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Abstract: Monkeypox virus has remained the most virulent poxvirus since the elimination of smallpox
approximately 41 years ago, with distribution mostly in Central and West Africa. Monkeypox (Mpox)
in humans is a zoonotically transferred disease that results in a smallpox-like disease. It was first
diagnosed in 1970 in the Democratic Republic of the Congo (DRC), and the disease has spread over
West and Central Africa. The purpose of this review was to give an up-to-date, thorough, and timely
overview on the genomic diversity and evolution of a re-emerging infectious disease. The genetic
profile of Mpox may also be helpful in targeting new therapeutic options based on genes, mutations,
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and phylogeny. Mpox has become a major threat to global health security, necessitating a quick
response by virologists, veterinarians, public health professionals, doctors, and researchers to create
high-efficiency diagnostic tests, vaccinations, antivirals, and other infection control techniques. The
emergence of epidemics outside of Africa emphasizes the disease’s global significance. Increased
monitoring and identification of Mpox cases are critical tools for obtaining a better knowledge of the
ever-changing epidemiology of this disease.

Keywords: monkeypox; genome; mutations; molecular; treatment

1. Introduction

Monkeypox (Mpox) is a viral zoonotic disease, transferred to humans from animals,
but once it is transmitted to humans, human-to-human transfer is also possible [1,2]. The
symptoms of Mpox are quite similar to those that were observed in the past in individuals
who were suffering from smallpox, despite the fact that Mpox is clinically less severe. It is
brought about by the monkeypox virus (MPXV), which is classified as an orthopoxvirus
(OPVX) and is a member of the Poxviridae family of viruses [3]. Poxviridae family and
OPVX genus viruses consist of various viruses known to infect humans, including mon-
keypox virus (MPXV), vaccinia virus (VACV), cowpox virus (CPXV), and variola virus
(VARV) [4,5]. Genes involved in the determination of host range and pathogenicity can
be found at the virus’s changeable terminal ends, but the genomes of these viruses have
highly conserved middle sections that code for replication and assembly machinery [6,7].

The Congo Basin clade (Central African) (clade I) and West African clade (clade IIa and
IIb) are the subtypes of the MPXV [8]. These subtypes were found in Africa. The virus that
causes Mpox was first identified during 1958 in the animals (monkeys) in a research laboratory
in Denmark [9]. In 1970, the first human case was found in the Democratic Republic of the
Congo (DRC), as described by Ladnyj et al. [10], which was discovered in a child. This virus
(MPXV) can be transferred from one person to another by lesions, respiratory droplets, body
fluids, and contaminated things such as bedding that come into intimate contact with the
infected person [11]. In most cases, the incubation period for Mpox lasts 6–13 days, but this
time frame can last anywhere in the range of 5–21 days [12–14].

Since the reporting of the first case, this disease has grown endemic in the DRC, and
it is now prevalent in other African countries, mostly those located in Central and West
Africa [15,16]. The first Mpox case outside African territory was reported in 2003, and 2019
was the year that had the most simultaneous instances [8,17].

Mpox developed capabilities with catastrophic implications due to its high adaptability
to humans [18]. The possibility of new reservoirs of Mpox being established in regions
other than Africa is a cause for concern regarding the importation of MPXV by infected
vertebrates. In point of fact, it has been discovered that ground squirrels in the United
States are vulnerable to infection, which suggests that other rodent species all over the
world might also be vulnerable [19,20]. Even minute genetic shifts could make it easier for
a disease to adapt to humans as hosts. The likelihood of this happening is always good
for the kind of pathogens that have an average rate of transmission [21–23]. The capacity
to spread quickly and effectively from human to human could facilitate the expansion of
the disease’s presence in human populations into previously unexplored areas. As a result,
active disease surveillance needs to be maintained so that MPXV may be monitored for
changes that are compatible with its increased adaption to humans [24,25]. Discovering
the true geographic spread of this virus requires continued intensive surveillance in the
Sankuru District, as well as expansion of that surveillance to all other places where the virus
is known to circulate or where it is anticipated to circulate [26]. In light of the apparent
rapid evolution of this virus, health authorities in areas that are not yet afflicted by it must
be on red alert and actively ready to take immediate action in the event that suspected or
confirmed instances of the disease are found in humans [27,28] (Figure 1).
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Figure 1. Multiorgan system involvement of MPXV.

The definition of cases is not per any specific standard in all given sources. The
suspected cases are those cases in which a sudden high-grade fever leads to vesicular
pustule eruption abundantly present on the face, hands, palms, feet, and soles or mini-
mum five smallpox scabs [29,30]. A clinical sign differentiating Mpox from smallpox is
lymphadenopathy. On the other hand, the new Mpox outbreak clinical presentation has
been atypical as compared to previously documented reports in Mpox endemic areas of
Africa. Anal pain and bleeding, genital or only perineal/perianal lesion, and absence of
prodromal period or constitutional symptoms appearing after the lesion are features of
the new Mpox outbreak. Probable cases are those cases that are identified based on epi-
demiological character and are usually without laboratory confirmation [31]. The possible
cases are noted usually with vascular rash and fever history [32]. Finally, the confirmed
cases are any cases with laboratory results confirmation, most likely by PCR or antibody
testing [33,34] (Figure 2).

Genetic Variability

While OPVXs are genetically and antigenically identical, they have varied host range
and pathogenicity features. An OPVX’s evolutionary trajectory can be influenced by a
host species’ selective pressure [35,36]. Virus evolution may have been sped up by the loss
of genes, particularly near the ends of genomes, as has been hypothesized. The largest
sequenced OPVX genome (220 kb) has 223 open reading frames (ORFs) and prevalent
hosts, including rodents, people, cats, dogs, and voles [16]. Cowpox virus only causes mild
infection in humans. Conversely, VARV, the smallpox causative agent, is extremely deadly,
with a more than 30% fatality rate. It has the smallest genome of any naturally existing
OPVX [37].
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The DNA genome of MPXV is approximately 197 kilobases long and contains around
190 ORFs that are longer than 180 nucleotides. The coding region sequence at MPXV
nucleotide locations 56,000–120,000 is extremely conserved, just like it is in all OPVXs [20].
The majority of VACV gene homologs discovered in the distal end of the MPXV genomes are
involved in immune modulation, and the majority of these homologs are either anticipated
to influence host range determination and pathogenicity or confirmed to have such an
influence. In contrast to VARV, which does not possess any ORF in the inverted terminal
repeats (ITRs) area, MPXV possesses at least four ORF in the ITRs region [38].

Overall, a polymorphism was found in the ITR region across the MPXV alignments.
This polymorphism contained 12 different variants [9]. In total, 4 of the full genome
sequences, which accounted for 17.4% of the total, displayed significant instability of the
genome just before ITR upstream. Positions 189,820 and 190,444 in this specific batch of
data experienced a loss of 625 base pairs. Both MPV-Z-N2R and the first 103 base pairs of
the MPV-Z-N3R OPVX class I major histocompatibility complex-like protein have been
completely deleted as a result of this deletion. The function of the MPV-Z-N2R protein is
unknown, and neither the VARV nor the West African MPXV genomes include a gene that
is related to it. An example of a secreted protein is the OXPV MHC Class I-like Protein
(OMCP), which binds to natural killer group 2, member D (NKG2D), and stops natural
killer cells from killing cells via NKG2D’s mediating action. We were able to discover
this loss in six more genomes by using a standard PCR that we developed to analyze
the deletion. There was no indication of a homogenous population in either the data of
sequences for the isolates that may have had a deletion or in the electrophoresis of the
Amplicon Sanger sequencing product for the sample that was put through its paces [39].

Although models of host transition might anticipate genomic changes, the association
between secondary transmission and gene loss pattern might imply that MPXV is adjusting
for effective replication in an unique ecological niche represented by humans [14,40]. It
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is also possible that the association between OMCP transmissibility and gene loss is co-
incidental. This is due to the fact that numerous other factors, such as vaccination status
and human incursion into reservoir habitat types, could also clarify growing human spread
and variant introduction frequency. Vaccination status and land encroachment of humans
on reservoir habitats are examples of such factors [41]. We are unable to pin-point the exact
source of the assessed variability due to the lack of information regarding the historical
emergence of OPVXs and the absence of sequencing data for MPXV reservoir isolates.
In any case, it was predicted that the four lineages are active in the population of the
reservoir and later on intrude into the human population after direct contact with those
host reservoirs [37] (Figure 3).
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are responsible for immune evasion mechanisms of Mpox infection.

2. Geographical Range and Progressive Epidemiology of MPXV

The MPXV has traditionally been found in the tropical central and Western African
rainforests of countries, most notably the DRC; however, there is a possibility that the virus’
distribution is spreading [42,43]. Since 2017, there has been a large outbreak of Mpox in
Nigeria, linked with cases in 2018–2019 outside endemic areas of Africa and probably with
the new outbreak starting in May 2022 [44]. The MPXV entered the United States in 2003,
and it was associated with a shipment of approximately 800 small mammals from Ghana
that contained 762 African rodents, including squirrels, rats, dormice, and porcupines [45].
In 2005, an epidemic of the disease was detected in Sudan [46]. The reservoirs of the
MPXV in the wild are most likely African squirrel types (Funisciurus and Heliosciurus sp.),
other rodents, and possibly monkeys. The CPVX is endemic throughout Europe and a few
western states in the countries that were a part of the former Soviet Union. The virus has a
very diversified genetic makeup [44,47]. It has been suggested that rodents, including voles,
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wood mice, and rats, serve as reservoirs for the cowpox virus, while cattle, zoo animals,
and domestic cats serve as incidental hosts [48,49] (Table 1).

Table 1. The diagnostic techniques for MPXV among its natural hosts.

Animals Infected by Mpox Geographical Location Detection Technique References

Gambian pouched rats African territory Viral isolation and PCR [50]

Monkeys (Sooty mangabey) Côte d’Ivoire Molecular-testing PCR [51]

Macaques (Cynomolgus) Singapore/Copenhagen Isolation of virus [52]

Macaques (Rhesus) Copenhagen Antibody testing [53]

Opossums South America Viral isolation and PCR [54]

Monkeys (Asian) Copenhagen Isolation of virus [55]

Hedgehogs (African) Africa Viral isolation, PCR, and antibody detection [55]

Sun squirrels Zaire Detection of antibody

[56]
Woodchucks USA Viral isolation and PCR

Jerboas Illinois, USA Viral isolation, PCR, and antibody detection

Shot-tailed opossums USA Viral isolation, PCR, and antibody detection

Giant anteaters (Myrmecophaga
tridactyla) Rotterdam Isolation of virus

[57]

Porcupines (Atherurus africanus) Zaire Viral isolation and PCR

Elephant shrews DRC Serological test

Prairie dogs USA Viral isolation and PCR

Rope squirrels Zaire Viral isolation and PCR

Domestic pigs DRC Serological test

Dormice (African) USA Viral isolation and PCR

Since the 1970s, the number of reported cases of human Mpox has been steadily
climbing, with the DRC showing the most significant increase [58,59]. The median age of
presentation is currently 21 years, which is a significant increase from the 1970s, when it
was just 4 [60]. In a previous study, there was a significant difference in the case fatality
rate between clades, with Central African cases having a rate of 10.6% (95%, CI: 8.4–13.3%)
and West African cases having a rate of 3.6% [61]. The overall case fatality rate was 8.7%.
Since 2003, sporadic outbreaks have been caused by the spread of the disease outside
of Africa as a result of imports and travel [62,63]. Behaviors that put a person at risk
for contracting Mpox include having interactions or engaging in activities with infected
animals or people. According to the findings of our analysis, the number of cases of CPVX
has been rising, particularly in the DRC, where this disease was endemic, the disease has
spread to neighboring countries, and the median age of patients has decreased from young
adults to young children [64–66]. Such findings may have some bearing on the decision
to stop vaccinating against smallpox, which offered a kind of cross-protection against
MPXV but ultimately led to an increase in the spread of the disease from human to human.
The worldwide significance of the disease has been brought into focus by the advent of
outbreaks in regions other than Africa [67–69].

From 1970 to 2019, a total of 1347 confirmed and over 28000 suspected cases were
registered in the DRC [70,71]. The DRC is the country with the highest number of incidences
of Mpox, and no other country has consistently reported instances of Mpox during the
past half-century [72]. The primary type of case that was observed after the year 2000
was one in which the patient’s illness was only suspected rather than one in which the
patient’s illness was confirmed, probable, or possible [73,74]. More recently, between the
months of January and September of the year 2020, 4594 additional suspicious patients
were observed and noticed in the DRC. Nigeria is the 2nd most highly impacted area, with
181 probable and confirmed cases associated with the outbreaks that began in the 9th month
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of 2017 [75]. It should be noted that the Center for Disease Control (CDC) report for Nigeria
lists 183 instances; however, two of those cases originated in Nigeria and were diagnosed
in Singapore and Israel [76]. These two cases were designated travel-related occurrences
for their respective countries. The 183 cases that were reported by the Nigerian CDC do not
include the cases that occurred in the United Kingdom (UK) and originated in Nigeria [77].
In 2008, two separately imported cases of human Mpox in the UK were reported. Both
had travelled in southern Nigeria before coming to the UK [77]. The DRC (n = 97) and the
Central African Republic (n = 69) are the third and fourth most afflicted nations regarding
potential, confirmed, and probable cases of MPXV, respectively [78]. Over the course of the
preceding half-century, the total number of suspected and confirmed cases of Mpox in each
of the remaining African nations was less than 20 [79–82] (Table 2).

Table 2. Outbreaks history (epidemiology of human Mpox outbreaks [83].

Country Duration Cases Reported Mortality

DRC 1970 1 100%

DRC 1981–1986 338 9.8%

DRC 1996–1997 92 3.3%

DRC 2001–2013 17,186 2.46%

DRC 2017 88 6.3%

Sudan 2005 37 0

Cameron 1989 1 0

Nigeria 1971 2 0

Nigeria 1978 1 0

Nigeria 2017–2018 228 2.6%

Gabon 1991 9 0

Sierra Leone 1970–1971 4 0

USA 2003 47 0

Central African Republic 2015–2018 104 8.3%

Smallpox epidemiology, with causative agent, the variola OPVX, has been understood
by in-depth investigations that were carried out after the eradication campaign was suc-
cessfully completed [84,85]. Inhaling a huge airborne respiratory droplet of a virus that
can cause infection was the primary mode of human-to-human transmission of the variola
virus. Transmission often requires extended face-to-face or other close contact; nevertheless,
there have been reports of aerial transmission over larger distances [86,87]. Transmission
could potentially have occurred via fomite or through contact with infected things orig-
inating from the rashes. The smallpox eradication campaign resulted in the collection
of aggregate data that suggest the rate of secondary attack was 58.4% in unvaccinated
households. These figures were derived from a comparison of both groups [88,89]. Under
the conditions of current experimental and analytical findings, the airborne transmission
route must be considered as a possible transmission mode. The findings and analysis with
aerosol dynamics showed that aerosols carrying MPXV could be present in environments
where patients have resided and that airborne transmission of MPXV can occur [77,90]. For
variola, the case fatality rate majorly varied depending on the manifestation of the disease;
nonetheless, aggregate case fatality rates ranging from 10% to 30% have been observed
over a number of outbreaks [91,92]. The severity of the condition was found to have a
correlation with the amount of rash that was present, and the condition was also found to
be adverse in children and in women during pregnancy [93,94] (Table 3).
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Table 3. Clinical picture comparison.

Character Smallpox Monkeypox Varicella References

Viral cycle completion 28 days 28 days 21 days

[87,89,95]

Incubation time 2 weeks 2 weeks 3 weeks

Lesion inflammatory cycle 2–4 weeks 2–4 weeks 1–3 weeks

Body temperature >40 ◦C 38.5–40.5 ◦C 38 ± 8 ◦C

Lymphadenopathy Often Often Rare

Lesion Centrifugal Centrifugal Centripetal

The epidemiology of Mpox is significantly more complicated [96]. The virus is
zoonotic, and it has been found that there are three genetically separate virus clades,
each of which appears to have distinct clinical and epidemiologic features [97–99]. There
were 122 cases in total in seroprevalence surveys, suggesting that subclinical infections may
have occurred in up to 28% of the patients who had close proximity with animals in some
communities. This could be a contributing factor to the sustained rarity of transmission
between humans in households and other close-contact situations [86,100,101]. It wasn’t
until 1970 that researchers found evidence of infections in humans of Central and Western
Africa. In the country that is now known as the DRC, which was formerly known as
Zaire, researchers found that transmission between humans of MPXV was significantly
less common than the transmission of smallpox [40,102]. The computed secondary attack
rate in unvaccinated contacts of Mpox cases was 9.3%, whereas the secondary attack rate
in unvaccinated contacts of smallpox patients ranged from 37% to 88% [103]. Previous
vaccination against smallpox, which could have been given anywhere from 3 to 19 years
in the past, was found to be 85% protective [104,105]. Only 28% of cases were attributed
to the spread of the disease from one person to another, while the vast majority of docu-
mented individuals contracted the disease from assumed animal exposure [57]. A case
fatality rate of roughly 10% was seen in unvaccinated individuals, and children younger
than 5 years old accounted for the bulk of fatalities and the most severe illness symptoms
that were recorded [106,107]. Cases of Mpox in Africa were comparatively few before the
1980s, following smallpox vaccination discontinuation worldwide, and in West and Central
Africa, the risk of human Mpox outbreaks has been growing every year since that date.
The smallpox vaccination provides cross-immunity against Mpox. Since 1977, the end of
smallpox vaccination has resulted in a decreased immunity and in an increased population
susceptible to Mpox.

3. Genome Organization, Replication Cycle, and Morphology

The genome of MPXV is a linear double-stranded DNA genome that is approximately
197 kilobases in size [41,108]. In spite of the fact that the MPXV genome consists of DNA,
its whole life cycle takes place within the cytoplasm of cells that have been infected [109].
The MPXV genome encodes all of the proteins that are necessary for replication of DNA,
virion assembly, transcription, and egress. The hairpin loops with tandem repeats in ORFs
combined to form ITRs [110,111]. This includes all of the proteins [112] (Figure 4).

It is thought that IMV is released during cellular breakdown and EEV is released from
the cells through interaction with actin tails, which contributes to the particular virus’s fast
and extensive area diffusion inside an infected host [113,114]. These two things happen at
the same time. Despite the fact that the afore-mentioned characteristic is specific to VACVs,
it is highly likely that these properties are shared by all OPXV. Cell-associated virions
(CEVs), on the other hand, are produced after the microtubule-mediated transportation of
an enveloped virus inside cellular peripheries [115,116]. During this process, the outmost
plasma membrane of the intracellular enveloped virus (IEV) binds with the cellular plasma
membrane, which remains bonded to the surfaces of cells [117]. This ends in the formation
of cell-associated virions (CEVs). Cell-associated virions are the primary agents of cell-
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to-cell transmission, as described in [118]. When IMV is encased in a double membrane
that originates from either the trans golgi network or early endosomal component, IEV is
produced [119,120]. However, separate from the process of IEV exocytosis, another way
that EEV can be formed is through the IMV budding through the plasma cellular membrane.
This is an alternative pathway for the production of EEV. It has been reported that the virion
morphogenesis process in the prototype VACV can go awry, leading to the formation of
dense particles that are not infectious [121]. However, this behavior has not been observed
in MPXV [122]. Due to a truncation in the ATIP gene, MPXV sequesters IMVs into A-type
inclusion (ATI) or does not create ATIs. This is in contrast to certain strains of CPXV, in
which IMV is occluded within ATIs. In addition, MPXV does not produce ATI or sequester
IMV into ATIs [123,124] (Figure 5).

Biomedicines 2023, 11, x FOR PEER REVIEW 9 of 19 
 

consists of DNA, its whole life cycle takes place within the cytoplasm of cells that have 

been infected [109]. The MPXV genome encodes all of the proteins that are necessary for 

replication of DNA, virion assembly, transcription, and egress. The hairpin loops with 

tandem repeats in ORFs combined to form ITRs [110,111]. This includes all of the proteins 

[112] (Figure 4). 

 

Figure 4. Monkeypox virus life cycle and mechanisms of action of antivirals. This diagram depicts 

the life cycle of MPXV inside a human cell. Notably, replication cycle of MPXV occurs in the 

cytoplasm of the host cell. Following viral attachment, virion binds and fuses with the host cell 

membrane, and the viral core is released into the cytoplasm of the host cell. Viral particles are 

assembled into intracellular mature viruses (IMVs), then stay in the cytoplasm as IMVs and are 

released as extracellular enveloped viruses during cell lysis. Mature virus can also wrap an 

additional envelope and attach to the cell membrane, then be released through exocytosis. Cidofovir 

and its prodrug brincidofovir inhibit the viral DNA polymerase during DNA replication. 

Tecovirimat targets the VP37 protein, which is vital for envelopment of IMV with Golgi-derived 

membrane to form extracellular enveloped virus (EEV), prevents the virus from leaving an infected 

cell, hindering the spread of the virus within the body. 

It is thought that IMV is released during cellular breakdown and EEV is released 

from the cells through interaction with actin tails, which contributes to the particular 

Figure 4. Monkeypox virus life cycle and mechanisms of action of antivirals. This diagram depicts the
life cycle of MPXV inside a human cell. Notably, replication cycle of MPXV occurs in the cytoplasm of
the host cell. Following viral attachment, virion binds and fuses with the host cell membrane, and the
viral core is released into the cytoplasm of the host cell. Viral particles are assembled into intracellular
mature viruses (IMVs), then stay in the cytoplasm as IMVs and are released as extracellular enveloped
viruses during cell lysis. Mature virus can also wrap an additional envelope and attach to the cell
membrane, then be released through exocytosis. Cidofovir and its prodrug brincidofovir inhibit the
viral DNA polymerase during DNA replication. Tecovirimat targets the VP37 protein, which is vital
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for envelopment of IMV with Golgi-derived membrane to form extracellular enveloped virus (EEV),
prevents the virus from leaving an infected cell, hindering the spread of the virus within the body.
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Figure 5. Steps of MPXV entry into host cells. (1) Schematic of the structure of MPXV. (2) Both
the EEV and IMV virions penetrate the host membrane by binding and macropinocytosis. MPXV
virions use glycosaminoglycans as host receptors. (3) After the internal virion components enter
the cytoplasm, core uncoating occurs, and this process leads to delivery of the MPXV genome and
accessory proteins to the cytosol. (4) The released MPXV genome is used as a template for DNA
replication. (5) Early viral DNA transcription followed by translation into the host ribosome occurs to
encode essential proteins. Early proteins aid in DNA replication. (6) These proteins interact with host
sensor proteins, resulting in internal and external modulations. The major intracellular modulations
include prevention of viral genome detection, induction of cell cycle arrest, apoptosis inhibition,
inhibition of the antiviral system, and modulation of some host cellular signaling pathways. Early
proteins play essential extracellular roles as immunomodulatory agents and as growth-factor-like
domains that stimulate onset of mitosis in neighboring cells. (7) Early proteins are used in production
of intermediate proteins. (8) These proteins are involved in late transcription and translation processes
and aid in DNA replication. (9) Late proteins are essential components for viral assembly. (10) Viral
morphogenesis occurs by formation of inner tubular nucleocapsid structure folding and assembly of
viral glycoproteins to generate IMV virions. (11) Except those released via infected cell lysis, IMV
virions transit to the Golgi apparatus along microtubules for double membrane wrapping. (12) The
resulting EEV virions exit the infected cell by two routes: by the actin tail assembly, which provides
enough force to propel the virions out of the cell, or by budding from a cellular membrane. EEV:
extracellular enveloped virus. IMV: intracellular mature virus.

The MPXV morphology reveals that the virions are brick-shaped or ovoid particles
that are enveloped by a lipoprotein, which is geometrically corrugated into the outer
membrane [125,126]. These virions share the same physical properties as other OPVXs.
It is known that the size range of MPXV is 200–250 nm. The plasma membrane plays a
role of protection of the membrane bond as well as a densely packed core [127]. The core



Biomedicines 2023, 11, 1832 11 of 19

is described as biconcave, and it has lateral bodies on both sides because of an anomaly
caused by the fixation technique used in electron microscopy, [54,128].

Clades of Monkeypox

There are substantial ramifications associated with the methodical gathering of surveil-
lance data for efficient disease control and prevention [129]. Estimating the burden of
disease, monitoring changes in disease occurrence, determining geographic spread, identi-
fying high-risk populations and other health concerns, and informing resource allocation
are all things that can be accomplished with the help of surveillance systems that are in
good working order. As a result, one of the most important things that needs to be carried
out for public health is an analysis of the efficiency of monitoring systems and how they
develop over time [130].

The existence of three distinct MPXV clades was established using genomic sequencing
of isolates originating from the United States of America, Western Africa, and Central
Africa [103]. The ability to anticipate proteins in the virus that could be responsible
for the different pathogenicity between MPXV clades was made possible by conducting
comparative analysis between open reading frames of MPXV. The prevention and control of
Mpox can be improved with a better understanding of the molecular etiology and clinical
and epidemiological characteristics of MPXV [19,109].

Comparisons between the genomes of these clades of MPXV and related OPXV have
shown that despite the fact that these viruses are closely related to one another, they contain
a number of genome region variations that are distinguished by insertions, high mutation
rates, gene truncations and deletions. These regions have been designated [9,131].

4. Phylogenetic Analysis of MPXV

The genomic sequences of Congo Basin and West African derived strains of MPXV
found an overall 99% identity of nucleotides within geographical areas and only 95%
nucleic acid identity over all geographical clusters. It is important to note that there was
just a single nucleotide variation between MPXV-USA-2003-039 (human) and MPXV-USA-
2003-044 (prairie dog) throughout the first two cycles of viral transmissions, possibly
originating from the same source [132].

The majority of ORFs that had pi values of greater than six were segments of OPXV
isoforms. Analyses of phylogenetics, using highest compatibility and similarity in method-
ology, were performed using the four different geographical MPXV genome sequences,
including the earlier described MPXV-ZAI-1996-016, and were deeply embedded with
VACV strain Copenhagen and Grishak (CPXV-GRI) a strain of cowpox virus. These analy-
ses were carried out using MPXV-ZAI-1996-016 as the outgroup (VACV-COP).

Comparison of genome sequence and alignments between MPXV clades and some
other similar OPXVs allowed identifying two target genomic regions (R) positioned at the
5’ end and 3’ end of the genome. These R areas are located on opposite ends of the genome.
The DNA sequences of MPXV and related OPXVs were retrieved from Genbank databank
and examined with the help of several bioinformatics programs. The mutation rates and
the occurrence of large-scale evolutionary processes, such as genomic re-arrangement,
truncation, inversion, deletion, and insertion, were taken into consideration while selecting
genomic regions for study. In addition, each genomic area was chosen based on the degree
of divergence it shared with other viruses in the same family, as well as the number of
known virulence genes it contained. As a result of this study, two genetic areas have been
chosen for further thorough investigation. The MPXV-R1, MPXV-R1/R2, and MPXV-R2
recombinant virus species all have combined genomic areas or individual deletions and
were created by a recombination process. Plaque purification, titration, and testing of
recombinant viruses using cell culture technique and in vivo imaging were all performed
on the viruses [133,134]. (Figure 6).
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Figure 6. Phylogenetic analysis and molecular signature of MPXV [134]. Phylogenetic study and
comparative molecular signature of the previously collected MPXV isolates and MPXV isolated in
Sierra Leone in 2017 [134]. (A) A graphical representation of the genomic fragment of MPXV in Sierra
Leone, 2017, with reference to the data on genome of MPXV Sierra Leone 1970. There are three sections
that make up the MPXV Sierra Leone 2017 virus: an unknown area, genes that encode dUTPase,
and genes that encode a partial kelch-like protein. The binding site of primers that are utilized for
real-time PCR detection. Bottom panel displays genes reported. The direction of transcription is
shown by the arrows. (B) Phylogenetic relationship between genomic segments of other OPXVs and
MPXV collected in Sierra Leone. Neighbor-joining phylograms built with the maximum-likelihood
approach with the software “MEGA version 6.0” (https://www.megasoftware.net). The scale bar
represents the number of nucleotide changes at each location.

It is feasible to further boost the resolving power of these phylogenetic assessments
by using datasets that contain greater numbers of shared orthologous genes. This would
permit a more extensive investigation of these viruses’ evolutionary history. Although only
20 gene families were able to have their sequences matched in a way that was completely
unambiguous for analysis support that was given previously, a minimum of 1 fewer than
50 genes significantly exhibit some level of sequence similarity across the complete family.
A core set of 174 genes is almost identical in all OPXVs, and all strains of every species
of virus related to the OPXV genus share some portion of the 214 genes that are found
in CPXV. An estimated ninety gene families within the OPXV genus exhibit significant
homologous sequences across the subspecies [131].

Nigerian Phylogeny

Five Nigerian isolates were from the 2017 Rivers State outbreak [135], while the
genomes of two other Nigerian isolates (Monkeypox-W-Nigeria and MPXV-SE-Nigerian)
prevailed in 1978 during early outbreaks (Oyo State) and 1971 (Abia State) [136]. During
September 2018, the genome of the MPXV isolate was transported to Israel (MPXV Israel)

https://www.megasoftware.net
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from a Port Harcourt, Rivers State, resident who returned to Israel seven days after dispos-
ing of two rodent carcasses in his Port Harcourt apartment. MAFFT version 7 was used
to align all of the sequences. A phylogenetic tree was built from the aligned sequences
using the MEGA X software’s Maximum Likelihood (ML) technique [137]. The WA clade
comprised eight Nigerian isolated strains and also some from Liberia and the United States
delivered from Ghana. Furthermore, the West African clade was further divided into two
groups, with Nigerian isolates forming a subgroup different from a second subcluster made
up of Liberian and American isolates. MPXV-Nigeria W and the Nigerian SE-1971 are
genetically distinct from other previous isolates. The latest Nigerian isolates’ monophyly
with the Israel exported isolate suggests that the virus may have arisen from the same
pool of infection [63]. This matches a previous phylogenetic analysis of Bayesian MPXV
transferred from Nigeria to other regions of the world. Isolates from Sudan, the Congo,
Cameroon, and Gabon make up the Congo Basin clade. Despite the fact that Gabon and
Cameroon are West African countries, MPXV resolved into the Congo Basin clade, which
was isolated from these two countries. A previously published paper’s MPXV tree topology
agrees with many other published results [63].

5. Conclusions

The declining population immunity caused by the discontinuance of smallpox vaccina-
tion has created a favorable environment for the comeback of MPXV. This is evidenced by a
rise in the confirmed cases and specific age of those with Mpox, as well as the reemergence
of outbreaks in some regions after a 30–40-year gap. The expansion of instances outside of
Africa also highlights the disease’s potential for global importance and geographic diffu-
sion. Concern about human-to-human transmission affects not just family members but
also caretakers for the patients. The public health significance of the Mpox epidemic should
not be understated given the contemporary context of pandemic risks. Understanding
the dynamic epidemiology of this emerging disease requires increased global monitoring
and the early identification of Mpox cases. To maintain influence and support informed
decision making regarding the disruptions of MPXV infections in humans, potential future
outbreak responses, diagnostic test deployment, and even prospective outbreak-related
decisions regarding vaccination and medications, more research into the involvement of
these different MPXV clades in human disease is required.
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