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Abstract: Tumor angiogenesis and lymphangiogenesis pathways have been identified as important
therapeutic targets in non-small cell lung cancer (NSCLC). Bevacizumab, which is a monoclonal
antibody, was the initial inhibitor of angiogenesis and lymphangiogenesis that received approval
for use in the treatment of advanced non-small cell lung cancer (NSCLC) in combination with
chemotherapy. Despite its usage, patients may still develop resistance to the treatment, which can be
attributed to various histological subtypes and the initiation of treatment at advanced stages of cancer.
Due to their better specificity, selectivity, and safety compared to chemotherapy, small molecules have
been approved for treating advanced NSCLC. Based on the development of multiple small-molecule
antiangiogenic drugs either in house and abroad or in other laboratories to treat NSCLC, we used a
quinoline-derived small molecule—HN-N07—as a potential target drug for NSCLC. Accordingly,
we used computational simulation tools and evaluated the drug-likeness properties of HN-N07.
Moreover, we identified target genes, resulting in the discovery of the target BIRC5/HIF1A/FLT4
pro-angiogenic genes. Furthermore, we used in silico molecular docking analysis to determine
whether HN-N07 could potentially inhibit BIRC5/HIF1A/FLT4. Interestingly, the results of docking
HN-N07 with the BIRC5, FLT4, and HIF1A oncogenes revealed unique binding affinities, which were
significantly higher than those of standard inhibitors. In summary, these results indicate that HN-N07
shows promise as a potential inhibitor of oncogenic signaling pathways in NSCLC. Ongoing studies
that involve in vitro experiments and in vivo investigations using tumor-bearing mice are in progress,
aiming to evaluate the therapeutic effectiveness of the HN-N07 small molecule.

Keywords: non-small cell lung cancer (NSCLC); bevacizumab; small molecule; hypoxia; vascular
endothelial growth factor (VEGF); angiogenesis
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1. Introduction

Globally, non-small cell lung cancer (NSCLC) is responsible for a significant number of
cancer-related deaths and is the second most prevalent cause of cancer-related morbidity. It
accounts for approximately 85% of newly diagnosed cases each year [1] and has an overall
5-year survival rate of below 15% [2]. Current treatment modalities include radiotherapy
and chemotherapy, such as cetuximab and bevacizumab [3–6]. More than half of all
NSCLC patients are diagnosed with local or distant metastatic disease or recurrence post-
treatment, leading to drug resistance and poor clinical outcomes [7,8]. Therefore, there
is an urgent need to elucidate the molecular mechanisms of NSCLC, as well as identify
novel biomarkers, to ensure that novel drug targets can be developed [9,10]. Baculoviral
IAP repeat containing 5 (BIRC5), which is also referred to as survivin, has been extensively
studied in different cancer types, including in NSCLC [11–13]. BIRC5 overexpression
is associated with mitosis, proliferation, migration, and immune infiltration in different
cancers; however, its clinical impacts and associations with the tumor microenvironment
(TME) are still not well understood [14–18].

Since BIRC5 is reported to be an immune-associated gene that promotes tumor progres-
sion, many studies related to survivin in NSCLC focus on the sensitization to chemotherapy,
radiotherapy, and targeted therapy, with little success achieved due the heterogeneity of
this disease [19,20]. Numerous studies have also shown that BIRC5 overexpression is
associated with angiogenesis and inhibition of cell apoptosis in lung cancer, thus making
it a potential anti-NSCLC therapeutic biomarker [21–24]. As an angiogenic factor, BIRC5
sustains prolonged vascular endothelial cell integrity [25], and, hence, influences treatment
responses in vascular diseases [26]. The growth of new vascular networks is crucial, since
cancer progression depends on it for a sufficient supply of oxygen and nutrients [27]. In
addition, tumor cells feed via newly formed blood vessels sourced from vascular net-
works, ultimately producing vascular endothelial growth factor (VEGF) and secreting it
to nearby tissues [28–30]. There are five identified VEGFs, including VEGF (B,F, C, and
D) and placental growth factor. These factors activate their specific receptors, including
VEGF receptor-1, receptor-2, and receptor-3, as well as co-receptors, and play distinct roles
in vascular development [27,31]. Previous studies showed that tumor progression and
metastasis are mainly driven by important biological processes, such as angiogenesis and
lymphangiogenesis [32,33].

Specifically, vascular endothelial growth factor C (VEGF-C) and its receptor VEGFR-3,
which is also known as Fms-like tyrosine kinase 4 (FLT4), are expressed in tumor cells
and associated with growth of blood vessels within tumors, as well as the progression
of cancer cells to other parts of the body and the overall prognosis of the disease. FLT4
is mainly expressed in the lymphatic endothelium and plays a crucial role in lymphan-
giogenesis and metastasis in malignant tumors [34–36]. Moreover, FLT4 expression is
developmentally regulated and mainly restricted to lymphatic endothelial tissues [37,38].
Therefore, it can serve as a marker of lymphatic endothelial cells [39–43]. FLT4 expression
was identified in various cancers; however, its involvement in NSCLC remains elusive,
hence it is necessary to investigate its molecular mechanism in this disease [44–46]. There-
fore, exploring the inhibition of the VEGFR/FLT4 pathway may offer a promising strategy
for preventing tumor lymphangiogenesis and metastasis in NSCLC [47,48]. Furthermore,
research has indicated that hypoxia-inducible factor (HIF)-1α, which is a transcription factor,
may have a significant impact on tumor growth and metastasis through its regulation of
angiogenesis and lymphangiogenesis, which enables cellular survival in hypoxic condi-
tions [49]. Additionally, hypoxia was found to activate HIF-1α in the NSCLC TME, leading
to VEGF expression [50]. This process results in distant metastases and poor prognoses of
NSCLC [51]. These findings suggest that crosstalk occurs among BIRC5/HIF1α/FLT4, thus
driving lymphangiogenesis and metastasis in NSCLC.

Small-molecule targeted therapies have attracted increased interest in recent years,
and they have become mainstream cancer treatments due to meeting conventional treat-
ment modalities, including being safe, relatively cheap, and selective and specific with
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low minimal side effects. Moreover, these targeted drugs can effectively block molecular
transduction pathways, activate immune responses, and induce apoptosis [52–54]. In the
present study, we evaluate the anticancer activities of a quinoline-derived small-molecule
compound—HN-N07—that was synthesized in our laboratory [55–58]. The compound
was first sent to the national cancer institute (NCI) to be screened for its potential anti-
cancer activities. Accordingly, we discovered that HN-N07 exhibited antiproliferative and
cytotoxic effects on a panel of NSCLC cell lines at an initial single dose of 10 Mm, as well
as in a dose-dependent manner [59–61]. Moreover, we utilized bioinformatics tools and
discovered that BIRC5, HIF1α, and FLT4 oncogenes are target genes of HN-N07, among
other genes. Furthermore, the results of molecular docking revealed that the compound
displayed good binding energies, with a shorter binding distance needed when in complex
with BIRC5/HIF1α/FLT4 genes, suggesting that it could be a potential inhibitor of this
signaling pathway in NSCLC.

2. Methods and Materials
2.1. Differential Expression of BIRC5/HIF1A/FLT4 in Normal, Tumor, and Metastatic Samples and
a Correlation Analysis

Expression profiles of BIRC5/HIF1A/FLT4 signaling were analyzed in normal tissues
and compared to tumor tissues, as well as metastatic tissues, using TNMplot (https:
//tnmplot.com/analysis/, 28 November 2022). Accordingly, the database contained a total
of 56,938 samples, which consisted of both RNA-seq and gene array samples. After undergo-
ing pre-processing, there were 34,350 distinct gene array samples available, which covered
40 different tissue types. Among these samples, there were 3781 normal samples, 30,276 tu-
morous samples, and 462 metastatic samples. Data analyzed from selected oncogenes were
based on rapid RNA-Sequencing (RNA-Seq) profiling, and the Kruskal–Wallis test was used
to compare results [62]. Furthermore, we explored GEPIA2 (http://gepia2.cancer-pku.cn/,
28 November 2022) to analyze correlations between BIRC5/HIF1A/FLT4 oncogenic signa-
tures in NSCLC. A statistically significant association was determined based on positive
Pearson’s correlation coefficients and a p-value of less than 0.05.

2.2. Validation of Pathological Stages of BIRC5/HIF1A/FLT4 Oncogenes in NSCLC and Their
Prognostic Relevance

Pathological stage plots of BIRC5/HIF1A/FLT4 in NSCLC were analyzed using GEPIA2
online software, with the major stage option used for plotting, and all data were selected
from lung adenocarcinoma (LUAD) datasets, with log2 and transcripts per million +1
(TPM+1) used for the log-scale. Furthermore, we explored The Cancer Genome Atlas
(TCGA) database sourced from the UALCAN online platform (http://ualcan.path.uab.
edu/15, December 2022) to analyze BIRC5/HIF1A/FLT4 expression in LUAD based on his-
tological subtypes from TCGA samples, and these included LUAD-not otherwise specified
(NOS), lung clear cell adenocarcinoma (clear cell), predominant adenocarcinoma with a
solid pattern in the lungs, mucinous lung bronchoalveolar carcinoma (LBC-mucinous),
lung papillary adenocarcinoma (papillary), lung micro-papillary adenocarcinoma (micro-
papillary), lung adenocarcinoma with mixed subtypes (mixed), non-mucinous lung bron-
choalveolar carcinoma (LBC), lung acinar adenocarcinoma (acinar), mucinous (colloid), and
lung signet ring adenocarcinoma (signet ring). In addition, we determined overall survival
(OS) in relation to expression of BIRC5/HIF1A/FLT4 oncogenes using GEPIA2 software,
with a significance level of p < 0.05 considered to be statistically significant.

2.3. Protein–Protein Interaction (PPI) Network Construction and Gene Enrichment Analysis (GEA)

Protein interactions were constructed using STRING (https://string-db.org/ 21 De-
cember 2022) [63]. For further exploration, we used the enriched PPI clustering networks
from the STRING results to perform a GEA, using DAVID (https://david.ncifcrf.gov/.jsp,
22 December 2022), Funrich, and Network Analyst software to construct the graphs. The
minimum level of significance was set at p < 0.05.

https://tnmplot.com/analysis/
https://tnmplot.com/analysis/
http://gepia2.cancer-pku.cn/
http://ualcan.path.uab.edu/15
http://ualcan.path.uab.edu/15
https://string-db.org/
https://david.ncifcrf.gov/.jsp
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2.4. Analysis of BIRC5/HIF1A/FLT4 Genetic Mutations in LUAD Solid Tumors

Associations between genetic mutations of the BIRC5/HIF1A/FLT4 oncogenes and their
altered expression in LUAD were analyzed using the online mutation target (muTarget)
bioinformatics tool (https://www.mutarget.com/, 4 January 2023) [64]. Herein, statistical
significance was set at p < 0.05, helping us to determine the differences in expression
levels between the mutant and wild-type (WT) groups. Moreover, we utilized the onco-
print webtool, which is embedded in cBioPortal software (https://www.cbioportal.org, 4
January 2023), to further analyze genetic alterations and copy number variations (CNVs)
in the BIRC5/HIF1A/FLT4 genes in LUAD, which were based on mutation spectra and
alteration frequencies.

2.5. Analysis of scRNA-Seq Datasets Was Performed to Profile the Tumor Microenvironment
(TME) in Primary and Metastatic Sites of Non-Small Cell Lung Cancer (NSCLC)

scRNA-Seq is widely used to study communication between cells and their TME, and
Single-cell RNA sequencing (scRNA-Seq) offered a comprehensive approach that we used
to gain deeper insights into the diverse populations within the tumor microenvironment
(TME). It enabled the identification of novel cell types and the exploration of previously
unknown associations within the TME [65,66].

Herein, we explored the Tumor Immune Single-cell Hub (TISCH), which is a powerful
web-tool designed to comprehensively dissect the intricate components of the tumor
microenvironment (TME) at a single-cell resolution. It provided a comprehensive and
user-friendly platform through which to analyze and explore the complex characteristics of
the TME at the cellular level [67].

2.6. Correlation Analysis of Immune Cell Infiltration and BIRC5/HIF1A/FLT4 Expression

We utilized the Tumor Immune Estimation Resource (TIMER 2.0, http://timer.cistrome.
org/1, 4 January 2023) to examine the associations between the expression levels of BIRC5,
HIF1A, and FLT4 and the extent of tumor infiltration. This tool allowed us to analyze
and assess the correlations between these examples of gene expression and the immune
cell infiltration within the tumor microenvironment [68]. Herein, we mainly analyzed
correlations between BIRC5/HIF1A/FLT4 and infiltration of cancer-associated fibroblasts
(CAFs) in LUAD. In addition, we analyzed mutations of BIRC5/HIF1A/FLT4 in CAFs using
the mutation module from TCGA clinical outcomes in the TIMER 2.0 algorithm. For further
analysis, we determined distributions of BIRC5/HIF1A/FLT4 expression in LUAD across
different molecular subtypes, including wound healing, interferon (IFN)-γ dominant, in-
flammation, lymphocyte, and transforming growth factor (TGF)-β subtypes using TISIDB
(http://cis.hku.hk/TISIDB, 20 February 2023) [69].

2.7. In Silico Flow Cytometric Analysis Using NSCLC Single RNA-Seq Bulk Tumors

To profile the infiltration of bulk RNA-Seq expression tumors, we utilized CIBERSORTx,
which is a versatile online analytical tool (https://cibersortx.stanford.edu/, 25 February
2023) that allowed us to extract a signature from single-cell RNA-Seq data and quantify cell
fractions sourced from differential bulk tumor gene expression [70].

2.8. Computational Evaluation of the Drug Likeness, and Properties of HN-N07

To determine the physicochemical properties, drug likeness, pharmacokinetics (PKs),
physicochemical properties, and medicinal chemistry of HN-N07, we used SwissADME
software, and to create target predictions, we used DTP-COMPARE algorithms [71]. These
techniques were used to determine activity patterns of HN-N07 relative to its correlation
with the National Cancer Institute (NCI) synthetic compounds and standards agents. For
further analysis, we used Swisstarget software (http://www.swisstargetprediction.ch,
24 March 2023), which applies similar prediction principles to predict drug targets based
on a “probability” target score [72].

https://www.mutarget.com/
https://www.cbioportal.org
http://timer.cistrome.org/1
http://timer.cistrome.org/1
http://cis.hku.hk/TISIDB
https://cibersortx.stanford.edu/
http://www.swisstargetprediction.ch
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2.9. Receptor–Ligand Binding Interaction Predictions through an In Silico Molecular Docking Analysis

A docking analysis was conducted by examining interactions of three-dimensional (3D)
structures of receptors and ligands at the lowest possible binding energy [73]. Accordingly, to
predict possible interactions between HN-N07 and its targets, including BIRC5/HIF1A/FLT4,
as previously predicted from DTP-COMPARE and Swisstarget software, we performed in
silico molecular docking analysis of HN-N07 using the BIRC5, FLT4, and HIF1A genes. To
enable further analysis, we used standard inhibitors of BIRC5 (flavokawain A; CID_5355469),
FLT4 (sorafenib; CID_216239), and HIF1A (belzutifan; CID_117947097), which were retrieved
from PubChem as SDF files. The obtained SDF files were converted to PDB format using
PyMol software. We obtained the crystal structures of BIRC5 (1xox), FLT4 (4bsk), and HIF1A
(1l3e) from the Protein Data Bank in PDB format. The PDB files were then converted to
PDBQT file format using autodock software [74], which enabled further processing. Docking
simulations were performed using these 1.5.6) converted files. To analyze and visualize the
docking results, we utilized BIOVIA discovery studio software [75].

3. Results
3.1. Identification of Differentially Expressed Genes (DEGs)

Four microarray datasets of NSCLC DEGs were retrieved from the GEO website, which
we used to perform the gap analysis; we set the p-value as p < 0.05 and |log 2FC| > 1.5 as the
statistical standards. To perform the analysis, from GSE2088, we sourced 48 tumor samples
and 30 normal samples; from GSE6044, we sourced 9 tumor samples and 5 normal samples;
from GSE19188, we sourced 91 tumor samples and 65 normal samples; and from GSE68465,
we sourced 89 tumor samples and 67 normal samples. The expression data, which included
upregulated and downregulated genes, were presented in volcano plots (Figure 1A–D).
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Figure 1. Volcano plots that depict the differential expression of genes in the following datasets:
(A) GSE2088, (B) GSE6044, (C) GSE19188, and (D) GSE68465. All downregulated genes are repre-
sented by blue color, while the upregulated genes are shown in red color, with p< 0.05 considered
statistically significant.
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3.2. Differential Expression of BIRC5/HIF1A/FLT4 in Normal, Tumor, and Metastatic NSCLC Samples

The number of overlapping upregulated genes from the GSE2088, GSE6044, GSE19188,
and GSE68465 datasets was 6, including the following genes: FLT4, NQO1, HIF1A, CXCL14,
TFAP21, and BIRC5. As displayed in the Venn diagram and heatmap in (Figure 2A,B),
to validate and compare expression levels of BIRC5/HIF1A/FLT4 in NSCLC, we used the
TNM plot tool, and samples were obtained using RNA-Seq data. Based on these results,
expression levels of BIRC5, HIF1A, and FLT4 associated with primary NSCLC tumor
progression and metastasis were compared to normal samples (Figure 2C–H). The Wilcoxon
test was employed to assess the statistical significance of the differentially expressed genes
(DEGs), with (*) p < 0.05 indicating significance.
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Figure 2. Differential expression of BIRC5/HIFA1/FLT4 in normal, tumor, and metastatic samples of
non-small cell lung cancer (NSCLC). (A) Venn diagram that shows 6 overlapping upregulated genes
in NSCLC samples. (B) Heat maps of the overlapping upregulated DEGs obtained using the four
datasets. Overexpression of BIRC5/HIFA1/FLT4 in NSCLC tumor cells compared to the adjacent
normal tissues (C–H). Dysregulation of BIRC5/HIFA1/FLT4 in tumor and metastatic NSCLC tumor
tissues compared to normal tissues. The statistical significance of the differentially expressed genes
was determined using the Wilcoxon test, with a significance threshold being set at p < 0.05.

3.3. Validation of Pathological Stages of the BIRC5/HIF1A/FLT4 Oncogenes in NSCLC and
Their Prognoses

We further determined the pathological stage plots of BIRC5/HIF1A/FLT4 in NSCLC.
Based on our findings, expression of BIRC5, HIF1A, and FLT4 were significantly higher in
stages 2, 3, and 4 than in stage 1. This result, thus, suggests that BIRC5/HIF1A/FLT4 signal-
ing may promote tumor progression in NSCLC (Figure 3A–C). We further used UALCAN
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to analyze the expression of BIRC5/HIF1A/FLT4 in LUAD based on histological subtypes
from TCGA samples. Interestingly, when BIRC5/HIF1A/FLT4 were upregulated in LUAD
tissues, they exhibited a high presence in solid pattern-predominant adenocarcinomas,
which are large and aggressive tumors with poor prognoses (Figure 3D–F) [76]. We also
used Gepia2 to determine the prognostic significance of BIRC5/HIF1A/FLT4 expression in
LUAD. As anticipated, results showed that high expression of all of these genes in LUAD
were associated with shorter OS, and the hazards ratio (HR) was calculated based on the
Cox PH Model, with 95% CI set as the dotted line and Cutoff values (high and low) set at
50%; p < 0.05 was considered statistically significant (Figure 3G–I).
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Figure 3. The BIRC5/HIF1A/FLT4 gene signature was overexpressed in NSCLC and linked to its
progression. (A–C) BIRC5/HIF1A/FLT4 were more highly expressed in stages II to IV of NSCLC than
in stage I. Transcript levels of BIRC5/HIF1A/FLT4 (D–F). Histological subtype analysis showing that
if upregulated in LUAD tissues, BIRC5/HIF1A/FLT4 exhibited a high presence in larger aggressive
tumors with poor prognoses. (G–I) The Kaplan–Meier plot indicated that the increased expression of
BIRC5/HIF1A/FLT4 was correlated with a decrease in overall survival, with statistical significance
set at p < 0.05.
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3.4. PPI Network Construction and the GEA

Protein interactions were analyzed using the STRING database. A confidence score
higher than 0.9 was deemed to indicate the most significant interactions, and the network
was further constructed using 7 nodes, 21 edges, an average node degree of 6, an average
local clustering coefficient of 1, the number of edges being expanded to 6, and a PPI en-
richment p value of 3.51 × 10−6. Active interactions were determined through various
sources, including text mining, experimental data, databases, coexpression patterns, spatial
proximity, gene fusion events, and co-occurrence analysis (Figure 4A). For further explo-
ration, we used enriched PPI clustering networks based on STRING results to perform a
GEA with the DAVID database, and we further utilized Funrich. Functional enrichments
included gene ontology (GO) that involved biological processes such as anti-apoptosis,
immune response, regulation of gene expression and epigenetics, morphogenesis, cell
migration, protein metabolism, regulation of nucleobases, cell communication, and sig-
naling transduction (Figure 4B). Affected biological (Kyoto Encyclopedia of Genes and
Genomes; KEGG) pathways included the FOXM1 transcription factor network, notch sig-
naling pathway, HIF-1α transcription factor, and FLT4 signaling network (Figure 4C). We
also used a network analysis, and KEGG pathway enrichment showed co-expression of the
BIRC5/HIF1A/FLT4. Oncogenes within the same network cluster were analyzed based on
their network topology using the Igraph R package, and the results were visualized using a
force atlas layout (Figure 4D). Statistical significance was set at a threshold of p < 0.05.
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Figure 4. The protein–protein interaction (PPI) network demonstrated the interactions between the
BIRC5, HIF1A, and FLT4 oncogenes in NSCLC. (A) The clustering network consisted of 7 nodes,
21 edges, an average node degree of 6, an average local clustering coefficient of 1, the number of
edges being expanded to 6, and a PPI enrichment p value of 3.51 × 10−6. Active interactions were
based on text mining, experiments, databases, coexpression, neighborhoods, gene fusion. and co-
occurrence. p < 0.05 was considered to be statistically significant. (B) Top biological processes (BPs),
(C) KEGG pathways, and (D) signaling network analysis were sourced from the KEGG database,
with coexpression of the BIRC5/HIF1A/FLT4 oncogenes displayed, and the criterion was set to
p < 0.05 in each panel.
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3.5. Analysis of BIRC5/HIF1A/FLT4 Genetic Mutations in LUAD Solid Tumors

The genetic alterations and gene expression changes in the BIRC5, HIF1A, and FLT4
oncogenes in lung adenocarcinoma (LUAD) were analyzed using muTarget software. The
top two highly expressed genes linked to BIRC5 were TP53 and TTN; for FLT4, they were
CCDC129 and LTN1; and for HIF1A, they were PLOR2A and POTEG compared to the wild
type, and all of these genes were associated with unfavorable prognoses (Figure 5A–F).
Moreover, we utilized the oncoprint webtool, which is embedded in cBioPortal software,
to further analyze genetic alterations and CNVs of BIRC5/HIF1A/FLT4 in LUAD. The
analysis revealed the following percentages of gene amplification: 2.3% for BIRC5, 1.9% for
HIF1A, and 1.7% and 1.9% for FLT4 in LUAD. Gene change categories included missense
mutations, amplifications, deep deletions, and no alterations, which are denoted by green,
red, blue, and grey, respectively. (Figure 5G). We further analyzed the alteration frequencies
of the BIRC5 and FLT4 oncogenes, as shown in the bar graphs (Figure 5H,I), with p < 0.001
considered to be significant.
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Figure 5. BIRC5/HIF1A/FLT4 mutations were associated with worse prognosis in NSCLC. (A–F)
Top two highly expressed genes linked to BIRC5 were TP53 and TTN; for FLT4, they were CCDC129
and LTN1; and for HIF1A, they were PLOR2A and POTEG compared to the wild type. (G) Genetic
alterations and copy number variations (CNVs) in BIRC5/HIF1A/FLT4 in lung adenocarcinoma
(LUAD) were based on percentages of separate genes due to amplification (H,I). Bar graphs that
show alteration frequencies of the BIRC5 and FLT4 oncogenes.
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3.6. Single-Cell RNA Sequencing (scRNA-Seq) Profiling Unveiled the High Abundance and
Immunosuppressive Role of BIRC5/HIF1A/FLT4 within the TME of Both Primary and Metastatic
Non-Small Cell Lung Cancers (NSCLC)

We explored the TISCH scRNA-Seq database of NSCLC from the GSE148071 dataset,
which comprised samples from 12 patients diagnosed with primary and metastatic NSCLC.
The detailed annotation of cell types at the single-cell level, which facilitated our investiga-
tion of the tumor microenvironment (TME); accordingly, we found abundances of major
linear cell types within the NSCLC TME, and these cell types included malignant cells,
fibroblasts, epithelial cells, plasma, CD8 T cells, T proliferation cells, endothelial cells, basal
cells, alveolar cells, and mono cells (Figure 6A). The analysis of differential gene expression
in the scRNA-Seq data revealed that BIRC5, HIF1A, and FLT4 were overexpressed in malig-
nant tissues [67]. By conducting a meta-analysis of differentially expressed genes (DEGs)
within each cell type of the tumor microenvironment (TME), we observed that increased
expression levels of specific genes, particularly BIRC5 and HIF1A, occurred in epithelial
cells, CD8 T cells, T proliferative cells, mono/macro cells, basal cells, fibroblasts, and
malignant cells (Figure 6B,C), while high expression levels of FLT4 occurred in malignant
cells, CD8 T cells, mono/macro cells, and basal cells (Figure 6D).
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Figure 6. Cell sequencing leveraging of BIRC5/HIF1A/FLT4 in the tumor microenvironment of
primary and metastatic NSCLC. (A) Cell-type distributions sourced from the NSCLC GSE148071
dataset The single-cell resolution analysis of the GSE148071 dataset in the TISCH database allowed
us to examine the expression patterns of BIRC5 (B), HIF1A (C), and FLT4 (D) in various cell types.

3.7. Correlations between BIRC5/HIF1A/FLT4 and Infiltrating Immune Cells in NSCLC Patients

The TME plays a crucial role in cancer initiation and progression. However, the as-
sociation between the TME and tumor prognosis remains elusive. Herein, we utilized a
web-based program of a tumor-infiltrating immune cell algorithm (TIMER 2.0) to explore
how our target gene correlates with the TME in NSCLC. Accordingly, we used a TIMER
database analysis to determine correlations between BIRC5, HIF1A, and TLF4 and infiltrat-
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ing immune cells. In order to understand the connections between BIRC5, HIF1A, and FLT4
expression and specific immune cells, we conducted a correlation analysis between these
oncogenes and markers of cancer-associated fibroblasts (CAFs), considering the influence of
sample purity. As expected, results showed correlations between BIRC5/HIF1A/FLT4 and
CAFs in NSCLC (Figure 7A–C). In addition, we analyzed mutations of BIRC5/HIF1A/FLT4
in CAFs using the mutation module from TCGA clinical outcomes in the TIMER algorithm
(Figure 7D–F). Moreover, the expression of BIRC5, HIF1A, and FLT4 were analyzed across
various immune subtypes, namely C1 (associated with wound healing), C2 (dominated
by IFN-γ), C3 (inflammatory), C4 (characterized by lymphocyte depletion), C5 (immuno-
logically quiet), and C6 (dominated by TGF-β). Interestingly, the BIRC5/HIF1A/FLT4
oncogenes were highly expressed in all of the above-mentioned immune subtypes, except
for the wound-healing subtype (Figure 7G–I).
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Figure 7. Correlations between BIRC5/HIF1A/FLT4 and infiltrating immune cells in NSCLC patients.
(A–C) BIRC5/HIF1A/FLT4 expression levels were significantly correlated with cancer-associated
fibroblast (CAF) infiltration in NSCLC. (D–F) Mutation analysis of BIRC5/HIF1A/FLT4 in CAFs.
(G–I) BIRC5/HIF1A/FLT4 were more highly expressed in different immune subtypes.

3.8. Digital Flow Cytometric Analysis of NSCLC RNA-Seq Bulk Tumors Revealed Abundant
Infiltrating Immune Cells Associated with Poor Clinical Outcomes

To profile bulk RNA-Seq expression of tumor-infiltrating cells, we used CIBERSORTx,
which is an online and versatile analytical tool that allows a signature to be extracted
from single-cell RNA-Seq data, as well as quantification of cell fractions from differential
gene expression of bulk tumors. For each sample size, a subset of tumors was randomly
selected from a larger cohort (n = 302) in 10 iterations. The results were displayed with
and without adaptive noise filtration. The data were presented using boxplots, where the
center line represents the median, the box limits indicate the upper and lower quartiles, the
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whiskers extend to 1.5 times the interquartile range, and any points beyond the whiskers
represent outliers (Figure 8A). Heatmaps were utilized to compare the expression profiles
of imputed and ground truth data for immune (CD45+), epithelial/cancer (EpCAM), and
stromal (CD10+ and CD34+) subsets. Genes that were either not predicted to be expressed
or were eliminated through adaptive noise filtration were indicated by items that were
navy blue in color. Figure 8B–E show positive correlations between CD10, EpCAM, and
CD45 in NSCLC, which were reported to be associated with poor clinical outcomes [77].
We also performed an OS analysis plot from Gepia2, and we found that expression of CD10,
EpCAM, and CD45 in NSCLC were, indeed, correlated with poor prognoses (Figure 8F–H).
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Figure 8. In silico flow cytometric analysis of non-small cell lung cancer (NSCLC) RNA-Seq bulk
tumors revealed abundant infiltrating immune cells that were associated with poor clinical outcomes.
(A) Heat map that compares imputed and ground truth expression profiles for immune (CD45+),
epithelial/cancer (EpCAM), and stromal (CD10+ and CD34+) subsets. (B–E) Positive correlations
of CD10, EpCAM, and CD45 in NSCLC. (F–H) Overall survival analysis revealed that expression
of CD10, EpCAM, and CD45 in NSCLC were correlated with a poor prognosis, with p < 0.05
considered significant.
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3.9. Rationale for Drug Design via Scaffold Hopping to Determine the Physicochemical Properties
of the Bioactive Compound—HN-N 07—And Its Anticancer Activities against NSCLC Cell Lines

Pharmacophore hybridization and the exploration of different bioactive compound
scaffolds are valuable strategies in the design and development of new drugs [63]. In the
present study, we used a quinoline to synthesize our small molecule—HN-N07. Quinolines
and their derivatives play multiple roles due to their biological activities, such as anti-
inflammation and anticancer immunomodulation [55–58]. Furthermore, various anticancer
drugs, such as irinotecan and topotecan, incorporate quinolones as their primary structural
framework, which contribute to their therapeutic properties [78] (Figure 9A). We evaluated
the impact of HN-N07 on the growth and viability of NCI-60 NSCLC cell lines and observed
significant antiproliferative and cytotoxic effects. HN-N07 demonstrated potent anticancer
properties against these specific cancer cell lines. The antiproliferative activities of HN-N07
were shown after an initial single dose (10 µM), through which the effects of the compound
are represented based on the percentage growth modified by the treatment as follows:
A549/ATCC (23.38%), (HOP-62 56.42%), HOP-92 (−10.12%), NCI-H226 (58.08%), NCI-H23
(72.59%), NCI-H322M (49.16%), NCI-H460 (−71.14%), and NCI-H522 (−8.99%) (Figure 9B).
Since HN-N07 displayed antiproliferative activities against NSCLC cell lines screened from
the NCI database at an initial single dose of 10 µM, we further investigated the effect of the
compound when administered in a dose-dependent manner. The 50% growth inhibition
(GI50) concentrations of HN-N07 against NSCLC cell lines were in the range 2.92~4.38 µM.
The most sensitive cell line was HOP-62 (2.92 µM), followed by NCI-H522 (3.07 µM),
A549/ATCC (3.17 µM), and NCI-H322M (3.18 µM), while the lowest GI activity was shown
with NCI-H460 (3.38 µM) and NCI-H226 cells (4.38 µM)). A growth percentage value of
100 indicates the growth of untreated cells, whereas a value of 0 indicates no overall growth
during the experimental period. A value of −100 signifies complete cell death by the end of
the experiment (Figure 9C). To further explore this topic, we investigated druggable target
genes for HN-N07. Interestingly, we identified several targets, which included kinases,
family A–G protein-coupled receptors, proteases, and transcription factors (Figure 9D).
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3.10. BIRC5/HIF1A/FLT4 Are Potential Target Genes for the HN-N07 Compound

We used the Swisstarget prediction tool to investigate druggable target genes for
HN-N07. Interestingly, we identified several targets which included kinases, family A–G
protein-coupled receptors, proteases, and transcription factors. The HN-N07 small molecule
was also shown to target oncogenes, including BIRC5, FLT4, HIF1A, dopamine receptor D2
(DRD2), mammalian target of rapamycin (mTOR), dipeptidyl peptidase-4 inhibitor (DPP-4),
proto-oncogene B-Raf (BRAF), and others, as shown in Table 1.

Table 1. Protein targets of NSC77178 that show common names, Uniprot and ChEMBL IDs, and
target classes of specific compounds.

Target Common Name Uniprot ID ChEMBL ID Target Class

Serotonin 1f (5-HT1f) receptor HTR1F P30939 CHEMBL1805 Family A–G
protein-coupled receptor

Dopamine D2 receptor (by homology) DRD2 P14416 CHEMBL217 Family A–G
protein-coupled receptor

Vascular endothelial growth factor
receptor 3 FLT4 P35916 CHEMBL1955 Kinase

Serine/threonine-protein kinase mTOR MTOR P42345 CHEMBL2842 Kinase

Cyclin-dependent kinase 2/cyclin A CDK2
CCNA1 CCNA2 P24941 P78396 P20248 CHEMBL2094128 Other cytosolic protein

Dipeptidyl peptidase IV DPP4 P27487 CHEMBL284 Protease
Serine/threonine-protein kinase B-raf BRAF P15056 CHEMBL5145 Kinase

Dual specificity mitogen-activated
protein kinase 1 MAP2K1 Q02750 CHEMBL3587 Kinase

Fibroblast growth factor receptor 1 FGFR1 P11362 CHEMBL3650 Kinase
Cyclin-dependent kinase 4 CDK4 P11802 CHEMBL331 Kinase

Gonadotropin-releasing
hormone receptor GNRHR P30968 CHEMBL1855 Family A–G

protein-coupled receptor
Hypoxia-inducible factor 1 alpha HIF1A Q16665 CHEMBL4261 Transcription factor

Hepatocyte growth factor receptor MET P08581 CHEMBL3717 Kinase
Peptide N-myristoyltransferase 1 NMT1 P30419 CHEMBL2593 Enzyme

3.11. Molecular Docking Revealed Putative Interactions of HN-N07 with the BIRC5, FLT4, and
HIFA Oncogenes

Our computational molecular docking analysis uncovered potential binding capabili-
ties of HN-N07 with the BIRC5, FLT4, and HIFA oncogenes. Accordingly, after docking our
compound with these individual genes, we obtained the following the Gibbs free binding
energy (∆G) results: BIRC5 (PDB: 1xox =−8.2 kcal/mol); FLT4 (PDB: 4bsk = −7.7 kcal/mol);
and HIF1A (PDB: 1l3e = −8.2 kcal/mol) (Figure 10A,B, Figure 11A,B and Figure 12A,B). The
results of the docking analysis were visualized using Discovery Studio, demonstrating inter-
actions that involved conventional hydrogen bonds and their corresponding distance con-
straints. In a further analysis, we performed molecular docking with standard inhibitors of
BIRC5 (flavokawain A), FLT4 (sorafenib), and HIF1A (belzutifan), and compared those results
to our HN-N07 small molecule. Interestingly, our compound had higher binding affinities
than flavokawain A (−6.8 kcal/mol) and belzutifan (−8.2 kcal/mol). However, sorafenib
exhibited a much higher binding energy of −7.9 kcal/mol (Figure 10C,D, Figure 11C,D and
Figure 12C,D), which was slightly higher than that of HN-N07 (−7.6 kcal/mol). Collectively,
these findings suggest that HN-N07 may be a potential inhibitor of the BIRC5/HIF1A/FLT4
oncogenic signaling pathway in NSCLC (Tables 2–4).
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Figure 10. Docking profiles of BIRC5 with HN-N07 and flavokawain A, which is its standard
inhibitor. (A,C) Three-dimensional (3D) representations of the ligand–receptor complex that show
respective binding energies of −8.2 and −6.8 kcal/mol (B,D) for BIRC5 in complex with HN-N07
and flavokawain A. Interacting amino acid residues and types of interactions that occur between
the ligands.

Table 2. Comparative docking profiles of HN-N07 against BIRC5 and its standard drug, which is
flavokawain A.

HN-N07—BIRC5 Complex ∆G = −8.2 kcal/mol Flavokawain A—BIRC5 Complex ∆G = −6.8

Type of Interactions and
Number
of Bonds

Distance of Interacting
Amino Acids

Type of Interactions
and Number of Bonds

Distance of Interacting
Amino Acids

Conventional hydrogen
bond (3)

PHE93 (2.81 Å),
GLU40 (2.02 Å)

Conventional hydrogen
bond (3)

PHE93 (2.77 Å), ASP16 (1.79 Å),
LYS15 (2.16 Å),

Carbon hydrogen bond GLN92, VAL89, LYS91 Pi-Cation ARG18
Pi-Cation ARG18 Alkyl LEU14, PRO4
Pi-sigma LEU96 Pi-Alkyl VAL89, LEU104
Pi-Sulfur PHE86
Pi-Alkyl PHE13, PHE101, LYS15
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Table 3. Comparative docking profiles of HN-N07 against FLT4 and its standard drug, which is sorafenib.

HN-N07—FLT4 Complex (∆G = −7.7 kcal/mol) Sorafenib—FLT4 Complex (∆G = −7.9 kcal/mol)

Type of Interactions and
Number
of Bonds

Distance of Interacting
Amino Acids

Type of Interactions and
Number
of Bonds

Distance of Interacting
Amino Acids

Carbon hydrogen bond ASP34 Conventional hydrogen
bond (4)

LEU32 (2.85 Å), SER50 (1.79 Å),
ASP63 (2.16 Å), LYS48 (2.69 Å)

Pi-Anion GLU64 Halogen ASN62, PHE47
Pi-Sigma CYS60 PI-Anion ASN34
Pi-Sulfur PHE35 Pi-Sulfur CYS51

Alkyl ILE46 Alkyl ILE46



Biomedicines 2023, 11, 2011 17 of 23Biomedicines 2023, 11, x FOR PEER REVIEW 19 of 25 
 

 
Figure 12. Docking profiles of HIF1A with HN-N07 and belzutifan, which is its standard inhibitor. 
(A,C) Three-dimensional (3D) representations of the ligand–receptor complex that shows respective 
binding energies of –8.1 (B,D) and –8.2 kcal/mol for HIF1A in complex with HN-N07 and belzutifan. 
(B) Interacting amino acid residues and types of interactions that occur between the ligands. 

Table 4. Comparative docking profiles of HN-N07 against HIF1A and its standard drug, which is 
belzutifan. 

HN-N07—HIF1A Complex ΔG = −8.2 kcal/mol Belzutifan—HIF1A Complex ΔG = −8.1 kcal/mol 
Type of Interactions and 

Number  
of Bonds 

Distance  
of Interacting 
Amino acids 

Type of Interactions and 
Number of Bonds 

Distance of Interacting Amino 
Acids 

Conventional hydrogen bond 
(2) 

LYS196 (2.37 Å) Conventional hydrogen 
bond (2) 

LEU128 (5.88 Å), ASN42 (2.47 
Å) 

Carbon hydrogen bond  CYS184 Carbon hydrogen bond LYS182 
Pi-Donor Hydrogen Bond TRP181 Halogen TRP181, GLN40, LEU38 

Pi-Pi-T-shaped GLN40 Pi-Alkyl VAL41 
Alkyl LYS182   

Pi-Alkyl VAL41   

4. Discussion 
Despite the advanced optional treatment modalities for NSCLC, including surgery, 

radiation therapy, and chemotherapy, which depend on various factors, such as cancer 

Figure 12. Docking profiles of HIF1A with HN-N07 and belzutifan, which is its standard inhibitor.
(A,C) Three-dimensional (3D) representations of the ligand–receptor complex that shows respective
binding energies of−8.1 (B,D) and−8.2 kcal/mol for HIF1A in complex with HN-N07 and belzutifan.
(B) Interacting amino acid residues and types of interactions that occur between the ligands.

Table 4. Comparative docking profiles of HN-N07 against HIF1A and its standard drug, which
is belzutifan.

HN-N07—HIF1A Complex ∆G = −8.2 kcal/mol Belzutifan—HIF1A Complex ∆G = −8.1 kcal/mol

Type of Interactions and
Number
of Bonds

Distance of Interacting
Amino Acids

Type of Interactions and
Number of Bonds

Distance of Interacting
Amino Acids

Conventional hydrogen
bond (2) LYS196 (2.37 Å)

Conventional hydrogen
bond (2)

LEU128 (5.88 Å),
ASN42 (2.47 Å)

Carbon hydrogen bond CYS184 Carbon hydrogen bond LYS182
Pi-Donor Hydrogen Bond TRP181 Halogen TRP181, GLN40, LEU38

Pi-Pi-T-shaped GLN40 Pi-Alkyl VAL41
Alkyl LYS182

Pi-Alkyl VAL41

4. Discussion

Despite the advanced optional treatment modalities for NSCLC, including surgery,
radiation therapy, and chemotherapy, which depend on various factors, such as cancer types
and histological subtypes, that make treatments less effective, OS is still approximately
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<5 years [7,79–82]. Improved insights into biological pathways have shed light on the
development of targeted therapies and antiangiogenic drugs, which has significantly
improved the survival of patients [83,84].

Angiogenic pathways are essential targets in the molecular regulation of the NSCLC
tumor microenvironment (TME), influencing tumor progression and metastasis [85]. Vas-
cular endothelial growth factor (VEGF) is a key factor involved in angiogenesis and highly
expressed in various tumors, including NSCLC [86]. Bevacizumab, which is a monoclonal
antibody targeting circulating VEGF, was the first angiogenesis inhibitor approved for treat-
ment of advanced NSCLC, though its use is limited to non-squamous histology in first-line
treatment. Currently, bevacizumab, in combination with platinum-based chemotherapy,
is the only approved treatment for advanced NSCLC in the first-line setting. Ongoing
clinical investigations are evaluating other antiangiogenic agents, such as sorafenib and
sunitinib [85,87]. Accumulating studies have shown that BIRC5, which are also known as
survivin, is an immune-associated gene, which has also been shown to regulate metastasis
and angiogenesis in tumors and is highly expressed in NSCLC [88]. The co-expression of
BIRC5 and survivin was shown in NSCLC, thus illustrating its great potential as a thera-
peutic target for treatment development [89]. Moreover, studies showed that angiogenesis
is prompted by hypoxia as a result of insufficient new blood vessels [90]. Additionally,
hypoxia was found to activate HIF-1α within the NSCLC TME, leading to VEGF expres-
sion [50,91–93], which, in turn, results in distant metastasis and poor prognoses [51].
Additionally, the presence of hypoxia within the tumor microenvironment has an impact
on both the early and late stages of the disease [94,95].

In the present study, we have analyzed a sample of patients affected by metastatic
disease and compared them to normal samples using bioinformatics analysis of non-small
cell lung cancer patients. We used the TNM plot tool, and samples were obtained using
RNA-Seq data. Our results showed that high expression levels of BIRC5, FLT, and HIF1A
were more clearly associated with primary NSCLC tumor progression and metastasis than
normal samples. These findings are in line with the study conducted by Aldo et al. in 2019.
Interestingly, based on results of the correlation analysis, all of the oncogenic signatures
were also coexpressed in NSCLC. Since current treatment is influenced by factors such
as cancer types and histological subtypes, we determined the prognostic relevance of
BIRC5/FLT4/HIF1A at different stages of LUAD, and we found that BIRC5, FLT4, and HIF1A
were higher in stages 2, 3, and 4 than in stage 1, where they were significantly lower.
This result suggests that BIRC5/HIF1A/FLT4 signaling may promote tumor progression in
NSCLC. The expression of this signature in LUAD based on histological subtypes from
TCGA samples exhibited a high presence of a solid pattern-predominant adenocarcinoma,
which is an aggressive large tumor associated with poor clinical outcomes.

The TME plays crucial roles in cancer initiation and progression. However, the
association between the TME and tumor prognosis remains elusive. Herein, we utilized a
web-based program with a tumor-infiltrating immune cell algorithm (TIMER 2.0) to explore
correlations between our target genes and the TME in NSCLC. In order to determine the
associations between BIRC5, HIF1A, and FLT4 expression and specific immune cells, we
conducted a correlation analysis that accounted for the purity-adjusted CAF markers. As
anticipated, results showed correlations between BIRC5/HIF1A/FLT4 and CAFs in NSCLC.
Moreover, we exploited a CIBERSORTx digital flow cytometric analysis of NSCLC RNA-
Seq bulk tumors, and we identified that immune (CD45+), epithelial/cancer (EpCAM), and
stromal (CD10+ and CD34+) subsets were expressed in NSCLC and associated with poor
prognoses. Due to their broad efficacy and safety compared to traditional chemotherapeutic
regimens, small molecules, which are kinase inhibitors, have become the most recognized
cancer treatments [54,96]. Herein, we evaluated the potential inhibitory activities of HN-
N07, which is a quinoline-derived small molecule derived in our lab. Accordingly, we
performed computational molecular docking to determine ligand–receptor interactions.
Docking results between HN-N07 and the BIRC5, FLT4, and HIF1A oncogenes revealed
unique binding energies. These energies were significantly higher than the standard
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inhibitors of flavokawain-A and belzutifan. However, sorafenib exhibited a binding energy
that was slightly higher than that of HN-N07. Collectively, these findings suggest that
HN-N07 may be a potentially inhibitor of the oncogenic signaling pathway in NSCLC.

5. Conclusions

In conclusion, we identified the BIRC5/HIF1A/FLT4 signature as a targetable signature
correlated with angiogenic pathways in NSCLC. We used a computational analysis and
identified the BIRC5/HIF1A/FLT4 oncogenes as being highly upregulated in NSCLC and
associated with cancer progression and poor prognoses. Docking results of HN-N07 with
the BIRC5, FLT4, and HIF1A oncogenes revealed unique binding energies of −8.2, −7.7,
and −8.2 kcal/mol. These results were significantly higher than those of two standard
inhibitors. Collectively, these findings suggest that HN-N07 may be a potential inhibitor
of an oncogenic signaling pathway in NSCLC. Currently, further in vitro and in vivo
investigations in tumor-bearing mice are in progress to study the potential treatment
efficacies of the novel HN-N07 small molecule.
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