92]. Conventional treatments for TNBC include breast-conserving
surgery and mastectomy, usually followed by radiotherapy and/or chemotherapy. Com-
mon systemic agents include anthracyclines, platinum-based drugs, and taxanes [93].
Interestingly, despite the overall aggressiveness of TNBC, a significant proportion of pa-
tients achieve a pathologic complete response following neoadjuvant chemotherapy [94];
however, incomplete responses are associated with high risk of recurrence [95].

Due to the high heterogeneity of TNBC tumours, finding a common targeted ther-
apy for all TNBC becomes challenging. Although none have yet been approved, some
targeted therapies currently under investigation include poly (ADP-ribose) polymerase
(PARP) inhibitors, which induce cell death in cells with BRCA mutations; androgen receptor
antagonists, which stunt the growth of TNBC subtypes expressing androgen receptor; an-
tiangiogenic agents such as vascular endothelial growth factor receptor (VEGFR) inhibitors,
which block the recruitment of new blood vessels towards the tumour; and epigenetic
regulators such as DNA methyltransferase and histone deacetylase inhibitors, which have
shown the capacity to induce the expression of oestrogen receptors, sensitising tumours to
hormone therapy [96]. In addition to these therapies, many vaccines are being trialled for
the treatment of TNBC (Table 3).

Table 3. Immunotherapy trials for TNBC.

ClinicalTrials.gov ID Vaccine Phase Stage Reference

NCT04674306 α-lactalbumin + Zymosan Early I Recruiting [97]

NCT04024800 AE37 peptide + Pembrolizumab II Active, not recruiting [98]

NCT03199040 Neoantigen DNA + Durvalumab I Active, not recruiting

NCT04348747 HER2/HER3 DCs + Pembrolizumab IIa Recruiting [99]

NCT02348320 Polyepitope DNA I Completed

NCT02938442 P10s-PADRE with MONTANIDE ISA 51 VG +
Doxorubicin + Cyclophosphamide + Paclitaxel + Surgery II Completed [100]

NCT03362060 PVX-410 + Pembrolizumab Ib Active, not recruiting [101]

NCT02826434 PVX-410 + Durvalumab + Poly-ICLC Ib Active, not recruiting [102]

NCT05455658 STEMVAC + Sargramostim II Recruiting [103]

NCT03606967
Personalised neoantigen peptide + Carboplatin +
Gemcitabine + Nab-Paclitaxel + Durvalumab +
Tremelimumab + Poly-ICLC

II Recruiting

NCT03387085

N-803 + ETBX-011 + ETBX-051 + ETBX-061 + GI-4000 +
GI-6207 + GI-6301 + HaNK + Avelumab + Bevacizumab
+ Aldoxorubicin + Capecitabine + Cisplatin +
Cyclophosphamide + 5-Fluorouracil +
Leucovorin + Nab-Paclitaxel

Ib/II Active, not recruiting
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Table 3. Cont.

ClinicalTrials.gov ID Vaccine Phase Stage Reference

NCT03012100 Multi-epitope folate receptor alpha +
Cyclophosphamide + GM-CSF II Active, not recruiting [104]

NCT00986609 MUC1 + Poly-ICLC Early I Completed [105]

NCT02593227 Folate receptor alpha + Cyclophosphamide + GM-CSF II Completed [104]

NCT05504707 HER2-/HER3-primed DC1 I Recruiting

NCT04105582 Neoantigen-pulsed aDCs 1 I Completed

NCT02018458 Cyclin B1/WT1/CEF-pulsed DCs + Doxorubicin +
Cyclophosphamide + Paclitaxel + Carboplatin I Completed [106]

NCT02316457 RNA for shared tumour associated antigens + RNA for
tumour specific antigens I Active, not recruiting [107]

NCT03562637 OBI-822 + OBI-821 III Recruiting [108]

NCT04634747 PVX-410 + Pembrolizumab + Chemotherapy II Not yet recruiting

NCT05269381 Personalised neoantigen + Pembrolizumab +
Cyclophosphamide + GM-CSF I Recruiting

NCT03761914 Galinpepimut-S + Pembrolizumab I/II Active, not recruiting [109]

NCT02432963 P53MVA + Pembrolizumab I Active, not recruiting [110]

NCT05329532 Modi-1/Modi-1v + Pembrolizumab I/II Recruiting [111]

NCT00640861 MUC1 + HER2/neu + CpG + GM-CSF + IFA Early I Completed [112]

NCT04879888 Peptide-pulsed aDCs I Completed

NCT05035407 KK-LC-1 TCR + Aldesleukin +
Cyclophosphamide + Fludarabine I Recruiting

1 Autologous dendritic cells.

Disruptions in the balanced diversity of the microbiota, referred to as microbiome dys-
biosis, is known to contribute to several health disorders [113,114]. Advances in meta-omics
research technologies are facilitating our understanding of how this phenomenon can lead
to other less understood disorders, including cancer [115]. Additionally, attention is increas-
ingly being paid to the modulating effects of the microbiome on treatments such as cancer
immunotherapies [116]. Although not yet elucidated, increasing evidence suggests that
dysbiosis may contribute to the pathogenesis of breast cancer in various ways [117]. Overall,
the consensus is that cancers are associated with a reduced diversity in gut microbiota [118],
with studies suggesting that breast cancer is not an exception [119–121].

Oestrogen metabolism is a potential mechanism by which the gut microbiome can
influence breast cancer pathogenesis. Whether endogenous or exogenous, oestrogen is
a known risk factor for breast cancer, particularly in postmenopausal women [122]. The
gut microbiome seems to play a role in oestrogen-driven breast cancers by enzymatically
deconjugating oestrogen, therefore forcing it back into circulation and increasing systemic
levels [123]. In TNBC, however, the negative impact of microbiota-mediated oestrogen
abundance does not seem to occur, likely due to the lack of ERa expression. TNBCs have
alternative oestrogen signalling pathways which render them responsive to circulating
hormones [124]. Interestingly, studies suggest that receptors such as ERb, G protein-coupled
oestrogen receptor 1, and oestrogen-related receptors have anti-cancer effects and that,
when these are expressed in TNBCs, prognosis seems to be better [125].

Moreover, the microbiome does not extend exclusively to the gastrointestinal tract;
in fact, different parts of the human body have been found to host different populations
of microbes, and these can vary among and within individuals due to factors such as
diet, lifestyle, usage of antibiotics, and even social interactions [126]. It is therefore not
surprising that there exists a breast tissue-specific microbiome [127]. Studies such as that of
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Tzeng et al. have found that the most abundant phylum of bacteria in both healthy and
cancerous breast tissue is Proteobacteria, while TNBC tissue was composed of bacteria
from the genera Azomonas, Alkanindiges, Caulobacter, Proteus, Brevibacillus, Kocurla, and
Parasediminibacterium [128]. However, previous studies have identified different genera
in TNBC tissues [128–131], highlighting the need for further research and refinement of
methodologies to study the microbiome.

Physical exercise has long been known to offer a wide range of health benefits [132].
Among these benefits, it is said to act as an “immune system adjuvant” which improves
the recirculation and activity of certain immune components [133]. Preclinical evidence
suggests that lifestyle can have a positive effect on the immune system when it comes to
fighting cancer. Hojman et al. demonstrated a reduction in tumour growth in mice with
access to voluntary wheel running, highlighting an increase in tumour immune recognition
by macrophages, NK and T cells, but a decreased recognition in mice fed high-fat diets [134].
In a model of TNBC, Wennerberg et al. found a reduction in tumour-induced myeloid-
derived suppressor cell (MDSC) recruitment, as well as an increase in NK and CD8+ T
cell activation in the exercise treatment group, including an improvement of response to
PD-1 inhibition [135]. Obesity has a tumorigenic effect in TNBC. For example, it alters
the immune response by reprogramming mammary adipose tissue macrophages to a pro-
inflammatory metabolically activated phenotype [136]. It also contributes to metabolic
dysregulation, with evidence suggesting that exercise can reduce tumour growth by means
of metabolic—mitochondrial and macronutrient—regulation [137].

Clinical studies suggest that an improvement in overall and disease-free survival
is observed following moderate physical exercise upon diagnosis [138,139], with obesity
playing a negative role in the outcome of all subtypes of breast cancer [140]. Exercise
may exert these effects in different ways. For example, decreasing kynurenine pathway
metabolites [141]; this pathway is known to be dysregulated in TNBC, contributing to
the inhibition of anti-tumour responses [142]. It may also have a positive impact on
inflammatory cytokines [143] known to play a role in TNBC [144]. As the evidence mounts,
it seems sensible to use the benefits of maintaining a healthy lifestyle in order to help
prevent—and possibly be considered before and during immunotherapeutic interventions
against—cancer. The World Cancer Research Fund and the American Institute for Cancer
Research have published recommendations for cancer prevention, which include guidelines
for physical activity as well as for healthy diets and weight [145]. Although further research
is warranted, studies suggest that lifestyle changes have the potential to improve treatment
response and risk of relapse [146], and clinical trials are being conducted to assess the effect
of exercise, diet, and the microbiome in TNBC patients (Table 4).

Table 4. Trials assessing exercise, diet, and microbiome in TNBC patients.

ClinicalTrials.gov ID Intervention Phase Stage Reference

NCT01498536 Aerobic exercise N/A 1 Completed [147]

NCT03733119 Methionine-restricted diet + ONC201 II Terminated [148]

NCT04248998 Fasting-mimicking diet + Metformin II Active, not recruiting [149]

NCT05763992 Fasting-like approach + SoC 2 II Recruiting

NCT03186937 Methionine-restricted diet II Terminated

NCT02348320 Caloric restriction diet + SABR 3 II Recruiting

NCT04677816 Vitamin D3 + SoC II Recruiting

NCT05198843 Icosapent ethyl + Dasatinib Ib/II Recruiting

NCT05037825 ICI 4 + Microbiome evaluation N/A Recruiting

NCT03586297 SoC + Correlation between microbiome composition
and pCR 5 N/A Recruiting
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Table 4. Cont.

ClinicalTrials.gov ID Intervention Phase Stage Reference

NCT04638751 Chemotherapy + Correlation between microbiome,
PFS, 6 and OS 7 N/A Recruiting

NCT05916755 Pembrolizumab and/or chemotherapy + microbiome
analysis to establish predictive biomarkers N/A Recruiting

NCT03289819
Pembrolizumab + Nab-Paclitaxel + Epirubicin +
Cyclophosphamide + Correlation between microbiome
and clinical outcome

II Completed [150]

1 Not applicable; 2 standard of care; 3 stereotactic ablative radiotherapy; 4 immune checkpoint inhibitors; 5 patho-
logical complete response; 6 progression-free survival; 7 overall survival.

4. Advanced Prostate Cancer (PCa)

PCa is one of the most diagnosed fatal malignancies among men worldwide [151].
Compared to other common cancers, the aetiology of PCa remains unknown. Advanced
age, positive family history, prostate inflammation, obesity, lack of exercise, ethnicity, and
persistent elevated levels of testosterone are some of the risk factors known for PCa [152].

Localised prostate cancer is primarily managed through active surveillance, radical
prostatectomy, external radiotherapy, and brachytherapy [152]. However, there is evidence
of biochemical recurrence of malignancy observed within ten years of initial treatment
in approximately 30–50% of patients who received radiotherapy or 20–40% of patients
who underwent prostatectomy [151]. The advanced stage of prostate cancer is typically
treated with androgen deprivation therapy (ADT), which is effective in controlling cancer
growth. However, most patients eventually progress to metastatic castration-resistant
prostate cancer (mCRPC). The loss of testosterone resulting from ADT is often associated
with intense side effects, including mood swings, erectile dysfunction, and loss of bone
density. Other approved therapies for PCa, such as radium-223 and taxane chemotherapy,
have shown limited improvement in overall survival for patients, as the cancer continues
to progress [153].

Sipuleucel-T is the only FDA-approved cellular immunotherapy for PCa. This ap-
proach has shown to increase PCa patients’ overall survival by 4.1 months. This vaccine is
prepared by collecting the patient’s peripheral blood mononuclear cells (PBMCs) through
leukapheresis. The collected cells are then incubated ex vivo with PA2024, which is a
recombinant fusion protein combining prostatic acid phosphatase (PAP) and granulocyte
macrophage colony-stimulating factor (GM-CSF). Finally, the engineered product is rein-
fused back into the patient. The PAP antigen is specific to prostate tissue and is expressed
in most prostate adenocarcinomas. However, the high cost of this treatment limits its
widespread availability [154].

Immune checkpoint inhibitor treatments such as anti-PD1 have shown significant
clinical benefit for PCa patients whose tumours harbour DNA mismatch repair deficiency
(dMMR). However, these only account for 3–5% of all castration-resistant prostate can-
cer, and only have modest activity in unselected men with metastatic prostate cancer.
It is highly likely that the limited clinical response of immunotherapy in PCa is due to
the immunosuppressive tumour microenvironment (TME) associated with it. This envi-
ronment is characterised by the presence of immunosuppressive cells such as tumour-
associated macrophages, MDSCs, and regulatory T cells. Additionally, adenosine produced
via PAP and transforming growth factor-β (TGF-β) act as potent immunosuppressive
molecules [153]. Interestingly, among genitourinary malignancies, PCa exhibits a distinct
TME profile. PCa-associated tumour intrinsic factors such as decreased MHC class I ex-
pression, low tumour-associated antigen expression, loss of tumour suppressor protein
PTEN, dysfunctional signalling of type I interferons, and mutations in the DNA damage
repair genes BRCA1 and BRCA2 contribute towards the evolution of immunologically
cold PCa TME [155]. Furthermore, PCa biopsy samples have shown the presence of
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tumour-infiltrating lymphocytes (TILs) that are biased toward T-regulatory (Treg) and
T-helper 17 (Th17) phenotypes, which suppress autoreactive T cells and anti-tumour im-
mune responses [154]. Several immunotherapy trials for PCa are underway or have already
been completed (Table 5).

Table 5. Immunotherapy trials for PCa.

ClinicalTrials.gov ID Vaccine Phase Stage Reference

NCT00003871 Fowlpox prostate specific antigen II Completed [156]

NCT00374049 MUC1 + Poly-ICLC + GM-CSF I Completed

NCT00122005 GVAX I/II Unknown

NCT03815942 ChAdOx1-MVA 5T4 + Nivolumab I/II Unknown [157]

NCT02234921 Cyclophosphamide + Dribble + Imiquimod + Cervarix I Completed

NCT01867333 Enzalutamide + PROSTVAC-F/TRICOM +
PROSTVAC-V/TRICOM II Completed [158]

NCT04914195 Leuprolide acetate III Recruiting

NCT01420965 Sipuleucel-T + CT-011 + Cyclophosphamide II Terminated

NCT00292045 NY-ESO-1 protein + CpG 7909 I Completed [159]

NCT00140348 GVAX I/II Completed

NCT00140400 GVAX I/II Completed

NCT01095848 DPX-0907 I Completed [160]

NCT00089856 GVAX III Terminated [161]

NCT00133224 GVAX III Terminated [162]

NCT00005039 Fowlpox prostate specific antigen II Terminated

NCT00906243 CV9103 I/II Terminated [163]

NCT05104515 OVM-200 I Recruiting

NCT03384316 ETBX-051 + ETBX-061 + ETBX-011 I Completed [164]

NCT03338790
Nivolumab + Rucaparib
Nivolumab + Docetaxel + Prednisone
Novilumab + Enzalutamide

II Active, not recruiting [156,157]

NCT03879122
ADT + Docetaxel
ADT + Docetaxel + Nivolumab
ADT + Ipilimumab/Docetaxel + Nivolumab

II/III Active, not recruiting

NCT04382898 BNT112 +/− Cemiplimab I/II Recruiting [158]

NCT04077021 CCW702 I Terminated [159]

NCT03805594 [177Lu]-PSMA-617 + Pembrolizumab Ib Active, not recruiting [160]

NCT04100018 Nivolumab + Docetaxel + Prednisone III Recruiting

NCT03637543 Nivolumab II Recruiting [161]

NCT05580107 MDPK67b I Recruiting

Certain host factors such as composition of the gut microbiota may also facilitate
PCa progression and impact response to chemotherapy and immunotherapy [154,162].
Occurrence of certain microorganisms such as Cutibacterium in human prostate can cause
immunosuppression and prostatitis by stimulating the infiltration of CD4+FoxP3+ cells
(Treg) and Th17 cells [162]. The composition of the gut microbiota also plays a significant
role in the response elicited by ADT with its immunostimulatory or immunosuppressive
and direct ADT subversion. Depletion of immunostimulatory gut microbiota by orally
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administered broad spectrum antibiotics in mouse models have been shown to diminish
the efficacy of ADT [163].

The decreased levels of androgen due to ADT in PCa patients have been suggested to
contribute to a reduction in α and β-diversity in gut microbiota, leading to the development
of dysbiosis [163–165]. A study involving sequential faecal and blood samples collected
from 23 PCa patients showed a significant difference in the abundance and composition
of microbiota, including increased levels of Proteobacteria, Pseudomonas, and Gammapro-
teobacteria, after ADT compared to before ADT [164]. Certain intestinal bacteria have the
ability to degrade ADT-relevant drugs, thereby reducing the effectiveness of the therapy.
Specific gut microbiota can act as androgen-producing bacteria by converting androgen
precursors into active androgen. The abundance of such microbiota has been observed
in castrated mice as well as in patients with castration-resistant prostate cancer (CRPC).
Interestingly, a significant reduction in circulating testosterone levels has been observed in
castrated mice when their gut microbiota is depleted [163].

The abundance of gut microbiota that can interfere with the clinical responses to ADT
ultimately leads to the development of CRPC [165]. In a study conducted by Liu and Jiang,
the faecal microbiota of 21 patients who received ADT was profiled, revealing compositional
differences in gut microbiota between hormone-sensitive prostate cancer and CRPC [165].
CRPC was found to have a significant increase in the abundance of fourteen phylotypes of
microbial flora, including Phascolarctobacterium and Ruminococcus. Additionally, bacterial
gene pathways involved in terpenoid/polyketide metabolism and ether lipid metabolism
were notably activated in CRPC. Similarly, another study by Che et al. on faecal microbiota
demonstrated significant differences in the abundance of bacteria between prostate cancer
patients and healthy individuals, with metabolic pathways associated with folic acid
and arginine being affected [166]. Folic acid is crucial for nucleotide synthesis and DNA
methylation, and its deficiency can lead to DNA instability and increased mutation rates.
Moreover, folic acid-producing microflora were found to be less abundant in PCa patients
compared to non-cancer patients, suggesting that natural sources of folic acid may offer
protection against prostate cancer [166].

Another contributing factor to intestinal dysbiosis is lifestyle, including factors such
as diet and obesity, which are often associated with an increase in circulating levels of pro-
inflammatory bacterial lipopolysaccharide (LPS), leading to the development of prostate
cancer [162,163]. In mouse models, the accumulation of LPS has been shown to activate
local inflammation and promote prostate tumour growth [162]. A diet high in saturated
fat can also promote the progression of prostate cancer by increasing circulating levels
of androgens and causing DNA damage in cells through elevated oxidative stress [167].
Additionally, a Western-style high-fat diet, which often leads to obesity, can induce chronic
inflammation, and contribute to the development of prostate cancer by upregulating
inflammatory cytokines such as IL-6 [163]. Clinical trials are looking at the effects of
exercise, diet, and the microbiome on PCa (Table 6).

Table 6. Trials assessing exercise, diet, and microbiome in PCa patients.

ClinicalTrials.gov ID Intervention Phase Stage Reference

NCT03658486 Exercise N/A 1 Recruiting

NCT03880422 Aerobic and resistance exercise + diet N/A Recruiting

NCT02233608 Advanced pelvic floor muscle exercise I/II Completed [168]

NCT01973673 Bone health educational materials N/A Completed [169]

NCT05612880 Physical function assessment following androgen receptor
signalling inhibitors N/A Recruiting

NCT03397030 * Exercise N/A Completed [170]

NCT00660686 * Resistance exercise + Flexibility training N/A Completed [171]
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Table 6. Cont.

ClinicalTrials.gov ID Intervention Phase Stage Reference

NCT01696539 SoC 2 + Walking intervention N/A Completed [172]

NCT00658229 Strength training group III Completed [173]

NCT00253916 * Aerobic cardiovascular exercise
Resistance exercise N/A Completed [174]

NCT02453139 Aerobic exercise N/A Completed [175]

NCT00329797 Zoledronic acid and/or Calcium + Vitamin D III Completed

NCT02710721 Fasting N/A Completed

NCT02946996 Metformin + oligomeric procyanidin complex II Recruiting

NCT03709485 * Correlation between microbiota and development of
prostate cancer N/A Unknown [176]

NCT04687709 * Correlation between microbiome and ADT-related
metabolic changes N/A Recruiting [177]

NCT04638049 * Correlation between microbiota/metabolome and
radiation-induced gastrointestinal toxicities N/A Completed

1 Not applicable; 2 standard of care; * not specified as advanced prostate cancer.

In addition to lifestyle factors, antibiotic exposure can also contribute to gut dysbiosis.
Research conducted by Zhong et al. demonstrated that antibiotic exposure leads to an
enrichment of gut Proteobacteria, increased gut permeability, and elevated levels of intra-
tumoral lipopolysaccharide (LPS), which promote the development of prostate cancer
through the NF-κB-IL6-STAT3 axis in mice [178].

Another interesting factor to consider is the signalling of β-adrenergic receptors
(β-AR), which plays a vital role in the progression and metastasis of many cancers, includ-
ing PCa [179]. Higher expression of β2-AR has been observed in carcinoma compared
to normal prostate tissues, as observed in tissue microarray studies using immunohisto-
chemistry [180]. In line with this finding, Zang et al. have uncovered a significant role for
β2-AR signalling in regulating the activity of the Shh pathway in PCa tumorigenesis using
xenograft models [180]. Moreover, the administration of propranolol, a nonselective β-AR
blocker, has demonstrated anti-cancer effects in cancer cell lines and animal models [179].

A patient cohort study utilising the Taiwan National Health Insurance Research
Database, covering the period from January 2000 to December 2011, examined the usage
of propranolol in various cancers, including PCa. The study concluded that propranolol
can reduce the risk of cancers, with the most substantial protective effect observed when
propranolol usage exceeded 1000 days [179]. To understand the efficacy of β-blockers in
PCa patient mortality, Grytli et al. conducted a study involving 3561 PCa patients, out of
which 1115 patients used β-blockers before and after diagnosis [181]. The study found a
reduction in cancer-specific mortality among high-risk or metastatic PCa patients who used
β-blockers.

Considering the potential therapeutic options suggested by targeting gut microbiota
dysbiosis [164,165] and β2-adrenergic modulation [180], a combination of these approaches
with other available therapeutic strategies could potentially benefit the management of PCa.

5. Chronic Stress and Cancer

Acute stress is a beneficial neuroendocrine response to external or internal stressor
events which in turn activates our fight-or-flight response [182]. On the other hand, chronic
stress is known to have detrimental effects on various aspects of physiology, with increas-
ing research suggesting that it could lead to cancer progression [183]. The stress response
begins when the amygdala perceives danger stimuli and relays this information to the
hypothalamus which, in turn, promotes the release of catecholamines from the adrenal
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glands—a neuroendocrine component known as the sympathetic–adreno–medullar axis
(Figure 1). In the TME, adrenaline and noradrenaline can have an immunosuppressive
effect during chronic stress, for example, by increasing MDSC frequency [184]. In addition,
stress-induced dopamine has recently been involved in tumour progression via activation of
hypoxia-inducible factor-1α [185]. The hypothalamus also produces corticotropin-releasing
factor, which acts upon the pituitary gland to promote the release of adrenocorticotropic
hormone; this hormone then travels to the adrenal cortex to stimulate the synthesis and
secretion of corticosteroids in what is called the hypothalamus–pituitary–adrenal axis. Cor-
ticosteroids are widely known for their immunosuppressive effects, affecting key effectors
of anti-tumour immunity such as dendritic cells and T cells [186] (Figure 1).
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It is not uncommon for patients living with cancer and other life-threatening diseases
to feel stressed, anxious, and/or depressed. Given that these negative mental health
states can worsen cancer prognosis, it seems appropriate to pay more attention to patient
wellbeing; for example, offering patients resilience-enhancing interventions during key
stages of their disease could accelerate their mental health recovery [187]. Moreover,
research points to various links between diet and depression, for example, the consumption
of ultra-processed foods [188] as well as diets rich in proline; with regards to the latter,
Mayneris-Perxachs et al. recently found that a healthy gut microbiome is associated with
lower plasma proline levels and lower depression scores, highlighting the importance
of maintaining a balanced diet [189]. In addition, Valles-Colomer et al. found a positive
association between the presence of Dialister and Coprococcus species and quality of life,
with these species being sparse in depressed individuals [190]. Given the interplay between
mental health, the immune system, diet, the microbiome, and cancer (Figure 1), it seems
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sensible, therefore, to approach the mental wellbeing of patients from a holistic point
of view.

6. Conclusions and Future Directions for Immunotherapy

Our immune system needs to be able to respond appropriately to external and internal
environmental changes caused by factors such as physical or psychological stress, nutrient
availability, the microbiota, temperature, pathogens, and malignancies. To achieve this,
immune cells are equipped with a plethora of mechanisms designed to recognise disrup-
tions in homeostasis and to respond to these deviations. These in turn will be influenced
by an individual’s genetic makeup and their history of antigen experience. We believe
that antigen-specific immunotherapy, which aims at stimulating immune cells to target
tumours, will be more successful if applied at a time when cancer cells are few within the
body, helping to prevent relapse rather than to treat large tumours. Importantly, we believe
that immunotherapy can be tilted towards a positive outcome if applied at a time when the
patient’s entire wellbeing has first been taken into consideration and interventions have
been taken to improve their mental health, gut microbiota, and approach to exercise prior
to receiving therapy as well as during immunotherapeutic interventions.

In a time of “precision medicine” where most scientists believe that the treatment
needs to be tailored to each individual patient, we would like to put forward the idea
that preparing patients physically, psychologically, and microbiologically will improve the
potency of any immunotherapy.
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