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Abstract: Reactive oxygen species (ROS) are highly reactive products of the cell metabolism derived
from oxygen molecules, and their abundant level is observed in many diseases, particularly tumors,
such as hepatocellular carcinoma (HCC). In vivo imaging of ROS is a necessary tool in preclinical
research to evaluate the efficacy of drugs with antioxidant activity and for diagnosis and monitoring
of diseases. However, most known sensors cannot be used for in vivo experiments due to low stability
in the blood and rapid elimination from the body. In this work, we focused on the development of an
effective delivery system of fluorescent probes for intravital ROS visualization using the HCC model.
We have synthesized various lipid nanoparticles (LNPs) loaded with ROS-inducible hydrocyanine
pro-fluorescent dye or plasmid DNA (pDNA) with genetically encoded protein sensors of hydrogen
peroxide (HyPer7). LNP with an average diameter of 110± 12 nm, characterized by increased stability
and pDNA loading efficiency (64± 7%), demonstrated preferable accumulation in the liver compared
to 170 nm LNPs. We evaluated cytotoxicity and demonstrated the efficacy of hydrocyanine-5 and
HyPer7 formulated in LNP for ROS visualization in mouse hepatocytes (AML12 cells) and in the
mouse xenograft model of HCC. Our results demonstrate that obtained LNP could be a valuable tool
in preclinical research for visualization ROS in liver diseases.

Keywords: reactive oxygen species; hepatocellular carcinoma; HyPer7; hydrocyanine; lipid nanoparticles

1. Introduction

Reactive oxygen species (ROS) are chemically reactive molecules with various essential
functions in living organisms and include hydroxyl radical (·OH), superoxide anion (O2·−),
singlet oxygen (1O2), and hydrogen peroxide (H2O2) [1,2]. Under normal physiological
conditions, the production of ROS is essential for the cells to defend against pathogens
and to promote growth and death. However, the increased production of ROS leads to
the damage of many biomolecules, apoptosis, and cell arrest [3–5]. Most cellular H2O2 is
produced spontaneously or catalytically by superoxide dismutase from (O2·−) [6]. H2O2 is
relatively stable in the aqueous solution. It is a potent redox signaling molecule and also
can facilitate transmembrane transport [7].

Various methods have been developed to visualize ROS, based on spectrophotom-
etry, fluorescence, chemiluminescence, and electron spin resonance [8,9]. Fluorescence
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imaging methods are widely used and allow continuous monitoring of the ROS-associated
molecules in situ in living cells on a real-time scale using fluorescence-based probes [9].
The most common probes in biomedical research are non-selective sensors based on a
leuco-form of fluorescent dyes, which can light up when oxidized by ROS to parental
fluorescein, rhodamine, or hydroethidine. However, there are numerous limitations for
in vivo applications of these probes critically reviewed in publications [10–13]. Alternative
fluorochromes with emission maxima in the near-infrared region offer low phototoxicity
to the cells, low autofluorescence, and good tissue penetration, making them attractive
for imaging in tissues [11]. Among these, cyanine dyes are particularly interesting due
to their physical and chemical properties and their ability to react with intracellular and
extracellular ROS. Genetically encoded sensors are another class of ROS-sensitive probes,
e.g., HyPer7. It is a selective ratiometric sensor that allows monitoring H2O2 concentration,
and it can be easily visualized by fluorescence microscopy. Although these probes were
used to detect ROS in vivo in several studies, it is still challenging to deliver them to specific
organs or tissues [14–16]. To prevent early oxidation and increase blood circulation time,
cyanine dyes and genetically encoded sensors, such as HyPer7, can be loaded or conjugated
to nanoparticles for better visualization of ROS in vivo. Kim et al. showed that hydrocya-
nine conjugated to chitosan-functionalized pluronic-based nanocarriers can detect ROS
in tumor sites by fluorescence and show fluorescence up to two days after injection [14].
Another study showed that the nanoencapsulation of sensors could improve detection or
imaging of H2O2 in biological systems [17]. Hammond et al. developed a novel nanoprobe
based on dye encapsulation with improved sensor function for intracellular measurement
of H2O2 [18]. Lipid nanoparticles (LNPs), possessing excellent biocompatibility and low
toxicity, are a clinically approved small interfering RNA (siRNA) delivery system for liver
diseases, so we decided to use this technology to deliver fluorescent probes for detection of
ROS in hepatocellular carcinoma (HCC).

HCC is one of the most malignant and common diseases and is the third leading cause
of cancer death [19]. The common mechanism of hepatocarcinogenesis is chronic inflamma-
tion associated with severe oxidative stress [20]. It is evident that ROS play a pathogenetic
role in the progression of HCC, as they can stimulate the growth of cancer cells [21]. To
assess the HCC, noninvasive imaging tools such as magnetic resonance imaging (MRI),
ultrasound (US), and computed tomography (CT) are currently used. US is a well-suited
tool for diagnosing HCC due to its cost-effectiveness and accuracy in detecting the focal
liver lesions [22]. The introduction of microbubbles contrast agents leads to the improved
diagnostic capability of HCC by conventional US [23]. MRI and CT are considered as
powerful tools for detection of HCC. Recently, several functioning MRI techniques, such
as hepatobiliary contrast agents, have been developed to improve the evaluation of liver
lesions [23]. However, early diagnosis of HCC still remains challenging, and more studies
are required to develop the imaging tools for detection of HCC. Visualization of ROS in
HCC models could help to diagnose the disease at an early stage and investigate new drug
delivery systems.

Here, we report on the development of an effective delivery system of HyPer7 and
hydrocyanine-5 (hydro-Cy5) formulated in LNPs for ROS visualization in HCC. LNPs have
demonstrated successful accumulation in the liver and were able to deliver ROS sensors.
We expect that it will become an effective system for the detection of ROS in liver diseases.

2. Materials and Methods
2.1. Cell Culture

AML12 and Huh-7 cell lines were obtained from ATCC. AML12 cells and the Huh-7
cell line were maintained in a 37 ◦C humidified incubator with 5% CO2 in DMEM/F12
(PanEco, Moscow, Russia) supplemented with 10% fetal bovine serum (FBS) (Capricorn,
Ebsdorfergrund, Germany).
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2.2. Synthesis of Hydro-Cy5-siRNA-LNPs

Hydro-Cy5 dye was synthesized based on starting sulfo-Cy5 dicarboxylic acid (Lu-
miprobe, Moscow, Russia) based on a previously established procedure [24] and formulated
in LNPs as described previously [25].

First, hydro-Cy5 was dissolved in ethanol (10 mg/mL) and mixed with lipids. LNP
were obtained by mixing a solution of small interfering RNA to firefly luciferase (siLuc)
(0.4 mg/mL) in a microfluidic device in a citrate buffer (10 mM, pH 3.0) and an ethanol
solution of a mixture of hydrocyanine (3:1 by volume) and lipids and lipidoids (C12-200, 1,2-
dystearoyl-CH-glycero-3-phosphocholine, 1,2-dimyristoyl-CH-glycero-3-phosphoethano-
lamine-N-[methoxy(polyethylene glycol)-2000] and cholesterol) as described previously [25].
The molar ratio of hydro-Cy5:siLuc was 1:1 (hydro-Cy5-LNP_1) or 2:1 (hydro-Cy5-LNP_2).

For biodistribution studies, we used cyanine 5.5 dye (instead of leuco-form of hy-
drocyanine 5) to obtain fluorescently labeled LNP with different diameters (110 nm and
170 nm); the molar ratio for cyanine 5.5:Luc was 1:10.

2.3. Synthesis of LNPs with Plasmid Encoding HyPer7

For HyPer7 construct generation, EGFP was removed from pAAV.TBG.PI.eGFP.WPRE.bGH
(addgene #105535, Watertown, MA, USA) using NotI and HindIII restriction enzyme
sites. Then, amplified from pCS2+HyPer7-NES (addgene #136467, forward primer: 5′-
ATATATGCGGCCGCGCCACCATGCACCTGGC-3′, reverse primer: 5′-ATATATAAGCTTT-
TACAGGGTCAGCCGCTCCA-3′), a cytosolic version of HyPer7 with an added nuclear
exclusion sequence (NES) was cloned into the prepared backbone.

Two methods were used to obtain lipid nanoparticles with plasmid DNA (pDNA):
manual formulation and microfluidics. In manual formulation, LNPs were obtained by
mixing solutions of pDNA (0.1 mg/mL) in citrate buffer (10 mM, pH 3) and lipids in ethanol
(3:1 by volume) by rapid addition of ethanol in the buffer and further suspension. The lipids
(C12-200, dioleoylphosphatidylethanolamine—DOPE or dioleoylphosphatidylcholine—
DOPC, cholesterol, PEG-lipid) were mixed in ethanol in a molar ratio of 35:16:46.5:2.5.
The weight ratio of DNA/C12-200 is 1:10. The mixture was incubated for 10 min at room
temperature to complete particle self-assembly. The nanoparticle suspension was diluted in
a PBS, dialyzed overnight in 2000 molecular weight dialysis cassettes against 500 times the
volume of PBS at pH 7.4, and filtered through a polyethersulfone syringe filter (0.22 µm)
(Table S1).

Another formulation method of LNPs was focused on mixing solutions of pDNA and
lipids (3:1 by volume) using the NanoAssemblr® Benchtop microfluidic device (Precision
NanoSystems, Vancouver, BC, Canada). The molar ratio of lipids in the mixture, the mass
ratio of DNA/C12-200, and the concentration of pDNA were used the same as in the
manual formulation. The solution mixing range was 10 mL/min. The use of microfluidic
formulation allows the mixing rate to be adjusted by the flow rate of each of the solutions.
The aqueous and ethanol phases containing dissolved components of nanoparticles are
injected into each inlet of the NanoAssemblr cartridge using syringes. Computer control
allows the input mixing parameters to be controlled to optimize particle characteristics
such as particle size and encapsulation efficiency and eliminate variability.

2.4. Characterization of Obtained LNP

Particle sizes were measured and calculated by intensity using Zetasizer Nano ZSP
(Malvern Panalytical, Malvern, UK) according to the manufacturer’s protocol [26]. The load-
ing efficiency of pDNA was analyzed by using the Quant-iT™ RiboGreen® reagent (Thermo
Fisher Scientific R11491, Waltham, MA, USA) as described earlier [27]. First, a calibration
curve was obtained using standard pDNA in the concentration range 0.03–0.2 µg/mL.
After that, DNA concentration was measured in obtained nanoparticles before and after
disruption with the Triton X-100 buffer. The difference in these values shows the portion of
loaded pDNA.
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2.5. Cytotoxicity of Obtained Lipid Nanoparticles (MTT Assay)

The cytotoxicity of selected LNPs was measured on a culture of mouse hepatocytes
(AML12). Cells were seeded in a 96-well plate and grown to 70% confluent monolayer (48 h,
5% CO2, 37 ◦C). The LNPs were diluted in DMEM/F12 (PanEco, Moscow, Russia) with 10%
FBS (Capricorn, Ebsdorfergrund, Germany), added to the cells, and incubated for 24 h (5%
CO2, 37 ◦C). The next day, the cells were washed with PBS and MTS-reagent was added
(Promega, Madison, WI, USA) according to the manufacturer’s protocol. Absorbance at
490 nm was then analyzed. Unexposed cells were used as a control.

2.6. Analysis of ROS Activity In Vitro

Analysis of ROS activity in vitro was performed using a fluorescent microplate reader
(Varioskan Lux, ThermoFisher, Waltham, MA, USA). We incubated hydro-Cy5-LNPs with
10 µM H2O2 for 10 min at room temperature and quantified fluorescence at 640/680 emis-
sion/excitation filters.

For imaging experiments, AML12 cells were seeded in a 35 mm glass confocal dish.
Twenty-four hours after incubation with LNP, cells were washed with 1 mL PBS (PanEco,
Moscow, Russia). To determine the response of LNP- hydro-Cy5 to exogenous H2O2, a
solution of H2O2 was added to a final concentration of 10 µM. Cell imaging was performed
using a Nikon Eclipse Ti2 microscope. Fluorescence of LNP- hydro-Cy5 probes was
analyzed at 640/680 excitation/emission filters.

2.7. Delivery of LNPs to the Liver and Analysis of ROS Activity in Vivo in HCC Model

All experiments were approved and performed in accordance with institutional guide-
lines of the Koltsov Institute of Developmental Biology of the Russian Academy of Sciences
(Approval #60) and Pirogov Russian National Research Medical University (Moscow, Rus-
sia, Approval 06/2021).

Biodistribution. For biodistribution experiments we intravenously injected cyanine 5.5-
LNP (size 110 nm and 170 nm) and analyzed whole body fluorescence using IVIS Spectrum
CT (Perkin Elmer, Waltham, MA, USA) at 5 min, 1, 4, 6, and 24 h after injection at 675/720
excitation/emission filters. Spectral unmixing was performed using Living Imaging 4.5.3
software to separate the tissue autofluorescence signal. For the biodistribution experiment
of LNPs loaded with pDNA, we used plasmid-encoding firefly luciferase (Fluc) with an
average diameter 110 nm and injected it intravenously (500 µg DNA/kg); after that, we
analyzed its luminescence using IVIS Spectrum CT (Perkin Elmer, Waltham, MA, USA) at
3, 6, 9, and 14 days after injection.

HCC model. To induce ROS in the liver, we used an HCC xenograft model. We injected
Huh-7-Luc cells (2 × 106 cells in 50% Matrigel®) to the nu/nu mice (male, 6–8 weeks
old) in the median lobe of liver. Seven days after tumor implantation, we injected the
obtained LNPs in PBS, and analyzed its fluorescence using IVIS Spectrum CT. For ex
vivo visualization of ROS, animals were anesthetized (Zoletil® (tiletamine + zolazepam)
20 mg/kg, xylazine 0.2 mg/kg) and livers were imaged using 640/680 excitation/emission
filters. Photons of tumor and healthy tissue were quantified using Living Image software
(Xenogen Corp., Alameda, CA, USA).

2.8. Statistical Analysis

GraphPad Prism 8.2.1 (GraphPad Prism Software, Inc., San Diego, CA, USA) was used
for statistical analysis. Tukey’s multiple comparison test with 95 % confidence level or two-
way ANOVAs were used for statistical analysis. A p-value less than 0.05 was considered as
significant.

3. Results
3.1. Synthesis and Characterisation of Lipid Nanoparticles and ROS Analysis In Vitro

Previously, we synthesized two different hydro-Cy5 derivatives and analyzed their
sensitivity for ROS detection [7]. In this study, we investigated the possibility of using the
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free dye after intravenous bolus injection into the blood of healthy animals and animals with
HCC, as was previously described in other studies [28,29]. Unfortunately, we observed
rapid hydro-Cy5 dye excretion from the body and a strong fluorescence signal in the
bladder within 5 min after intravenous injection (Figure S1). Therefore, we decided to
encapsulate hydro-Cy5 in LNP to improve targeted delivery to the liver. The zeta potential
of hydro-Cy5-LNP is −7.58 mV.

One of the newly developed molecular probes for ROS visualization is the pDNA
HyPer7, which encodes the HyPer protein sensitive to H2O2 and capable of responding
to the ROS changes in the cell within seconds [30]. In order to efficiently deliver HyPer7
to the liver in vivo, we also decided to encapsulate it in LNPs, as publications show that
LNPs can serve as an efficient delivery system for different molecules [25]. While LNP are
clinically approved for siRNA and mRNA delivery, efficient encapsulation and delivery of
pDNA requires optimization of composition and molar ratio of lipids. For the synthesis of
LNPs with HyPer7, we decided to compare the LNP formulation by using two different
helper lipids, DOPE and DOPC. The other lipids used and their proportions were not
changed. The manual formulation leads to the formation of particles of uncontrolled size
in the diameter range of 120 to 250 nm with a high degree of sample heterogeneity. The
main disadvantage of this method is the lack of the possibility to control the parameters of
the LNPs using the mixing rate in manual formation. In the case of microfluidic cartridges,
the particles have a smaller size, significantly higher efficiency of pDNA loading, and their
characteristics are much more reproducible. The polydispersity of LNPs is comparable to
that of particles obtained by manual formulation, but the polydispersity index (PDI) values
are not critical for using such nanoparticles in vivo (Table 1).

Table 1. The characteristics of LNPs obtained by manual and microfluidic formulation.

Formulation Cationic Lipid Particle Size, nm PDI DNA Concentration
in the Particles, ng/µL

DNA Loading
Efficiency, %

Manual DOPE 177.7 ± 48.1 0.18 6.3 ± 1.1 10.8 ± 1.9%
Manual DOPC 214.3±15 0.2 8 13.6%

Microfluidic DOPE 120 0.2 34 62%
Microfluidic DOPC 108 ± 12 0.22 ± 0.02 36 ± 5 64 ± 7%

Cytotoxicity and stability of the obtained LNPs were then evaluated. The particles
were shown to retain their size at 4 ◦C in the sterile solution (Figure 1B). We evaluated
the cytotoxicity of LNP-pDNAs (IC50 = 0.429 ng DNA/ml) that is comparable with other
studies (Figure S2). We used the similar LNP concentration as in our previous study that
demonstrates that the administration of LNP did not result in pathological changes in
liver tissue [31]. It is also comparable to the IC50 data of previously studied LNPs with
siRNAs [32].

We obtained two types of particles: LNP_1, LNP_2 (1× and 2× dye excess to siLuc
during synthesis, respectively) with an average diameter of 80 nm. It was shown that
the hydro-Cy5 encapsulated in particles didn’t change the fluorescence intensity when
interacting with the H2O2. In contrast, LNP_2 showed a slight fluorescence increase
when reacted with highly reactive hydroxyl radical (Figure 1C). These data suggest a high
stability of the LNPs and a high degree of dye protection against oxidation after intravenous
injection.

Next, we decided to determine optimal amount of dye incoroporated in LNP for the
detection using IVIS Spectrum CT. For this purpose, we conjugated LNP with different
amount of cyanine 5.5 and showed that the amount of incorporated dye impacts LNP de-
tection in organs (Figure S3) and further efficacy evaluation. So, we proceeded experiments
with LNP_2 and tested their efficacy in vitro.

Next, we analyzed the efficacy of hydro-Cy5-LNP for ROS visualization on the AML12
cell line in vitro. For this purpose, AML12 were incubated with hydro-Cy5-LNP for 24 h,
and then 10 µmol H2O2 was added to the cells. Confocal images were taken of the AML12
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before and after H2O2 addition. Cell nuclei were stained with Hoechst 33342 (in blue),
and the LNPs were imaged in red to monitor oxidation of hydro-Cy5-LNP in the cells.
We demonstrated in vitro that hydro-Cy5-LNPs fluorescence increased in the presence
of 10 µmol H2O2, which is relevant to ROS changes in vivo during liver inflammation
(Figure 2).
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3.2. Intravital Delivery of ROS Sensor-Lipid Nanoparticles and Visualization of Hepatocellular
Carcinoma

To preliminarily evaluate the size effect on particle delivery efficiency, we intra-
venously injected cyanine 5.5-labeled LNPs to the FvB/N mice. Whole-body fluorescence
images were analyzed using the IVIS Imaging CT system in 15 min, 1, 4, and 24 h of
injection of the 110 and 170 nm particles (Figure 3C). It was shown that LNPs with an
average diameter of 110 nm demonstrated preferable accumulation in the liver after 24 h
(Figure 3A), while LNP with size of 170 nm mainly accumulated in the spleen (Figure 3B).
So, we decided to use 110 nm LNP for further experiments.
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Next, we evaluated the efficiency of pDNA-LNP delivery to mouse liver cells. LNPs
containing pDNA to Fluc with a diameter 110 nm were injected intravenously and the
luminescence intensity was analyzed 3, 6, 9, and 14 days after injection. It was shown that
the particles effectively transfected the liver after 6 days up to 14 days without reinjection
(Figure 3D,E). These results confirm the possibility of effective pDNA delivery using LNPs.

To evaluate the efficacy of ROS imaging using the developed LNPs, we decided to use
the HCC mouse model. We demonstrated the efficacy of ROS imaging in a mouse model
of HCC after the administration of hydrocyanine nanoparticles. It was shown that these
particles effectively accumulate in liver tissue and specifically fluoresce in the area of the
pathology (Figure 4).
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Figure 4. Images of liver tissues of the mice with HCC after administration of LNPs loaded with
hydrocyanine: ex vivo imaging using IVIS Spectrum CT 3 h after injection (A) and quantification
of fluorescence intensities (B); (C). Images of mice after injection of LNPs loaded with HyPer7;
(D). Quantification of fluorescence intensities after injection of LNPs loaded with HyPer7; red line
indicates control. Data are presented as mean ± SD, n = 3.

We observed an insignificant increase in fluorescence intensity (1.5 times in comparison
with control) in 48 h after LNP-HyPer7 injection (Figure 4C). Similar results were observed
10 days after injection of HyPer7-LNP (Figure S4). However, the injection of obtained LNPs
into the HCC-bearing mouse did not significantly change the fluorescent signal. These
results demonstrate persistent limitations of HyPer7 for in vivo imaging that requires either
different pDNA delivery methods (viral or hydrodynamic) or other detection methods.

4. Discussion

ROS play an important role in many biological pathways, but long-term inflammation
leads to the overproduction of ROS, causing oxidative stress and the development of many
pathologies, including liver diseases [11,33]. Cancer cells have elevated levels of ROS that
promote tumor growth and are responsible for the development of numerous liver diseases,
including alcoholic liver diseases, nonalcoholic fatty liver diseases, hepatic fibrosis, and
hepatitis C virus [5]. ROS activate hepatic stellate cells, increasing the inflammation and
initiating liver fibrosis [34]. One of the most common malignant liver diseases is HCC,
which is associated with many cellular processes and affects the metabolism of liver cells,
resulting in increased ROS production. For diagnosis and monitoring of different liver
diseases and namely HCC, visualization of ROS remains an important tool for preclinical
study. Here, we demonstrate the development of two types of LNPs loaded with ROS
sensors—pDNA HyPer7 and the hydro-Cy5 dye, which can be used for the detection and
monitoring of ROS in HCC.

LNP technology has played the central role in the development of the first three ap-
proved drugs, namely Patisiran as siRNA medicine and Tozinameran and Elasomeranas
as mRNA vaccines [35]. Patisiran (ONPATTRO®) is used for the treatment of polyneu-
ropathies associated with the hereditary disease transthyretin-mediated amyloidosis [36].
The two recent FDA approval of COVID-19 based modified mRNA vaccines are formulated
in LNPs [37]. The LNPs formulation is a promising strategy for DNA/RNA delivery
(pDNA, mRNA, siRNA) to the different tissues, and it can be effective for the accumulation
of ROS-sensitive dyes in the liver and improve the visualization of ROS [38,39]. In our
work, we compared the manual formulation of LNPs and formulation by microfluidic
device. Manual formulation can be easily conducted while microfluidic technologies allow
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to produce homogenous-sized LNPs and have accelerated the development of LNP-based
nanomedicine [40]. Lopes et al. outlined that microfluidic technologies promote the more
stable and uniform LNPs [41]. Unsurprisingly, microfluidic device technology allows
production of LNP with high loading efficiency and low PDI, which we observed by pDNA
and hydro-Cy5 formulation. We demonstrated that obtained LNPs are stable and retain
their size within 30 days, which means that the LNPs do not aggregate over time, which is
essential for using them both in vitro and in vivo. Composition of lipids can impact LNP
characteristics; however, we did not observe any difference in DNA loading efficiency using
two different helper lipids, DOPE and DOPC. This could be explained by the similar chem-
ical structure of both lipids. However, selection between DOPE and DOPC by formulation
in LNPs can affect the transfection efficiency both in vitro and in vivo. Zhang et al. found
that DOPE-containing LNP formulation enhances the mRNA delivery to the liver [42].
While Kulkarni et al. showed that replacement of DSPC with DOPC increased transfection
efficacy with pDNA-LNP in vitro more than 40x times [43]. However, we observed only
slight changes in DOPE- and DOPC-LNP-pDNA transfection efficacy in vivo in 24–72 h
after intravenous injection. Danaei et al. outlined that the nanoparticles with the PDI value
0.2 and below are most commonly accepted in practice for polymer-based nanoparticle
materials [44]. In our work, we used LNPs with PDI values no more than 0.22 obtained
by a microfluidic device, which is consistent with the previous studies [45]. Multiple
formulation parameters, lipid components and composition, lipid ration, and processing
parameters are crucial for LNPs with PDI values less than 0.2 [46].

Genetically encoded probes that are sensitive to the H2O are promising approaches
for monitoring the production of intracellular H2O2. The main problem of HyPer and other
probes containing the circular permutation is their high sensitivity to the pH. Recently,
a new member of the HyPer family, HyPer7, was introduced that is non sensitive to the
changes in pH and more sensitive to the H2O2 [47]. We used HyPer7 in this study for
visualization of ROS in vivo that was formulated in LNP for the efficient delivery to the liver.
Although, we demonstrated that we can successfully deliver pDNA Fluc to the liver cells,
we did not observe the significant fluorescence after HyPer7-LNP injection in comparison
with control. Possibly, it might be due to the fact that the one of main disadvantages of
green fluorescence probes to be used in vivo models is the low tissue penetration [48]. The
low fluorescence intensity of the liver after intravenous injection of HyPer7-loaded LNPs
could be also explained by the insufficient delivery method that could be optimized by the
other composition of the lipids or amount of pDNA or detection methods. Godbout et al.
outlined that it is crucial to modify the composition of the lipids used for formulation
in LNPs that will lead to the specific delivery of LNPs to the organs [49]. Additionally,
adenovirus-mediated delivery, polymeric nanoparticles, or hydrodynamic transfection
could increase the efficacy of HyPer7 delivery. Zamboni et al. demonstrated that polymeric
biodegradable poly(beta-amino-ester) nanoparticles enabled high DNA delivery to HCC
cells [50]. Additionally, it should be noted that HyPer is generally used for ratiometric
imaging of the living cells, so detection method plays an essential role in the efficacy of
H2O2 measurement; in particular, intravital microscopy should be considered [51].

One of the probes that can be used for visualization of ROS are hydrocyanine dyes
that are nonfluorescent in leuco form but can be oxidized by hydroxyl radicals and become
fluorescent cyanine molecules [52]. Different probes from the hydrocyanine family have
different emission wavelengths and can be used for different purposes for in vitro and
in vivo studies. Hydrocyanines were used for measuring the ROS production in vivo
in different animal models, such as inflammation, but their application is limited due
to the low tissue penetration of optical probes [52]. In our work, we used hydro-Cy5
dye that was formulated in LNP to protect it from oxidation in the blood stream and
increase accumulation in vivo. To prove the high stability of obtained LNPs, we decided
to compare the efficacy of LNPs loaded with two different excess levels of hydro-Cy5.
We did not observe significant changes in the fluorescence intensities by adding H2O2,
which proves the high stability of LNPs. We also tested efficacy of hydro-Cy5-LNP in
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AML12 cells and demonstrated that LNPs increased fluorescence already 5 min after H2O2
addition compared to non-treated cells, which indicates that hydro-Cy5 encapsulated in
LNPs is sensitive to the intracellular H2O2 and can be used for further in vivo experiments.
Therefore, we decided to study the biodistribution of hydro-Cy5-LNPs of two sizes—110
and 170 nm. Although intravenous studies show that the liver is the major organ depot for
nanoparticles [42], we observed the accumulation of hydro-Cy5-LNP 170 nm in the spleen
but not in the liver compared to the hydro-Cy5-LNP 110 nm, which does not allow us to
use it for detection of ROS in HCC. We successfully demonstrated ROS-sensitive detection
of tumor tissue in an orthotopic HCC model after intravenous injection of hydro-Cy5-LNP.
It should also be noted that this delivery platform could also be used for simultaneous
siRNA delivery and ROS visualization.

In conclusion, we synthesized LNPs with ROS-sensitive probes and demonstrated
the successful delivery of pDNA-LNP and hydro-Cy5-LNP to the liver. We showed that
accumulation of hydro-Cy5-LNP results in ROS-specific visualization of tumor tissue in
the mouse model of HCC compared to the control. We believe that our results present a
valuable tool to visualize ROS in liver diseases by LNPs loaded with hydro-Cy5 that can be
used in preclinical research.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines11071783/s1, Figure S1: The fluorescent images of mice
in 5 min (A) and 15 min (B) after administration of unconjugated hydro-Cy5; Figure S2: Cytotoxicity
of 110 nm LNPs; Figure S3: Images of organs (organs (heart, lungs, liver, kidneys, spleen) after cy5.5-
labeled LNP administration with 1× or 2× dye excess in 4 h and 24 h after injection. Figure S4: Whole
body fluorescent images in 10 days after LNP-HyPer7 administration; Table S1: The parameters of
LNPs synthesis.
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