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Abstract: Metabolic-associated fatty liver disease (MAFLD) and diabetic kidney disease (DKD) share
various pathophysiological factors, and epidemiological evidence suggests that these two diseases
are associated. Albuminuria and the estimated glomerular filtration rate, which are conventional
biomarkers of DKD, are reportedly associated with the risk or severity of MAFLD. Recently, novel
DKD biomarkers reflecting renal tubular injury have been introduced to complement conventional
DKD markers. In this article, we looked at previous studies that showed an association between
MAFLD and DKD, and also reviewed the significance of DKD biomarkers as predictive risk factors
for MAFLD.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is a liver condition that ranges from steatosis
to steatohepatitis or fibrosis in the absence of excessive alcohol consumption [1]. The global
prevalence of this disease is approximately 30% and increasing [2], and it is currently the
most common chronic liver disease worldwide. In patients with type 2 diabetes (T2D), the
prevalence of NAFLD is higher than that in the general population and is estimated to be
50–75% [3,4]. Recently, metabolic-associated fatty liver disease (MAFLD) was suggested to
more accurately reflect the pathogenesis of chronic liver disease [5].

Chronic kidney disease (CKD) is defined as a sustained reduction in the estimated
glomerular filtration rate (eGFR) or evidence of structural or functional abnormalities in the
kidney [6]. It is characterized by proteinuria, low eGFR, or both, and its global prevalence
is estimated to be >10%, making it one of the leading causes of mortality worldwide [7,8].
Diabetic kidney disease (DKD) is the leading cause of CKD and develops in approximately
40% of patients with T2D [9].

The liver and kidneys are critical for maintaining homeostasis. Because they are
affected by systemic changes and have significant effects on other organs, it can be expected
that they can influence each other. MAFLD and DKD share many metabolic risk factors and
pro-inflammatory pathways [10]. Recently, several studies have reported the association
between MAFLD and CKD or DKD [11–17].

In this article, we review the results of previous studies on the association between
MAFLD and DKD, the possible mechanisms linking these diseases, and the association
between the biomarkers of DKD and MAFLD.
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2. Overlap between MAFLD and DKD
2.1. Epidemiologic Perspective

As the prevalence of MAFLD and CKD increases, interest in and research on these
diseases with increased prevalence has also increased. Accordingly, studies investigating
the association between MAFLD and CKD have been actively conducted. Among them,
the majority of studies have investigated whether MAFLD affects the occurrence of CKD.
In 2014, a meta-analysis of 20 studies (11 cross-sectional and 9 longitudinal) reported
that the presence and severity of MAFLD were associated with the risk and severity of
CKD [11]. Several years later, a meta-analysis that included nine longitudinal studies
reported that MAFLD was associated with an approximately 40% increase in the risk of
incident CKD [12]. These analyses defined CKD as an eGFR < 60 mL/min/1.73 m2 and/or
proteinuria regardless of a cause such as DKD.

To date, no meta-analysis has reported the association between MAFLD and DKD,
which is the leading cause of CKD. Several longitudinal studies have been conducted on
this topic. In 2008, Italian researchers reported a higher prevalence of DKD in T2D patients
with MAFLD in a large cohort study using a cross-sectional design [13]. Shortly thereafter,
they published a longitudinal analysis following up 1760 patients with T2D and normal or
near-normal kidney function and without overt proteinuria to find the occurrence of DKD,
defined as overt proteinuria and/or eGFR < 60 mL/min/1.73 m2 for 6.5 years [14]. As
a result, MAFLD, diagnosed by liver ultrasound, was associated with an increased incidence
of DKD (hazard ratio (HR) 1.69; 95% confidence interval (CI) 1.3 to 2.6; p < 0.001). Consistent
results have also been reported in another study that recruited an Asian population [15]. In
that study, the cumulative incidence of DKD was higher in patients with T2D and MAFLD,
and the liver fat content showed a positive relationship with albuminuria and a negative
relationship with eGFR. In 2022, Korean researchers demonstrated the relationship between
liver fibrosis and DKD [16]. Initially, they failed to show the differential risk of incident
DKD between the MAFLD and non-MAFLD groups; however, among the T2D patients
with MAFLD, advanced liver fibrosis was significantly associated with DKD (HR 1.75;
95% CI 1.15 to 2.66; p = 0.009). Similar results were reported by Chinese researchers [17].
They showed an association between liver fibrosis and DKD incidence and progression
in older patients with T2D through both cross-sectional and longitudinal designs. In the
case of type 1 diabetes (T1D), another study reported an association between MAFLD and
DKD [18]. The result was similar to that of patients with T2D (HR 2.85; 95% CI 1.59 to
5.10; p < 0.001). In addition to the studies mentioned above, several longitudinal and cross-
sectional studies have reported a significant association between MAFLD and DKD [19–23].
Table 1 summarizes the previous studies that have investigated the association between
MAFLD and DKD.

Table 1. Previous studies reporting the association between DKD biomarkers and MAFLD.

Design Patients Independent
Variable

Dependent
Variable Main Finding

Cross-sectional [13] 2103 T2D patients MAFLD by ultrasound
UACR > 30 mg/g and/or

eGFR< 60 mL/min/1.73 m2 OR 1.87; 95% CI 1.3 to 4.1

Cohort [14] 1760 T2D patients MAFLD by ultrasound
UACR > 30 mg/g and/or

eGFR< 60 mL/min/1.73 m2 HR 1.69; 95% CI 1.3 to 2.6

Cohort [15] 169 T2D matched
pairs

MAFLD severity by
ultrasound

Incidence of albuminuria
(24-h urine albumin > 30 mg)

Increased more in the severe
MAFLD group

Change in eGFR Decreased more in the severe
MAFLD group

Cohort [16] 1729 patients with
T2D and MAFLD FIB-4 index ≥ 2.67 eGFR< 60 mL/min/1.73 m2 HR 1.75; 95% CI 1.15 to 2.66

Cohort [17] 1734 T2D patients
FIB-4 index 1.30–3.25

eGFR< 60 mL/min/1.73 m2 HR 1.27; 95% CI 1.06 to 1.51

FIB-4 index > 3.25 HR 2.52 95% CI 1.97 to 3.21



Biomedicines 2023, 11, 1928 3 of 13

Table 1. Cont.

Design Patients Independent
Variable

Dependent
Variable Main Finding

Cross-sectional [17] 3445 T2D patients
FIB-4 index 1.30–3.25

eGFR< 60 mL/min/1.73 m2 OR 1.52; 95% CI 1.12 to 2.07

FIB-4 index > 3.25 OR 3.62; 95% CI 2.26 to 5.80

Cohort [22] 3627 T2D patients MAFLD by ultrasound
eGFR< 60 mL/min/1.73 m2

or
≥2 proteinuria by dipstick

HR 1·30; 95% CI 1·11 to 1·53

Cohort [23] 2057 T2D patients
Liver steatosis (HSI, ZJU) Albuminuria progression * HR 1.02; 95% CI 1.00 to 1.03

Liver fibrosis (BARD) ≥40% eGFR decline HR 1.12; 95% CI 1.01 to 1.24

Cross-sectional [24] 1763 T2D patients Liver fibrosis by transient
elastography

Incidence of albuminuria
(UACR ≥ 3.5 mg/mmol in

women and ≥ 2.5 mg/mmol
in men)

OR 1.52; 95% CI 1.02 to 2.28

Cross-sectional [25] 2770 T2D patients Fatty liver index (FLI)
UACR > 30 mg/g OR 3.49; 95% CI 2.05 to 5.94

eGFR < 60 mL/min/1.73 m2 OR 1.77; 95% CI 1.15 to 2.72

Cross-sectional [26] 100 T2D patients UACR ≥ 30 mg/g MAFLD by transient
elastography OR 1.88; 95% CI 1.31 to 2.71

Cross-sectional [21] 1168 T2D patients UACR ≥ 300 mg/g MAFLD by ultrasound OR 2.34; 95% CI 1.20 to 4.56 (vs.
UACR < 30 mg/g)

Cross-sectional [27] 2689 T2D patients eGFR Hepatic fibrosis by NFS
(>0.676) OR 0.26; 95% CI 0.09 to 0.74

Cross-sectional [28] 1108 T2D patients
UACR ≥ 30 mg/g Hepatic steatosis by NLFS OR 1.56; 95% CI 1.01 to 2.40

UPCR ≥ 150 mg/g Hepatic fibrosis by NFS OR 1.55; 95% CI 1.03 to 2.33

Cross-sectional [29] 300 T2D patients Urinary NAG Hepatic fibrosis by transient
elastography

F2: OR 1.99; 95% CI 1.04 to 3.82

F3,4: OR 2.4; 95% CI 1.52 to 3.80

* Defined as an increase in the albuminuria stage from normoalbuminuria to microalbuminuria or from microal-
buminuria to macroalbuminuria. Abbreviations: T2D, type 2 diabetes; MAFLD, metabolic-associated fatty liver
disease; UACR, urine albumin-to-creatinine ratio; eGFR, estimated glomerular filtration rate; OR, odds ratio;
CI, confidence interval; HR, hazard ratio; FIB-4, fibrosis-4 index; HSI, hepatic steatosis index; ZJU, Zhejiang
University index; NLFS, NAFLD liver fat score; NFS, NAFLD fibrosis score; UPCR, urine protein-to-creatinine
ratio; NAG, N-acetyl-beta-D-glucosaminidase.

Although considerable evidence has been accumulated, a clear causal relationship
between MAFLD and DKD has not yet been identified. Most previous studies adjusted
for important risk factors, such as age, sex, body mass index (BMI), glycated hemoglobin
(HbA1c), and comorbidities; however, it might be insufficient to adjust for factors shared by
MAFLD and DKD, including insulin resistance and abdominal obesity. In addition, studies
on the histological findings of MAFLD and DKD are scarce. Studies on changes in DKD
according to the progression or improvement of MAFLD, and vice versa, are also lacking.
Large-scale studies that address these limitations are required to clarify the association
between MAFLD and DKD.

2.2. Pathophysiological Mechanisms Linking MAFLD and DKD

Based on the epidemiological evidence described above, MAFLD and DKD are con-
sidered to be closely related. Although the precise mechanisms linking MAFLD and DKD
are not fully understood, several potential factors and mechanisms may link them.

First, as can be inferred from the names, MAFLD and DKD share broad areas of
metabolic dysfunction, such as obesity, insulin resistance, hypertension, dyslipidemia, and
diabetes [30]. Insulin resistance is one of the most important pathogenic mechanisms under-
lying MAFLD and T2D. Insulin resistance, which is also widely known as a fundamental
pathological factor in metabolic syndrome, increases lipolysis in adipose tissue, thereby
increasing the plasma concentration of free fatty acids [31–33]. This induces an excessive
accumulation of hepatic triglycerides, resulting in the development and progression of
MAFLD. Insulin resistance also results in compensatory hyperinsulinemia, which increases
hepatic fatty acid uptake and inhibits β-oxidation, thereby leading to de novo lipogenesis
and aggravation of MAFLD. Lipid overload in the liver contributes to the formation of
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lipotoxic lipids, which leads to the activation of inflammatory responses, mitochondrial
dysfunction, and oxidative stress [33]. Progression to hepatic inflammation, that is, the
metabolic-associated steatohepatitis state, is not limited to the inflammatory response in the
liver but also increases systemic inflammatory responses [34]. Delivery of pro-inflammatory
mediators to the kidneys via systemic circulation may act as initiating or aggravating factors
for kidney diseases. Inflammatory processes play an important role in the initiation and
development of DKD [35,36]. In addition, an increase in oxidative stress leads to a reduction
in the level of antioxidant factors in the kidney, such as the Klotho protein [37]. Similar to
the other mechanisms discussed below, insulin resistance, MAFLD, and DKD interact with
each other, making it difficult to determine the precedence relationship. Insulin resistance is
an important pathogenic mechanism of MAFLD that can affect the kidney through various
pathways, such as systemic inflammation and oxidative stress. On the other hand, insulin
resistance can directly affect kidneys via its pro-inflammatory features and hemodynamic
alteration, and vice versa; insulin resistance is known to be a common and very early
alteration in CKD, which includes the concept of DKD [38].

Second, expansion and inflammation of the adipose tissue is another common metabolic
dysfunction shared by MAFLD and DKD [10]. This encompasses unhealthy diet, obesity,
and insulin resistance. Expanded or inflamed adipose tissue releases large amounts of
fatty acids into the systemic circulation [10,39,40], which are transported to the liver and
cause MAFLD. Inflamed adipose tissue also secretes various pro-inflammatory cytokines
such as tumor necrosis factor-α, interleukin-6, resistin, and monocyte chemoattractant
protein-1 and increases oxidative stress. MAFLD and systemic inflammation affect the
kidneys. Furthermore, renal fat accumulation increases in obese individuals, which may
result in local adverse reactions [41,42]. Adiponectin is a representative adipokine that is
dysregulated [10,43]. The mechanisms by which adiponectin improves insulin resistance
and inhibits reactive oxygen species (ROS) through adenosine monophosphate-activated
protein kinase activation have a protective effect against MAFLD and podocyte injury [44].
In contrast, fetuin-A, a hepatokine, induces insulin resistance and suppresses adiponectin
production in the adipose tissue [45,46]. The interplay between pro-insulin-resistant fetuin-
A and pro-insulin-sensitive adiponectin is considered a common pathogenic mechanism in
MAFLD and DKD [10,43,44,47]. Recently, perturbation of the gut microbiota has emerged
as a common pathophysiology in MAFLD and DKD [10,30,43,48,49]. Genetic, environmen-
tal, and nutritional factors can influence the composition of gut bacteria [50]. In particular,
an unhealthy diet adversely alters the intestinal flora. This change, the so-called intestinal
dysbiosis, causes the production of gut-derived toxins and promotes their absorption by
damaging the intestinal barrier integrity [43]. Increased absorption and accumulation of
toxins lead to systemic inflammation, ectopic fat deposition, and insulin resistance. Renal
excretion of the toxins and their metabolites can also damage the kidneys [30].

Hyperglycemia can adversely affect both the liver and kidneys in patients with T2D.
High concentrations of glucose in the plasma are delivered to the liver and used for de novo
lipogenesis [51]. Hyperglycemia induces glomerular hyperfiltration, which initiates and
propagates kidney damage in T2D [9,36]. Alteration of glucose metabolism in the kidney
also promotes inflammatory responses and fibrotic changes, wherein advanced glycation
end products and ROS are the major mediators [36]. Furthermore, in T2D, tubular glucose
reabsorption and renal gluconeogenesis are usually increased [52,53]. These changes
demand an increased consumption of oxygen, leading to proximal tubule damage, which
increases vulnerability to hypoxia [54–57].

Activation of the renin-angiotensin system (RAS), particularly angiotensin II produc-
tion, plays an important role in the pathogenesis of MAFLD and CKD [43,58]. In the
liver, RAS activation promotes de novo lipogenesis, insulin resistance, and production of
pro-inflammatory cytokines [59,60], thereby leading to the development of MAFLD. In the
kidney, RAS activation induces renal fat accumulation, inflammatory processes, and vessel
constriction, which cause and worsen CKD or DKD [60,61]. In contrast, the progression of
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DKD also activates RAS; decreased renal blood flow and glomerular filtration rate in the
progressive stage of DKD promote renin secretion, thereby activating RAS [62].

Finally, MAFLD and DKD share genetic susceptibilities [30,49]. A representative exam-
ple is the genetic polymorphism in PNPLA3 [63], which encodes patatin-like phospholipase
domain-containing protein 3 (PNPLA3) and is known to have lipase activity [64]. The
PNPLA3 gene is expressed in the liver and kidneys. PNPLA3 rs 738,409 polymorphism
has been associated with poor renal outcomes and MAFLD severity [63,65–67]. Other
genetic abnormalities, such as transmembrane 6 superfamily member 2 (TM6SF2) and
glucokinase regulator (GCKR) polymorphisms, have also been reported to be associated
with the risk of both MAFLD and CKD [65,68–70]. A schematic diagram summarizing the
pathophysiological mechanisms linking MAFLD and DKD is shown in Figure 1.
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3. Biomarkers of DKD and MAFLD

As described in the Section 1, DKD is the leading cause of CKD and one of the most
important microvascular complications of T2D [71]. In patients with diabetes, screening for
DKD is based on albuminuria and eGFR [72]. Therefore, albuminuria and the eGFR are the
representative biomarkers of DKD. We review the association between these conventional
DKD biomarkers and MAFLD and then describe the association between tubular markers,
introduced as complementary biomarkers for DKD and MAFLD.

3.1. Conventional Glomerular Biomarkers: Albuminuria and eGFR

Albuminuria is usually assessed by the random spot urinary albumin-to-creatinine
ratio (UACR) [72]. Albuminuria within the normal range is defined as a UACR < 30 mg/g.
Diabetic patients with UACR ≥ 30 mg/g in two of three samples collected within 6 months
are considered to have DKD. In patients with DKD, most urinary albumin is excreted
through the trans glomerular passage [73]. The major mechanism of albuminuria is the
impairment of selective permeability of the glomerulus due to glomerular endothelial
dysfunction [74]. Therefore, albuminuria primarily reflects glomerular damage.
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eGFR is calculated by validated formulas, using serum creatinine, and other variables
such as age, sex, and race [75]. The Chronic Kidney Disease Epidemiology Collaboration
(CKD-EPI) equation is currently the preferred formulation. In the patient’s laboratory
reports, eGFR is usually reported along with the creatinine level, and when it is persistently
reduced to <60 mL/min/1.73 m2, it is generally interpreted as progressing to a significantly
pathological stage [72]. Based on the generally accepted natural course of DKD [76], eGFR
decline is believed to occur later than albuminuria.

Considering the guidelines for DKD screening, researchers usually defined DKD as
a UACR ≥ 30 mg/g and/or eGFR < 60 mL/min/1.73 m2 when they studied the association
between DKD and MAFLD, but some studies included total proteinuria or changes in
UACR and/or eGFR as variables. In the two meta-analyses introduced in Section 2.1 that
showed an association between MAFLD and CKD, CKD was defined as the status covering
persistent eGFR < 60 mL/min/1.73 m2, albuminuria, and proteinuria on morning urine
dipstick. As described in the previous section, no meta-analyses have investigated the
association between MAFLD and DKD. However, in 2018, a meta-analysis that summarized
the data and estimated the risk of albuminuria among patients with NAFLD showed the
results of a subgroup analysis including only patients with diabetes [77]. The subgroup
analysis demonstrated no significant association between albuminuria and NAFLD among
patients with diabetes [pooled odds ratio (OR) 1.28; 95% CI 0.94 to 1.75], but a significantly
increased risk of albuminuria among patients with NAFLD without diabetes (pooled OR
2.25, 95% CI 1.65 to 3.06). However, since then, several studies analyzing a large number
of patients with longitudinal or cross-sectional designs have been conducted [16,17,21,25],
and most of them have reported a significant association between MAFLD and DKD.

Most of the studies that investigated the association between MAFLD and DKD were
designed to evaluate whether MAFLD increased the risk of DKD; the independent variable
was MAFLD, assessed by ultrasound, noninvasive indices, or transient elastography (TE),
whereas the dependent variable was DKD assessed by albuminuria, proteinuria, or eGFR
(Table 1). Studies on whether DKD affected the occurrence or severity of MAFLD and
whether DKD biomarkers were related to MAFLD are limited. Several cross-sectional
studies have reported that DKD biomarkers can predict the prevalence and severity of
MAFLD [21,26–28].

In 2020, Chinese researchers conducted a study that recruited 2689 patients with
MAFLD and T2D and explored whether a lower eGFR was associated with an increased
probability of liver fibrosis [27]. During the inclusion process, MAFLD was determined
using ultrasonography. The NAFLD fibrosis score (NFS) was used to evaluate the risk of
liver fibrosis. In that study, a negative correlation was found between eGFR and NFS, and
the prevalence of liver fibrosis was increased as eGFR quartiles decreased, after adjustment
for conventional risk factors (Q4: reference; Q3: OR 1.49; 95% CI 0.82 to 2.71; Q2: OR 1.88;
95% CI 0.97 to 3.67; Q1: OR 2.70; 95% CI 1.36 to 5.37; p for trend = 0.002). In the same year,
Korean researchers reported an association between albuminuria and MAFLD indices [28].
In that study that enrolled 1108 patients with T2D, the UACR was positively correlated with
the NAFLD liver fat score (NLFS), fibrosis-4 index (FIB-4), and NFS. In the logistic regression
analysis, albuminuria, defined as a UACR ≥ 30 mg/g, was significantly associated with
hepatic steatosis according to NLFS and fibrosis according to NFS, after adjustment for age,
sex, and BMI. After further adjustment for HbA1c, homeostasis model assessment of insulin
resistance (HOMA-IR), and T2D duration, the association between albuminuria and NLFS
remained statistically significant. This study was strengthened by a study published the
following year that used TE as an investigative tool for MAFLD; albuminuria was associated
with significant steatosis, defined as a controlled attenuation parameter > 302 db/m [26]. In
2022, another research group reported that when patients with T2D were divided into three
groups based on a UACR of 30 mg/g and 300 mg/g, the prevalence of MAFLD diagnosed
by ultrasound was higher in the group with more severe albuminuria [21].

As described thus far, MAFLD can be correlated with conventional DKD biomarkers,
albuminuria, and eGFR. In addition, several cross-sectional studies have reported that
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conventional DKD biomarkers can predict the risk of MAFLD. As reviewed in Section 2.2,
DKD status can affect the liver. Furthermore, albuminuria is closely related to insulin resis-
tance [78,79] and a decreased eGFR generally reflects a later stage of DKD than albuminuria.
Considering these points, these results are convincing. Large-scale longitudinal studies are
required to clarify the association between conventional DKD biomarkers and MAFLD.

3.2. Biomarkers for Renal Tubular Injury

Various factors, such as insulin resistance, hyperglycemia, oxidative stress, and inflam-
matory processes, play complex roles in the pathogenesis of DKD (Figure 1). Structural
changes caused by DKD can also manifest as various alterations in the kidneys, including
thickening of the glomerular basement membrane (GBM), mesangial expansion, glomeru-
losclerosis, and tubular fibrosis or atrophy, etc. [9,80–82]. Conventionally, investigations
into DKD have focused on glomerular alterations; thickening of the GBM is known to be
the earliest structural change in DKD [80], and albuminuria, the most commonly used
early DKD biomarker, mainly reflects glomerular damage. However, cases of DKD without
significant glomerular alterations have been reported [83,84]; a considerable number of
patients with diabetes develop renal impairment without preceding albuminuria.

To overcome this limitation, alterations in renal tubules have gained attention as
another important aspect of DKD. Several studies have shown the potential for preced-
ing tubulopathy to cause glomerulopathy in diabetes [85,86], suggesting that detecting
tubular damage may potentially be an earlier indicator of DKD compared to identifying
glomerular damage through albuminuria assessment in certain groups of patients with
T2D. As described in Section 2.2, hypoxic damage to the proximal tubules can be induced
in T2D [52–56]. RAS activation causes tubular and glomerular damage [87]. Furthermore,
under diabetic conditions, the activities of growth factors, such as transforming growth
factor-β, epidermal growth factor, and insulin-like growth factor-1 in renal tubules are
increased [82,88], and tubular inflammation and tubulointerstitial fibrosis are induced.

Based on these mechanistic bases and clinical necessity, several biomarkers for tubular
injuries, such as N-acetyl-beta-D-glycosaminidase (NAG), neutrophil gelatinase-associated
lipocalin (NGAL), liver-type fatty acid-binding protein (L-FABP), and kidney injury molecule-
1 (KIM-1) have been introduced as complementary biomarkers for DKD [57]. NAG is
a lysosomal enzyme found in the proximal tubule epithelial cells, and urinary NAG is
highly sensitive to tubular injury [85,86]. NAG not only reflects DKD status [85,86,89] but
is also closely related to various glycemic parameters [90,91]. NGAL is a small protein
released from neutrophils and epithelial cells in the renal tubules, lungs, prostate, and
digestive tract [92,93]. Owing to its small size, most of the NGAL is filtered through the
glomerulus and reabsorbed in the renal tubule [94]. Therefore, in tubular injury, urinary
NGAL levels increase. Similar to NAG, urinary NGAL levels are associated with DKD and
glycemic control [85,95]. Blood NGAL levels have also been associated with DKD [93,96].
L-FABP is another small protein that is expressed in the proximal tubules and liver [92].
It reflects tubular stress or hypoxia [97] and has been reported to be associated with early
stage DKD and its progression [98–101]. KIM-1 is a transmembrane glycoprotein that is
expressed when the proximal tubule is damaged or dedifferentiated after an injury [102].
Its presence in the urine has been reported to be specific for renal tubular damage [102,103],
and the association between DKD and urinary KIM-1 has also been reported in several
previous studies [95,104]. In addition to these biomarkers, other tubular markers, including
retinol-binding protein, alpha-1 microglobulin, and beta-2 microglobulin, have also been
reported, and their association with DKD has been presented [57,92]. Because it is difficult
to measure each biomarker individually, and no tubular marker has been recognized as
a standard biomarker for DKD screening, non-albumin proteinuria (NAP), which can
be calculated by subtracting urinary albumin from total protein, has been introduced
as an accessible tubular marker that includes a wide range of biomarkers for tubular
injury [57]. To summarize the clinical relevance of renal tubular biomarkers, no biomarker
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of choice represents the standard for detecting renal tubular injuries, such as albuminuria
and e-GFR, for detecting glomerular injury and function, respectively.

These tubular markers have received attention relatively recently. Therefore, studies
investigating the association between these markers and MAFLD are limited. In the
study that showed the association between albuminuria and hepatic steatosis which was
introduced in Section 3.1 [28], the researchers also investigated the association between
total proteinuria and MAFLD indices. In that study, proteinuria, including urinary albumin
and non-albumin proteins, which reflect both glomerular and tubular injury, was defined
as spot urinary protein-to-creatinine ratio (UPCR) ≥ 150 mg/g. Proteinuria was associated
with liver fibrosis according to the NFS and remained statistically significant even in the
final model adjusted for age, sex, BMI, HbA1c, HOMA-IR, duration of T2D, hypertension,
alanine aminotransferase level, and total cholesterol level. It can be interpreted that total
proteinuria is associated with liver fibrosis, whereas albuminuria is associated with hepatic
steatosis. In that study, patients with T2D were divided into three groups based on the
UACR and UPCR: non-proteinuria, isolated NAP, and albuminuria groups. Interestingly,
patients with isolated NAP showed a significantly increased NFS, comparable to that of
the albuminuria group, whereas there was no difference in NLFS. A similar trend was
reported in a study using urinary NAG as a biomarker [29]. In patients with T2D, NAG was
associated with greater OR for the risk of higher liver fibrosis stage, assessed by TE (F0,1:
reference; F2: OR 1.99; 95% CI 1.04 to 3.82; F3,4: OR 2.40; 95% CI 1.52 to 3.80), whereas
there was no significant association with the risk of steatosis stage. Taken together, these
results suggest that biomarkers of tubular injury may show significant associations with
MAFLD, particularly with liver fibrosis.

To date, no studies have used other tubular markers as DKD biomarkers to investigate
their association with MAFLD. Because the tubular injury is an important phenotype of
DKD and is thought to affect the liver, further studies on the association between these
tubular markers and MAFLD are warranted. NGAL and L-FABP have been reported to
be related to types of liver injury or liver diseases other than MAFLD [105–108]. These
markers are likely to be associated with MAFLD.

In addition to the tubular markers, other classes of novel DKD biomarkers might be
associated with MAFLD. A representative candidate is the serum cystatin-C. Cystatin-C
is a low-molecular-weight protein which is filtered freely by the glomerulus [109]. It is
known to be less influenced by age, sex, and muscle mass and is more sensitive to renal
dysfunction compared to the serum creatinine [109,110]. Serum cystatin-C has also been
recognized as an early marker of DKD through considerable studies [111,112]. However,
no study has yet reported an association between cystatin-C and MAFLD in patients with
diabetes. It is believed that studies on these novel biomarkers will be needed in the future.

4. Conclusions

MALFD and DKD share several epidemiologic and pathophysiologic factors and are
associated with each other. Accumulating evidence suggests that DKD biomarkers are
associated with MAFLD and can predict its occurrence or severity. Because MAFLD is
reversible in the early stages, clinicians should check for the presence or severity of MAFLD
when treating diabetic patients with DKD. Further studies on the association between novel
markers such as tubular markers and MAFLD are required to overcome the limitations of
conventional DKD markers.
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