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Abstract: Bacterial Extracellular Vesicles (BEVs) possess the capability of intracellular interactions
with other cells, and, hence, can be utilized as an efficient cargo for worldwide delivery of therapeutic
substances such as monoclonal antibodies, proteins, plasmids, siRNA, and small molecules for the
treatment of neurodegenerative diseases (NDs). BEVs additionally possess a remarkable capacity for
delivering these therapeutics across the blood–brain barrier to treat Alzheimer’s disease (AD). This
review summarizes the role and advancement of BEVs for NDs, AD, and their treatment. Additionally,
it investigates the critical BEV networks in the microbiome–gut–brain axis, their defensive and
offensive roles in NDs, and their interaction with NDs. Furthermore, the part of BEVs in the
neuroimmune system and their interference with ND, as well as the risk factors made by BEVs in the
autophagy–lysosomal pathway and their potential outcomes on ND, are all discussed. To conclude,
this review aims to gain a better understanding of the credentials of BEVs in NDs and possibly
discover new therapeutic strategies.

Keywords: bacterial extracellular vesicles; therapeutics; neurodegenerative disease; Alzheimer’s
disease; nanocarriers

1. Introduction

Neurodegenerative diseases (NDs) are a group of progressive disorders that affect the
central nervous system and result in the gradual degeneration and mortality of neurons.
Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), multiple
sclerosis (MS), and amyotrophic lateral sclerosis (ALS) are among these conditions of NDs.
AD International estimates that 50 million people worldwide are afflicted by dementia
alone [1]. Consequently, NDs pose a significant threat to public health and a significant
burden on society [1,2]. Despite significant efforts to develop treatments, no known definite
cures for NDs are presently available [3].

Researchers have begun to investigate the function of bacterial extracellular vesicles
(BEVs) in the pathogenesis of NDs in recent years [4,5]. BEVs are typically 50–200 nm in
diameter, and they are composed of a lipid bilayer with a variety of proteins and nucleic
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acids (Figure 1). The cargo of BEVs can vary depending on the bacterial species and
the growth conditions. They are like extracellular vesicles (EVs) released by eukaryotic
cells, but they contain a different set of cargo molecules. Major EVs include exosomes
and microvesicles, which have also been tremendously studied as theranostic agents and
found to play crucial role in various physiological and pathological conditions [6–8]. BEVs
are thought to play a role in bacterial communication, pathogenesis, and immunity. The
biogenesis of BEVs is different from the biogenesis of exosomes and microvesicles [4,5].
BEVs are formed by the budding of vesicles from the outer membrane of bacteria. Exosomes
are formed by the budding of vesicles from multivesicular bodies (MVBs) in eukaryotic
cells. Microvesicles are formed by the direct outward budding of the plasma membrane
of eukaryotic cells [9]. It has been found that BEVs serve an essential role in bacterial
communication, adaptation, and virulence [10]. In addition, recent studies indicate that
BEVs may also add to the development and progression of NDs, potentially presenting
novel therapeutic targets [5,10].
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Figure 1. A schematic showing the structure of bacterial extracellular vesicle (BEV) and their compo-
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disease and its prospective therapeutic applications.

The potential function of BEVs in NDs has been the subject of intensive research
over the past few years [11]. According to studies, BEVs can play both offensive and
defensive functions in the context of NDs, including regulation of immune responses,
modulation of the microbiome–gut–brain axis, and induction of autophagy–lysosomal
pathway dysfunction [5,11,12], as shown in Figure 1. In addition, recent advancements in
BEV isolation, characterization, and engineering have paved the way for the development
of novel therapeutic strategies [4,12].

This review’s objective is to provide an overview of the current literature on the role of
BEVs in NDs and to investigate recent developments in the field of BEV therapeutics. We
utilized different databases of biomedical literatures such as PubMed, Embase, Cochrane
library, and Scopus, and we searched the following keywords: Neurodegeneration, Au-
tophagy, Alzheimer’s disease, Nanocarriers, Extracellular vesicles, Exosomes, Therapeutics,
NDs, ALP inducers, Parkinson’s disease, Brain delivery and BEVs. Specifically, this analysis
seeks to focus on the offensive and defensive functions of BEVs in ND pathogenesis. It
further elaborates the critical BEV networks in the microbiome–gut–brain axis and their
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role in ND. It discusses the roles of BEVs in the neuroimmune system and their interaction
with ND. It intends to explore the risk factors of BEVs in the autophagy–lysosomal pathway
and their possible effects on ND. It emphasizes the potential uses of BEVs in developing
new drugs for ND. It suggests future prospects of the study for the role of BEVs in ND.
This review seeks to contribute to a better understanding of the potential function of BEVs
in NDs and to identify new therapeutic intervention strategies.

2. Offensive and Defensive Roles of Bacterial Extracellular Vesicles in
Neurodegenerative Disease

Latest research has shown that BEVs [13] can cause neuroinflammation and affect
neuronal function [14], which points to the potential neurotoxicity of these particles in the
context of ND [14,15]. BEVs tend to yield the inflammatory cytokines and chemokines
after activating microglia and astrocytes with virulence factors such lipopolysaccharides,
peptidoglycans, and proteins [16–18]. AD, PD, and MS, among others, have all been
associated with the activation of neuroinflammatory pathways [15,18].

BEVs generated from Pseudomonas aeruginosa were discovered in a recent study to in-
duce inflammation and mortality of dopaminergic neurons in the substantia nigra [14,15,19].
Inflammation and mortality of dopaminergic neurons in the substantia nigra are two defin-
ing hallmarks of PD [14,18]. It was discovered that BEVs generated from Escherichia
coli caused neuronal death and impaired memory in an AD mice model [18,19]. By in-
ducing neuroinflammation and impairing neuronal function, BEVs may contribute to the
pathogenesis of NDs, according to these findings [19,20].

In addition to their potential neurotoxicity [20], it has been demonstrated that BEVs
serve a protective role in NDs [20]. Several studies have demonstrated, for instance, that
BEVs can exert neuroprotective and immunomodulatory effects [20,21]. Specifically, it has
been demonstrated that BEVs from commensal gut bacteria enhance cognitive function
and reduce neuroinflammation in mouse models of NDs [21,22]. These results suggest that
BEVs may also have therapeutic applications for the treatment of NDs [21,22]. The neuro-
toxicity of BEVs necessitates caution in their use as therapeutics, but their neuroprotective
and immunomodulatory properties present opportunities for the development of novel
treatments for NDs [13,21]. To thoroughly comprehend the mechanisms underlying the
offensive and defensive roles of BEVs in NDs, additional research is required [13,20].

Recent research suggests that BEVs can also play a defensive function in NDs due to
their neuroprotective and immunomodulatory properties [20,21]. Multiple studies have
demonstrated, for instance, that BEVs derived from specific bacterial strains can improve
neuronal survival and function in ND [22]. In the mouse model of AD, Haney et al. [23]
found that BEVs from the probiotic Lactobacillus rhamnosus GG could reduce amyloid-beta
(A) deposition and enhance cognitive function [24]. Few research studies have demon-
strated that BEVs from Bifidobacterium infantis could reduce inflammation and oxidative
stress in a mouse model of PD [25], resulting in enhanced motor function [21,22,25].

BEVs have been shown to possess immunomodulatory properties in the context of
NDs, in addition to their neuroprotective effects [18,25]. By modulating the gut–brain
axis [26], one study found that BEVs from Akkermansia muciniphila could reduce neuroin-
flammation and enhance cognitive function in a mouse model of PD [18,27]. Similarly,
another study demonstrated that BEVs from Lactobacillus plantarum PS128 modulated
microglial activity to enhance cognitive function and reduce neuroinflammation in an AD
mouse model [25,28]. These studies suggest that BEVs may serve a dual role in NDs by
possessing both offensive and defensive characteristics [18,28]. Some BEVs can induce
neuroinflammation and impede neuronal function, whereas others can prevent diseases
and modulate the immune system [21,24]. To thoroughly comprehend the mechanisms
underlying the defensive properties of BEVs and to investigate their potential as therapeutic
agents for NDs, additional research is required.
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3. Critical Networks of Bacterial Extracellular Vesicles in the
Microbiome–Gut–Brain Axis

The microbiome–gut–brain axis (MGBA) is a complex network of bidirectional commu-
nication between the gastrointestinal tract, the central nervous system (CNS), and the gut
microbiota [22,29]. Recent evidence suggests that this axis regulates a variety of physiologi-
cal and pathological processes, such as neuroinflammation and neurodegeneration [29,30].
The gut microbiota has a vast array of microorganisms inhabiting the human gastroin-
testinal tract, and it has been shown to influence brain function and behavior via multiple
mechanisms [30]. These include the production of neurotransmitters and short-chain fatty
acids, modulation of the immune system, and regulation of the hypothalamic–pituitary–
adrenal axis [31,32]. Multiple NDs such as PD [31], AD [32,33], and MS have been linked
to abnormalities in the gastrointestinal microbiota in their pathogenesis [33–35]. Addi-
tionally, it has been demonstrated that BEVs produced by intestinal microbiota can cross
the blood–brain barrier (BBB) and directly affect the CNS function [25,34]. BEVs from the
gut commensal Bacteroides fragilis have been shown to facilitate the differentiation and
maturation of oligodendrocytes, which are essential to produce myelin in the CNS [5,36].
In a mouse model of AD, BEVs from Akkermansia muciniphila have been shown to protect
against neuroinflammation and cognitive decline [26,27,36].

The above discussed results point out that the MGBA plays an important role in the
pathogenesis of NDs, and that BEVs produced by intestinal microbiota may represent a
novel drug delivery system for such conditions [37]. It has also been demonstrated that
the gut microbiome can influence brain function and behaviors via multiple mechanisms,
including the production of neurotransmitters, regulation of the immune system, and
modulation of the gut–brain axis signaling pathways [38]. BEVs, which are produced
by numerous bacteria in the microbiome of the gut, have been identified as potential
mediators of this communication between the gut and the brain [5,38]. The effects of
BEVs on the microbiome–gut–brain axis and their potential function in NDs have been
studied and discussed in animal models [21]. In cell cultures and mouse models, BEVs
from the gastrointestinal microbiome of PD patients were able to induce alpha–synuclein
aggregation, which is a hallmark of PD pathology [18,25]. In a mouse model of AD, it
was observed that BEVs from a specific gut bacterium, Akkermansia muciniphila, reduced
neuroinflammation and enhance cognitive function [39].

Another study identified a group of BEVs produced by gut bacteria that could cross the
BBB as a result, penetrating the brain, modulating the immune system [40], and potentially
playing a significant role in NDs [20,30]. These studies indicate that BEVs can play a
significant role in the communication between the gastrointestinal microbiome and the
brain, and that their dysregulation may contribute to the development and progression of
NDs [39,40]. The mechanisms underlying the effects of BEVs on the microbiome–gut–brain
axis and their potential as therapeutic targets for NDs require additional study [30,39].
Among the NDs, a research study has shown that in AD brain, microglial activation
contributes to amyloid-beta deposition and neuronal damage [41]. In addition, in PD few
research studies have shown that in the brain T cells infiltrate the substantia nigra and
promote neuroinflammation [42,43]. Moreover, in multiple sclerosis, few studies have
shown that dysbiosis and gut-derived molecules contribute to neuroinflammation and
disease progression [44–46].

4. Role of Bacterial Extracellular Vesicles in Neuroimmune System and
Their Crosstalk

The neuroimmune system, which is made up of interactions between the neurological
system and the immune system, is critical in NDs [47,48]. This neuroimmune system helps
keep the homeostasis in balance. If this balance is distraught, it can lead to chronic inflam-
mation, damage to neurons, and eventually NDs [41,42]. In terms of NDs, the neuroimmune
system is made up of immune cells like microglia and astrocytes that become active when
there is neuroinflammation [43]. When these cells become active, they release cytokines
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and chemokines that cause more inflammation and damage to neurons [43,44]. Peripheral
immune cells, such as T cells and monocytes, can also promote neuroinflammation by
crossing the BBB and entering the central nervous system [44,45].

Recent studies have shown how important the microbiome–gut–brain axis is in NDs
and how it affects the neuroimmune system [49]. Dysbiosis, which is an imbalance in the
gut microbiome, has been linked to the development of NDs [49,50]. This could be because
small molecules from the gut, like lipopolysaccharides, affect the immune system [16,41].
The latest studies have looked at how BEVs and the neuroimmune system interact, which
shows how BEVs might be able to change the immune response in NDs [16,20,40]. For
example, BEVs made from the gut bacteria Bacteroides fragilis suppressed the immune
response in a mouse model of multiple sclerosis [51]. It was found that the BEVs helped
regulatory T cells grow; regulatory T cells are very important for calming down immune
responses and preventing autoimmunity [52]. Table 1 lists the major bacterial source of EVs
involved in the neuroimmune system’s interactions in the pathogenesis and therapeutics of
NDs.

Table 1. Studies that describe how BEVs and the neuroimmune system interact in the pathogenesis
and therapeutics of NDs.

BEV Source Disease Type Key Findings Ref.

Bifidobacterium bifidum AD BEVs reduced neuroinflammation and improved
cognitive function [24,25,46]

Akkermansia muciniphila PD
BEVs reduced neuroinflammation by decreasing
pro-inflammatory cytokine levels while raising
anti-inflammatory cytokine levels

[26,27,53]

Bacteroides fragilis MS
BEVs promoted the expansion of regulatory T cells,
dampening immune responses and preventing
autoimmunity

[24,52,54]

BEVs from the gut bacteria Akkermansia muciniphila were demonstrated to diminish
neuroinflammation in a mouse model of PD [26,27]. It was found that the BEVs decreased
the number of pro-inflammatory cytokines in the brain and increased the number of anti-
inflammatory cytokines [16,18]. This suggests that BEVs have a neuroprotective effect. A
study looked at how BEVs from the gut bacteria Bifidobacterium bifidum might affect the
immune system in an AD animal model [24,46]. The researchers found that giving BEVs to
the mice led to less inflammation in the brain and better brain function [46]. These studies
show that BEVs may be able to change the immune response in NDs, which means they
may be a good way to treat these diseases [20,49]. But more research is needed to fully
understand the mechanisms behind these effects and to figure out the best ways to use
BEVs as medicines.

5. Risk Factors of Bacterial Extracellular Vesicles in Autophagy–Lysosomal Pathway

The autophagy–lysosomal pathway (ALP) is a cellular process that gets rid of dam-
aged organelles, misfolded proteins, and invading pathogens by breaking them down
and recycling them [55,56]. Dysregulation of the ALP has been linked to ND. Studies
of bacterial infections have shown that various types of EVs are released, including exo-
somes and microvesicles. The composition of the EV cargo can vary depending on the
infection and cell type, and this can ultimately impact the host immune response and
bacterial growth [57]. Figure 2 depicts the autophagy-related pathways that employs LC3
conjugation to membrane endocytic and phagocytic vesicles and their effect on EVs’ release.
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Regulation of autophagy is dependent on the LC3 associated endocytosis, LC3 associated phagocyto-
sis, Endosomal microautophagy and LC3 dependent loading and secretion of extracellular vesicles
(EVs). The release of EVs and autophagy are two complementary mechanisms that cells use to elimi-
nate amyloids and protein aggregates. EVs such as exosomes bud from late endosomes, which are
themselves derived from multivesicular bodies (MVBs), which can either be released extracellularly
or degraded in lysosomes. Autophagy is a cellular process in which cytosolic cargoes are sequestered
into autophagosomes, which then fuse with lysosomes for degradation.

The ALP has three main types: macroautophagy, microautophagy, and chaperone-
mediated autophagy, as shown in Figure 3. Autophagy or macroautophagy has been
studied the most and it involves the formation of autophagosomes that engulf cytoplasmic
parts and fuse with lysosomes to break them down [58,59].

ALP is very important in removing toxic proteins, like alpha-synuclein in PD, Aβ,
and phospho tau in AD, from building up in the brain and trying to clear this toxic
proteins when activated. Also, abnormal regulation of the ALP has been linked to the
activation of inflammatory pathways and oxidative stress, both of which contribute to
the development of NDs [45,60]. BEVs may be able to promote the ALP in different
NDs, such as PD and AD [16,18,20]. Recent studies have shown that by controlling or
promoting the ALP using BEVs, suggesting that BEVs could be a promising therapeutic
target for treating NDs focusing on macroautophagy, chaperone-mediated autophagy, and
microautophagy [46,53,61].
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Figure 3. Three major types of autophagy–lysosomal pathways in NDs and other brain diseases are
macroautophagy, chaperone-mediated autophagy, and microautophagy. Macroautophagy process
degrades or eradicates the damaged cell organelles, unused protein, and toxic proteins by generating
autophagosomes and fuse with lysosome. Chaperone-mediated autophagy degrades the unused
proteins, and the misfolded proteins and intracellular toxic proteins are proteolytically degraded
directly in lysosomes by translocating via the lumen of lysosomes. Microautophagy is a nonselective
degradative process by accumulating the cytoplasmic contents directly to the lysosome by forming
the endosomes.

The ALP is very important for keeping cells in balance, and its malfunction has been
linked to the development of several NDs. More research is needed to fully understand
how the ALP works in NDs and to investigate the possibility that EVs, BEVs, or other
external agents that could be used as a therapeutics to control the ALP are required for
the present situation in the treatment of NDs [9,62,63]. As per the previous studies, EVs as
brain delivery nanocarriers or other phytochemicals has been reported that may influence
the autophagy–lysosomal pathway, in turn helping or keeping cells in balance by getting
rid of damaged organelles and protein clusters [9,64,65]. Autophagy is a strictly regu-
lated process that involves the creation of autophagosomes, which are double-membrane
vesicles [56,66]. These vesicles take in the toxic cytoplasmic materials and send them to
lysosomes by fusing them to form autolysosome to clear or break down the engulfed
proteins or organelles [67,68]. There are many hydrolytic enzymes in lysosomes that can
break down the contents of autophagosomes into nutrients that can be used to make energy
and change the shape of cells [69,70].

Studies have shown that BEVs can mess up the autophagy–lysosomal pathway, which
makes it harder for cells to get rid of waste and causes toxic aggregates to build up [70,71].
For example, a recent study showed that BEVs made from Porphyromonas gingivalis, a
pathogenic oral bacterium linked to AD, could stop autophagy by stopping lysosomes
from becoming acidic and stopping autophagosomes from breaking down [71–73]. BEVs
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made from Bacteroides fragilis, a common gut bacterium that can change the immune
system, could stop autophagy in dendritic cells by stopping the fusion of autophagosomes
and lysosomes [30,46,73]. On the other hand, some studies have shown that BEVs may
be playing a protective role in the autophagy–lysosomal pathway by assisting to make
new lysosomes and speeding up autophagic flux [46,69,71]. For example, a recent study
showed that BEVs made from Lactobacillus acidophilus, a probiotic bacterium with anti-
inflammatory properties, could improve autophagy flux by increasing lysosomal biogenesis
and promoting lysosomal acidification [74,75]. It was also found that BEVs made from
Akkermansia muciniphila linked to better metabolic health could speed up the removal
of misfolded proteins in a mouse model of PD by activating the autophagy–lysosomal
pathway [27,75,76]. In ND, the connection between BEVs and the autophagy–lysosomal
pathway is complicated and needs to be investigated more [27,75,77]. The possibility that
BEVs could interfere with or improve this important way for cells to get rid of waste could
have big effects on how ND start and how they can be treated.

6. Therapeutic Applications of Bacterial Extracellular Vesicles

In east Asian countries, traditional Chinese medicine (TCM) makes use of herbal
concoctions to treat NDs such as AD and PD for many years. However, BEVs can become
an effective alternative for such treatment [63,72,75]. Depending on their source and the
surrounding environment, exogenous vesicles have the potential to both trigger immune
responses and induce anti-tumor responses; as a result, they may offer useful tools for the
development of innovative cancer treatments [72,78].

Since BEVs can cross the blood–brain barrier, several recent studies have investigated
how BEVs could be used to treat NDs [74]. They can change immune responses and protect
neurons from damage [62,79]. Evidently, BEVs have the potential to be used as a drug
delivery system to treat NDs [74]. BEVs can carry a wide range of cargo, such as proteins,
nucleic acids, and small molecules. This makes them an ideal vehicle to deliver active
agents to specific cells or parts of the brain [80]. In fact, several studies have shown that
therapeutic cargo can be delivered by BEVs in nonclinical models of NDs [80–82]. For
example, one research study used BEVs made from mesenchymal stem cells to deliver miR-
133b to neurons in a mouse model of AD [80,81] and this study illustrated the tremendous
output in cognitive function and lowered the levels of amyloid beta [80–82].

It has been repeatedly found that BEVs can not only change the immune system but
also protect nerve cells, which makes them a very useful drug delivery system for treating
NDs [82]. Reducing neuroinflammation, a characteristic feature of many NDs, has been
demonstrated as an effect of BEVs on the brain’s immune system [75,81]. Another very
interesting and important factor is that BEVs protect neurons from damage by lowering
oxidative stress and helping neurons stay alive [75,81].

It is important to remember that while using BEVs to treat NDs has much potential,
there are also risks and challenges. For example, BEVs may interfere with the way lyso-
somes work and slow down the waste removal system of the cell, which can certainly
cause toxic proteins and other cellular debris to build up and cause different kinds of
issues [83,84]. Another challenge is the lack of information. While the research has shown
some promising results, there is a major possibility that the lack of substantial information
about the working of the pharmacokinetics, its safety, and effectiveness of BEVs in humans,
especially when it comes to long-term use and possible immune responses, can produce
some side effects [63,77,84].

Even with these certain and uncertain challenges, the possible uses of BEVs in NDs are
an interesting and intriguing area of research that needs more study and development [63,75].
With continued progress in our understanding of how NDs work and how BEVs affect
these processes, BEVs may end up being a useful addition to our arsenal of neuroprotective
and disease-modifying therapies [69]. BEVs are starting to look like a good way to treat
diseases that damage nerve cells [75]. Recent preclinical studies on mouse models of NDs
have shown that BEVs can change the immune response, lower neuroinflammation, and
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improve cognitive function [75,82]. Also, BEVs have been shown to protect neurons in
the lab by preventing the buildup of misfolded proteins, encouraging autophagy, and
improving lysosomal function [66,69,85].

On a practical note, several preclinical studies have investigated the possibility that
BEVs could be used to deliver drugs to treat NDs [63,74,81]. BEVs used as drug delivery
agents in model organisms have depicted some promising results. For example, BEVs were
allowed to carry therapeutic agents like siRNA and drugs to specific brain cells [62,74,81].
The results showed that BEVs made from mesenchymal stem cells can deliver active siRNA
that targets the tau protein in the brain and reduces tau phosphorylation and clumping in a
mouse model of AD [62,81]. The use of BEVs to treat NDs in a clinical setting is still in its
early stages [84]. Clinical trials and several other studies are being conducted and reports
are mostly positive.

7. Future Outlook of Bacterial Extracellular Vesicles

In recent years, research on the role of BEVs in NDs has garnered considerable interest.
Although there has been significant progress in our understanding of how BEVs might
be used therapeutically, much remains to be learned, particularly regarding their inter-
action with the autophagy–lysosomal pathway. Additionally, further research is needed
to explore the potential risks of using BEVs, such as the chance of eliciting an adverse
immune response or unintended biological effects. The optimization of BEV delivery to the
brain is another area of essential future research. Currently, there is little knowledge of the
various factors impacting BEV uptake and distribution, both of which can have a significant
influence on therapeutic efficacy. Nanotechnology and other delivery technologies may be
useful in increasing the target specificity and efficacy of BEV delivery. In addition, standard
protocols for isolating and documenting BEVs need to be developed, establishing a uniform
approach for the description and comparison of findings from different studies. The current
understanding of how BEVs affect NDs and their inner workings is also insufficient. Al-
though various studies have shown that BEVs can modify the immune system, promote the
survival of neurons, and eliminate misfolded proteins, the specific molecular mechanisms
responsible for these effects remain largely elusive. This underscores the need for extensive
safety testing and validation of BEVs before their clinical implementation.

8. Conclusions

BEVs possess the potential to make a significant contribution to ND and their thera-
peutics. Recent studies have indicated that these vehicles have immuno-modulatory and
neuroprotective properties, which may prove beneficial in the treatment of NDs. Further-
more, it has been observed that BEVs have the capacity to traverse the BBB and target
parts of the brain, making them an attractive drug delivery system for NDs. However,
there remain impediments and limitations to consider when studying and opting for BEVs
in NDs. For example, the lack of standardization in BEV isolation and characterization
processes can lead to disparate data and impede the comparison of studies. In addition,
further research is needed to deepen our understanding of the mechanisms through which
BEVs exert their effects. To maximize their therapeutic potential for NDs, future inves-
tigations should focus on mitigating these challenges and limitations. To ascertain their
safety and effectiveness in humans, further examination into the most suitable dosage,
frequency, and duration of BEV treatment is necessary. Moreover, further research is also
mandated to further our knowledge of the underlying mechanisms of action of BEVs and
to discern the BEVs with the most potential for treating NDs. Ultimately, BEVs provide
a promising therapeutic avenue for NDs yet a valid comprehension of their magnitude
and the surmounting of these restrictions of use necessitate additional research. Taken as a
whole, BEVs are an intriguing research topic that deserves further exploration.
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