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Abstract: Triple-negative breast cancer (TNBC) accounts for almost 15% of all diagnosed breast
cancers and often presents high rates of relapses and metastases, with generally poor prognosis
despite multiple lines of treatment. Immunotherapy has radically changed the approach of clinicians
towards TNBC in the last two to three years, even if targeted and specific therapeutic options are still
missing; this unmet need is further justified by the extreme molecular and clinical heterogeneity of
this subtype of breast cancer and by the weak response to both single-agent and combined therapies.
In March 2023, the National Comprehensive Cancer Network (NCCN), the main association of
cancer centers in the United States, released the last clinical practice guidelines, with an update
on classic and novel approaches in the field of breast cancer. The purpose of this comprehensive
review is to summarize the latest findings in the setting of metastatic TNBC treatment, focusing
on each category of drugs approved by the Food and Drug Administration (FDA) and included in
the NCCN guidelines. We also introduce part of the latest published studies, which have reported
new and promising molecules able to specifically target some of the biomarkers involved in TNBC
pathogenesis. We searched the PubMed and Scopus databases for free full texts reported in the
literature of the last 5 years, using the words “triple-negative breast cancer” or “TNBC” or “basal-
like”. The articles were analyzed by the authors independently and double-blindly, and a total of
114 articles were included in the review.

Keywords: breast cancer; triple-negative breast cancer; treatment; systematic review

1. Introduction

Breast cancer (BC) is the most commonly diagnosed cancer worldwide, and it accounts
for 1 in 8 cancer diagnoses; in 2020, more than 2.3 million new cases of BC were diagnosed
globally, with about 685,000 deaths directly related to it (source https://www.who.int/
news-room/fact-sheets/detail/breast-cancer; accessed on 1 March 2023). About 15% of
women who develop BC are diagnosed with triple-negative breast cancer (TNBC) [1],
which is the most aggressive form of the disease, with the highest percentages of relapse
and/or metastases that frequently make TNBC an unresectable tumor.

TNBC typically does not express estrogen and progesterone receptors and lacks
amplification/overexpression of the human epidermal growth factor 2 (HER2) [2,3], thus
hindering targeted and specific therapies. Moreover, TNBC encompasses a heterogeneous
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group of cancers, and for this reason, its treatment remains among the hardest challenges
for clinicians.

For years, and despite high toxicity rates, chemotherapy has remained the standard of
care for all-stage TNBC, although no agent has been recognized as the most specific against
this subtype of cancer. Conventional chemotherapy, involving mainly anthracyclines and
taxanes, is considered the first-line treatment, especially in the pre-operative setting, with a
consequent reduction of tumor burden and less extensive demolitive surgery. However,
even after chemotherapy treatment, recurrence is common, and prognoses are often poor
(source America Cancer Society, updated March 2022, https://www.cancer.org/cancer/
types/breast-cancer.html; accessed on 1 March 2023).

Fortunately, in the last 5 years, the treatment paradigm has shifted, allowing for a
more tailored approach for patients with TNBC. Due to its high molecular heterogeneity,
recent and complex clinical laboratory testing techniques, such as microarray analysis
and next-generation sequencing (NGS), have been improved to classify some variants
of breast cancer, including TNBC [4]. The hypothesis behind the development of such
technologies is that the routine detection of genomic abnormalities (single-nucleotide
variants, short insertions or deletions, copy number variations or fusions in multiple genes)
could theoretically lead to determining which therapy is the most suitable for a certain
TNBC subtype.

Alongside this molecular heterogeneity, TNBC is characterized by an extremely het-
erogeneous clinical behavior, and, in the last years, several efforts have been made to
dissect the complex molecular landscape of this cancer. Histologically, almost all TNBCs
(up to 95%) have been classified as invasive ductal carcinomas, while a minority have
presented different and varied histological aspects [5]. Several attempts have been made to
also establish a molecular classification of TNBC according to transcriptomic and genomic
studies. Among the best-known molecular classifications, the one that resulted from the
PAM50 (mRNA expression of 50 genes) analysis [6] and the classification by Lehmann
et al. [7] must be mentioned. Most TNBCs were classified as basal-like by PAM50 (80.6%)
through a direct comparison of 374 cancer samples, followed by HER2-enriched (10.2%),
normal-like (4.7%), luminal B (3.5%), and luminal A (1.1%); none of the intrinsic subtypes
described differed significantly in terms of the rate of pathological complete response
(pCR) or survival after chemotherapy [8]. Lehmann et al., instead, recognized six new and
stable TNBC subtypes based on their gene-expression profiles: two basal-like subgroups
(BL1 and BL2), two mesenchymal ones (mesenchymal, M, and mesenchymal stem-like,
MSL), one immunomodulatory (IM), and one luminal androgen receptor (LAR). In 10%
of cases, the subtype of TNBC was defined as unstable (UNS); in this case, a retrospec-
tive analysis found significant differences among the subtypes in terms of pCR, with BL1
cancers achieving the best responses to chemotherapy [9]. Supplementary Figure S1 sum-
marizes the characteristics of the different subtypes of TNBC according to PAM50 and
Lehmann’s classifications.

Moreover, since breast cancer development causes a huge number of molecular alter-
ations in breast epithelial cells able to modulate immune responses, some studies recently
focused on the role of the tumor microenvironment. This is often enriched in infiltrating
lymphocytes (TILs), making TNBC the most immunogenic breast cancer subtype. In ad-
dition, the predictive and prognostic values of such cells depend on the subtype itself,
as shown by Ono et al. in 2012 [10]. The discovery of TILs demonstrated the strong
immune-stimulating role of this cancer, making the immune system itself a biomarker for
contrasting cancer cells’ growth. In this regard, the genomic and transcriptomic analysis of
almost 2000 breast cancers’ architecture demonstrated how the tumors with more extensive
lymphocytic infiltration, and thus, with stronger immune and inflammatory responses,
were the ones with the most promising outcomes [11].

Different genetic alterations are also commonly found in subjects with TNBC, and
these may involve the BRCA1 and BRCA2 genes, the upregulation of PI3K-AKT pathway
molecules, the trophoblast cell-surface antigen (Trop-2), the presence of androgen receptors
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(AR) and PD-L1/L2 expression. Each of these theoretically represents a target for newly
developed and more precise drugs able to determine significant improvements in TNBC
patients’ survival and quality of life.

These genetic alterations underline also defects in the mechanisms of DNA repair,
such as homologous recombination (HR), a protective process through which the body
is able to substitute a damaged DNA portion using the homologous counterpart as a
template. In fact, HR deficiency is common in TNBC and related to BRCA1 and BRCA2
loss of function [12]. Therefore, it has been hypothesized that these abnormalities might
underpin a role for DNA-damaging compounds as adjunctive therapies [13]. For example,
in a subgroup analysis in the study by Zhang et al. [14], the use of cisplatin added to
gemcitabine highlighted a better response in HR-deficient individuals.

Because of the unmet need for specific therapies against TNBC and the high rates
of metastatic and relapsing diseases immediately related to this subtype of tumor, we
aimed to systematically review the literature dedicated to the new therapeutic strategies of
the last five years, going beyond the mere classification of the various subtypes of TNBC.
We discuss the most recent advances in the field of research, which have determined the
compilation of the recent clinical practice guidelines by the National Comprehensive Cancer
Network (NCCN), with particular attention given to phase II and III trials.

2. Data Analysis

The aim of this study was to analyze, in the updated literature, the existence of new
and promising molecular targets in the treatment of metastatic triple-negative breast cancer
(mTNBC). We used the population, intervention, comparator, outcome (PICO) model for
evaluating the effects of interventions or their variants to indicate outcome comparisons.
The search strategy was developed with the assistance of an information specialist.

The topic of this comprehensive review was focused on finding “any evidence useful
to suggest and define novel molecular targets to challenge the aggressive character of
TNBC”. To date (May 2023), other revisions dealing with the same topic (or a largely
similar one) are available. However, a systematic revision was considered useful for the
purpose of updating any previously published systematic or non-systematic revisions.
mTNBC belongs, in fact, to a scientific area where the scientific progress evolves fast and
new clinical trials are already in progress with the need for periodic updates. In this review,
all Food and Drug Administration (FDA)-approved antineoplastic drugs included in the
last NCCN clinical practice guidelines are discussed.

We searched the PubMed and Scopus databases for free full texts reported in the
literature of the last 5 years including the words “triple-negative breast cancer” or “TNBC”
or “basal-like”. In the search analysis, we included any of the following studies: multicenter
study, observational study, clinical study, clinical trial, (phase I, II, III, or IV), comparative
study, consensus development conference, review, systematic review, guideline, meta-
analysis, preprints, studies involving patients older than 18 years. The literature search
was conducted according to PRISMA guidelines.

A total of 973 articles in PubMed and 200 articles in Scopus were further analyzed
by the authors independently and double-blindly, selecting those that contained in the
title or in the abstract the following words: “metastatic” or “relapse” or “metastasis” or
“metastases”. Each study focused on the theme of therapeutic strategies for mTNBC. In
the case of discordance between the first two authors’ opinions, a third opinion was given
by another author. After all revisions, a total of 114 articles (98 PubMed and 16 Scopus
articles) were included in the review. Figure 1 summarizes the design of the study and the
article selection.
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Figure 1. Comprehensive review flow diagram. * Filters applied for PubMed: “triple-negative breast
cancer” or “TNBC” or “basal-like”, multicenter study, observational study, clinical study, clinical
trial, (phase I, II, III, or IV), comparative study, review, systematic review, guideline, meta-analysis,
preprints, studies involving adult patients. Publication years: 2018–2022, executed on 1 March
2023. ** Filters applied for Scopus: TITLE-ABS-KEY (“triple-negative” OR “triple-negative”) AND
(“TNBC”) AND (“basal-like”), human. Publication years: 2018–2022, executed on 1 March 2023.

2.1. Study Selection

Two reviewers (SG and NF) independently screened the articles retrieved from the
literature search in three separate stages: (a) titles, (b) titles and abstracts, and (c) full-text
selection. Eventual conflicts were resolved by a third reviewer (AG), who decided on
acceptance/rejection.

2.2. Data Collection Process

The same two reviewers (SG and NF) analyzed all the characteristics and data of the
articles selected. These included the study information, patient and tumor characteristics,
intervention intervals, and disease outcomes. Any eventual conflicts between the two
reviewers were again resolved by discussion and, in case of further discordance, adjudicated
by a third reviewer (AG). It was also planned to contact the corresponding authors of the
articles for eventual clarification, if needed.

2.3. Risk of Bias Assessment

The risk of bias was assessed independently by two reviewers (SG and NF), and
eventual conflicts were resolved by discussion. No automation tools or machine learning
techniques were used in this research.

2.4. Data Source

The analyzed data were extracted from the PubMed database according to the follow-
ing search queries: (triple-negative breast cancer) OR (TNBC) AND ((y_5[Filter]) AND
(ffrft[Filter]) AND (english[Filter]))) OR (basal-like). Filters: Free full text, clinical study,
clinical trial, clinical trial, phase I, clinical trial, phase II, clinical trial, phase III, clinical
trial, phase IV, comparative study, consensus development conference, consensus develop-
ment conference, NIH, controlled clinical trial, guideline, meta-analysis, multicenter study,
observational study, practice guideline, preprint, randomized controlled trial, research sup-
port, N.I.H., extramural, research support, N.I.H., intramural, research support, non-U.S.
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Gov&#39;t, research support, U.S. Gov&#39;t, non-P.H.S., research support, U.S. Gov&#39;t,
P.H.S., research support, U.S. Gov&#39;t, review, systematic review, validation study, in
the last 5 years, humans, English, female, male, adolescent: 13–18 years, adult: 19+ years,
young adult: 19–24 years, adult: 19–44 years, middle-aged + aged: 45+ years, middle-aged:
45–64 years, aged: 65+ years, 80 and over: 80+ years.

For the Scopus Database, we used the following queries: TITLE-ABS-KEY (“triple-
negative” OR “triple-negative”) AND (“TNBC”) AND (“basal-like”), selecting the last five
years of human studies.

3. Antineoplastic Agents
3.1. Chemotherapy
3.1.1. Platinum-Based Chemotherapy

TNBC is chemotherapy-sensitive, and for this reason, chemotherapy has remained
for years the standard of care (SOC) for this subtype of breast cancer. Platinum-based
chemotherapy is the most known chemotherapy regimen and was evaluated in the context
of TNBC treatment because of the fact that TNBC commonly harbors somatic BRCA gene
mutations, which lead to major susceptibility to DNA-damaging agents, such as platinum
drugs themselves [15]. In 2010, Silver et al. showed a pCR rate of 22% among the TNBC
population treated with neoadjuvant cisplatin [16], while carboplatin was later evaluated
in 2015 by Sikov et al., who showed significantly higher pCR rates in early TNBC patients
after an association of carboplatin and chemotherapy [17].

Platinum-based chemotherapy was also considered as a treatment option in cases
of mTNBC, unfortunately with limited benefits. In 2015, Zhang et al. found longer
progression-free survival (PFS) rates in mTNBC patients treated with platinum chemother-
apy compared to non-platinum treatment [18], while some other studies showed that
mTNBC, differently from TNBC, was more likely to develop resistance to chemothera-
peutic agents [19,20]. In the same setting of mTNBC, platinum-based chemotherapies
were tested in some phase II and III trials. In 2018, Zhang et al. compared the effects,
in terms of survival, in patients treated with a first-line chemotherapy regimen of cis-
platin/gemcitabine (GP arm) and that of paclitaxel/gemcitabine (GT arm) [14] as an exten-
sion of the CBCSG006 trial previously published [21]. They found a significant interaction
between the homologous recombination (HR) status and the treatment for PFS, and the
status of HR deficiency significantly correlated with a higher objective response rate (ORR)
and longer PFS in the GP arm than in the GT arm. Moreover, no significant interaction
between the germline BRCA1/2 (gBRCA1/2) status and the treatment for PFS was found,
but patients with gBRCA1/2 mutations had prolonged PFS in the GP arm compared to the
GT arm and, similarly, a numerically higher ORR.

3.1.2. Taxanes

Among the members of the taxane family, paclitaxel has played a fundamental role
since its introduction in the context of antineoplastic treatment. It is able to promote the as-
sembly of tubulin into the microtubules of cell cytoskeletons, preventing their dissociation,
and thus, blocking cell cycle progression and mitosis. Its use in the setting of mTNBC was
tested by Zhang et al. in 2018 [14] in association with gemcitabine and compared with a
combined treatment with cisplatin and gemcitabine again; this trial was already discussed
in the previous chapter concerning platinum-based chemotherapy. Again, paclitaxel was
tested in 2020 by Schmid et al. [22] in association with capivasertib (a kind of tyrosine kinase
inhibitor) in the same cancer setting (this trial is discussed in the appropriate section below).

A second member of this family is nab-paclitaxel (paclitaxel bound to albumin).
Yardley et al., in their multicenter phase II trial (tnAcity trial), evaluated the risk/benefit
profiles of two experimental arms of first-line treatment for mTNBC with nab-paclitaxel [23].
They evaluated the effects of treatment with nab-paclitaxel in association with carboplatin
(nab-P/C) or gemcitabine (nab-P/G) compared to those in association with carboplatin and
gemcitabine. The nab-P/C treatment resulted in significantly lower PFS rates than nab-P/G
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(even with similar trends of 12-month PFS) and a numerically longer ORR. Nab-paclitaxel
was tested again in 2022 by Wang et al. in their phase III trial, in association with cisplatin,
testing the differences in terms of disease outcomes with a second group treated with
gemcitabine and cisplatin [24]. The treatment with nab-paclitaxel and cisplatin significantly
increased the ORR and prolonged overall survival (OS), showing a good performance of
mTNBC outcomes and acceptable tolerability by the patients.

Similarly to paclitaxel, the third member of the taxane family, docetaxel, has the
ability to promote microtubule assembly, thus inhibiting microtubule disassembly. It
was already tested in 2009 in a phase III trial by Chan et al. [25] in association with
gemcitabine or capecitabine (two antimetabolite antineoplastic agents) in the context of
mTNBC patients pretreated with anthracyclines, showing no differences between the two
arms and suggesting that both antimetabolites were theoretically useful for association
therapy with docetaxel in the mTNBC treatment.

No other recent phase II or III trials have considered docetaxel among the main
treatments for metastatic TNBC, while a recent phase III study considered it for early TNBC
in association with epirubicin (an anthracycline, discussed below) and cyclophosphamide,
showing promising results in terms of disease-free survival [26].

3.1.3. Anthracyclines

Anthracyclines are the most common antitumor antibiotics used in the management of
TNBC. They can work by different mechanisms, such as impairing the replication of DNA
and mitochondrial function, generating oxygen-free radicals, and activating apoptosis,
matrix metalloproteinase, and the immune reaction [25].

Therapeutic regimens containing anthracyclines are often better than regimens con-
taining no anthracycline in terms of disease progression; however, they are associated
with greater toxicity and usually no improvements in OS. The most common combined
therapies involving anthracyclines include cyclophosphamide 5-fluororacil plus epirubicin
or doxorubicin (CAF/CEF) and doxorubicin/epirubicin plus cyclophosphamide (AC/EC).

TNBC treatment is often based on a multiagent regimen, which usually leads to
improved outcomes; this is usually true for both the preoperative (neoadjuvant) and post-
operative (adjuvant) regimens [27]. The IMpassion031 trial [27] is, to date, the main study
evaluating the efficacy and safety of doxorubicin in early-stage TNBC. The researchers
assessed the results obtained by combined therapy with atezolizumab (a PD-L1 inhibitor,
described below) and nab-paclitaxel followed by an AC regimen as neoadjuvant therapy.
In this phase III trial, the patients were randomly assigned (in a 1:1 ratio) with the afore-
mentioned regimen or with chemotherapy and placebo. The neoadjuvant treatment with
atezolizumab in combination with nab-paclitaxel and anthracycline-based chemotherapy
significantly improved the pCR rates, with an acceptable safety profile.

Liposome-encapsulated doxorubicin (liposomal doxorubicin) is the new formulation
of doxorubicin, created with the aim of overcoming the cardiotoxic effects of this molecule.
The experience concerning the use of liposomal doxorubicin in mTNBC patients is extremely
limited, and the few studies published have rarely reported significant results in terms of
PFS, pCR, or OS. Two single-center studies have recently reported experience with this
drug regimen in association with gemcitabine: the first resulted in significantly longer PFS
and OS rates in heavily pretreated mTNBC patients [28], while the second one found the
anthracycline chemosensitivity to be an independent predictive and prognostic factor for
mTNBC patients receiving PLD [29].

3.1.4. Anti-Metabolites

In the category of anti-metabolites, capecitabine is one of the main antineoplastic
agents. It is prevalently used in colorectal and in breast cancers but was also later approved
by the FDA for several other oncological disorders. It is a prodrug of fluorouracil, which
is enzymatically converted to 5-fluorouracil (5-FU) in tumor tissue through the activa-
tion pathway of thymidine phosphorylase, and thus, it is able to block DNA synthesis,
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inducing cell death [30]. This oral agent was initially approved in anthracycline and taxane-
resistant breast cancer and subsequently approved for use in combination with docetaxel
as second-line therapy in metastatic BC, or in combination with small-molecule lapatinib in
women with human epidermal growth factor receptor type 2 (HER2)-positive metastatic
BC, following progression on trastuzumab-based therapy [31,32].

Capecitabine was also tested in the setting of metastatic BC in 2011 in a phase I/II
study by Villanueva et al. [30], in association with cabazitaxel or docetaxel (both belong-
ing to the taxane family), showing it to be a plausible alternative in the case of recurrent
BC after anthracycline treatment. Always in the setting of metastatic BC (the study in-
cluded different BC subtypes), the PROCEED phase III trial by Park et al. compared the
combination therapy with capecitabine and irinotecan (a topoisomerase1, Top1, pro-drug
inhibitor) to capecitabine alone in HER2-negative BC. We report only the results concerning
mTNBC (90 subjects), where the combination therapy significantly improved PFS, while
the ORRs were only numerically higher in the same sub-cohort of patients and failed to
reach statistical significance [33].

The second member of this drug family is gemcitabine, which is a deoxycytidine-
analog antimetabolite and a nucleotide analog that inhibits the synthesis of DNA similarly
to capecitabine. It was already tested in the early 2000s in association with paclitaxel in
the setting of metastatic BC, showing higher response rates and OS when compared to
paclitaxel alone [34]. In 2011, Maisano et al. published their phase II trial [35], where
gemcitabine was combined with carboplatin in mTNBC patients pretreated with taxanes,
showing an ORR of 32% and promising median times of PFS and OS, concluding that
gemcitabine was a reasonable option for mTNBC in the case of advanced lines of treatment.

The other phase II and III trials concerning gemcitabine in the setting of mTNBC by
Zhang [14], Yardley [23], and Wang [24] were already discussed in previous chapters.

3.1.5. Microtubule Inhibitors

Eribulin mesylate, belonging to a class of anticancer medication of microtubule dy-
namic inhibitors, was approved by the United States FDA for patients with metastatic BC
who have received at least two prior chemotherapy regimens, including an anthracycline
and a taxane in either the metastatic or adjuvant setting. The EMBRACE trial, published
in 2011 [36], showed significantly improved survival by 2.5 months compared to treat-
ment of physician’s choice (TPC) in women with 2 to 5 prior lines of therapy. In 2018,
Mougalian et al. [37], asserted that, in a real-world analysis, eribulin is often used in a more
heterogeneous population than that included in randomized-controlled trials (RCTs) in
terms of ethnicity and metastatic burden, without significant reduction in terms of OS,
safety, or intolerability. They thus suggested that eribulin mesylate could have a significant
impact on the clinical benefit when used as a first- or second-line treatment, not only as a
third- or fourth-line, even though appropriate RCTs concerning this aspect of treatment are
still missing in the literature.

Belonging to the same family, vinorelbine, a vinca alkaloid with the capability of
arresting the cell cycle by acting at the microtubular level on tubulin, appears as another
therapeutic choice in advanced TNBC. In a subgroup analysis from a study on breast cancer
responses to the metronomic administration of vinorelbine by Liu et al. [38] including
thirteen TNBC patients, the authors obtained a mean OS of 24.5 months and stable disease
in 23.1%. Another study by Valerio et al. investigated instead its use as a first-line agent
together with capecitabine in the setting of mTNBC, showing a median PFS and OS of 7.9
and 29.2 months, respectively [39].

However, the administration of vinorelbine was also tested as a second/third-line
agent in patients not responding to prior standard chemotherapy, alone or even combined
with immunotherapy. In a small cohort of forty-one patients with mTNBC pretreated with
taxanes and/or anthracyclines, the administration of vinorelbine along with a platinum
regimen also demonstrated promising results in terms of complete (7.3%) and partial
responses (26.8%), stability of the disease (34.1%), with an OS of 18.9 months and PFS of
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6.7 months [40]. Another recent study (the NAN trial [41]) by Li et al. highlighted the effect
of associating vinorelbine with apatinib (belonging to the tyrosine kinase inhibitor family),
obtaining improved PFS and OS (3.9 vs. 2.0 months; 11.5 vs. 9.9 months, respectively). This
therapeutic possibility was also analyzed in a phase II trial of vinorelbine and oxaliplatin
by Zhang et al. [42], showing a median PFS of 4.3 and OS of 12.6 months.

Similarly, ixabepilone, a semi-synthetic analog of epothilone B acting as a microtubule
stabilizer, and therefore, arresting the cell cycle, appears to be of interest in advanced BC
patients failing first-line therapy (often taxanes/anthracyclines), either used as a single
agent or in combination [43]. A pooled analysis obtained from two phase III trials by
Rugo et al. [44] highlighted a prolonged median PFS (4.2 vs. 1.7 months, despite no
significant differences observed in the OS) and a better response rate (31% vs. 15%)
using ixabepilone in addition to capecitabine rather than capecitabine alone in advanced
TNBC patients.

3.1.6. Alkylating Agents

Cyclophosphamide is the main drug belonging to alkylating agents and acts preva-
lently through the inhibition of protein synthesis driven by DNA and RNA crosslinking [45].
It is a type of nitrogen mustard drug able to work as a co-factor with other antimitotic
and antineoplastic agents in several malignancies, including Hodgkin and non-Hodgkin
lymphoma, multiple myeloma, chronic lymphocytic leukemia (CLL), neuro- and retino-
blastoma, small-cell lung cancer, and sarcoma, while its application has been found in
the setting of TNBC in association with other standard chemotherapeutic agents, such as
epirubicin or doxorubicin, leading to the activation of DNA damage response (DDR) and
making these DNA repair mechanisms good targets for antineoplastic therapy [46].

Most trials involving cyclophosphamide prevalently considered this drug as a neoad-
juvant combined therapy, with or without adjuvant therapies. The IMpassion031 trial [27]
was already discussed in the chapter concerning treatment with anthracyclines, while a re-
cent study by Anders et al. [47], evaluating the use of a priming dose of cyclophosphamide
prior to anti-PD1, found that this combined therapy was not effective in ameliorating PFS
nor in decreasing peripheral blood regulatory T cells (and thus increasing the antitumoral
response, as shown in some pre-clinical observations [48]).

3.1.7. Antibody-Drug Conjugates

Recently, sacituzumab govitecan (SG) also joined the family of chemotherapies tested
for mTNBC. This is an antibody–drug conjugate composed of an antitrophoblast cell-
surface antigen 2 (Trop-2) IgG1 kappa antibody coupled to SN-38, the active metabolite
of irinotecan and a topoisomerase inhibitor [49]. The ASCENT trial [50], published in
2021, demonstrated that PFS and OS were significantly prolonged in the cohort of patients
treated with SG compared to single-agent chemotherapy of the physician’s choice (eribulin,
vinorelbine, gemcitabine, or capecitabine). All patients had previously received taxanes
as a first-line treatment, and all of them were initially diagnosed with mTNBC. In 2022,
O’Shaughnessy and colleagues [51], assessed a sub-analysis of the same ASCENT trial,
showing how SG could be considered a favorable and manageable therapeutic option for
mTNBC regardless of the cancer subtype at the initial diagnosis, and thus allowing for, at
least theoretically, the optimal treatment allocation at the first diagnosis.

Based on the concept that almost 60% of human epidermal growth factor receptor 2
(HER2) negative metastatic BC express low levels of HER2, one possible targeted therapy
against this subtype of cancer involves HER2-low tumors. This is defined in cases with
a score of 1+ in immunohistochemical (IHC) analysis or an IHC score of 2+ and simul-
taneous negative results following in situ hybridization (ISH) [52,53]. Since for patients
with hormone receptor-negative and HER2-negative metastatic BC, especially in cases of
absent BRCA1/2 mutations, only a few targeted agents are available, a new antibody–drug
conjugate was recently developed, trastuzumab deruxtecan, specifically directed towards
HER2. This is a humanized monoclonal antibody linked to a topoisomerase I inhibitor,
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approved by the FDA for the treatment of metastatic HER2-positive BC [54]. It has already
been tested in phase I and II studies, with good results in terms of the ORR and PFS in
pre-treated patients with HER2-low mBC [55,56], while a very recent phase III clinical trial
(DESTINY-Breast04) [57] compared the effects of this anti-HER2 compound in patients
randomly assigned (in a 2:1 ratio) to trastuzumab deruxtecan or the physician’s choice of
chemotherapy, finding significantly longer PFS and OS in the cohort of subjects treated
with the new compound in HER2-low mBC.

3.2. Immune Checkpoint Inhibitors

Immune checkpoints refer to a multitude of inhibitory mechanisms involved in the
extremely complex immune response to cancer. Such checkpoints are composed of the
ligands on the cancer cells and the complementary receptors on the CD8+ T cell, and
the most known bindings include PD-1/PD-L1, CD80-CD86/CTLA4, MHC II/LAG3,
CD155/TIGIT, GAL9/TIM3, and others [58].

Targeted inhibition of such inhibitory molecules has dramatically modified the strate-
gies for activating anti-tumor immunity in cancer therapy, and some humanized antibodies
targeting these immune checkpoints have also been tested in the setting of mTNBC. The
extremely complicated interactions between T-cells and cancer cells are synthesized in
Figure 2.
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Figure 2. Interactions between the cancer cell and the T-cell: PD-1, located on the surface of the
T-cell, binds PD-L1, on the surface of the cancer cell. Anti-PD-L1 and anti-PD-1 are able to inhibit
this interaction.

Gene expression and clinical data analyses of signaling processes involved in TNBC
have in fact shown that higher immune response levels are associated with better clinical
outcomes [7], while treatment with anthracyclines is able to induce the immune response
through the activation of CD8+ T cells [59].

Signaling through the programmed death 1 (PD-1) inhibitory receptor upon binding
PD-L1 on the cancer cell surface acts like the other molecules cited above, and it is for
sure the most studied binding concerning immune checkpoint inhibition. The existence
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of PD-1/PD-L1 was discovered in the early 2000s by Dana-Farber Cancer Institute sci-
entists in Boston, and nivolumab was the first developed PD-1 inhibitor. It is currently
used in certain types of cancers, such as metastatic melanoma, non-small-cell lung cancer
(NSCLC), Hodgkin lymphoma, and others, but it is not recommended by the NCCN clinical
practice guidelines.

Atezolizumab is an engineered humanized IgG1 monoclonal antibody able to tar-
get the PD-L1 protein, thus preventing binding with PD-1 (but allowing, at the same
time, the alternative ligand PD-L2 to bind to PD-1 in order to reduce autoimmune hyper-
responsiveness) and was tested in several recent clinical trials in the setting of mTNBC.
In 2018, Schmid et al. in their Impassion130 phase III trial [60], compared combined treat-
ment with atezolizumab and nab-paclitaxel to placebo and nab-paclitaxel, finding longer
PFS and higher ORRs (56% vs. 49%) in the group treated with atezolizumab. Adams et
colleagues [61] evaluated the safety, efficacy, and clinical activity of combination therapy
with atezolizumab and nab-paclitaxel after a two-year follow-up. The ORR was 39.4%, and
the median duration of response (DOR) was 9.1 months; the median PFS and OS were 5.5
and 14.7 months, respectively. Atezolizumab was also tested in another phase II study
(the ALICE trial), in combination with immunogenic chemotherapy (pegylated liposomal
doxorubicin plus cyclophosphamide) in patients with mTNBC. The association therapy
was found to be safe and well-tolerated and led to improved PFS (4.3 vs. 3.5 months
compared to the group treated with immunogenic chemotherapy plus placebo) [62]. The
latest phase III trial, performed by Miles et al. and published in 2021 (the IMpassion131
trial [63]), evaluated atezolizumab in the same setting of mTNBC, but in association with
paclitaxel, comparing the effects of this combined therapy with paclitaxel alone. The pa-
tients were randomly assigned to combined therapy or placebo plus paclitaxel in a 2:1 ratio.
The PFS and OS analyses did not show significant differences between the groups, while
numerically better ORRs were reported in the PD-L1-positive population only.

Another immune checkpoint inhibitor (ICI) is pembrolizumab, which is a humanized
IgG k antibody targeting PD-L1, originally developed for treating metastatic melanoma,
and tested in the last several years in different clinical trials, also in the setting of mTNBC. In
2019, Adams et al. [64] evaluated the safety and clinical response in patients with mTNBC
treated with first-line monotherapy with pembrolizumab. They found a median PFS and
OS of 2.1 and 18.0 months, respectively. The ORR, instead was 21.4%. In conclusion,
pembrolizumab had a manageable safety profile and durable antitumor activity as a first-
line therapy against mTNBC. Ho et al., in 2020, tested pembrolizumab in association
therapy with radiotherapy in a small cohort of patients with mTNBC not tested for PD-L1
expression [65]. The ORR for the entire cohort was 17.6%, and the six-month PFS was 18%,
even though the main limitation of the study was the small size of the sample considered.

Another important trial concerning pembrolizumab was published in the same year
by Schmid et al. [66], with their phase III trial KEYNOTE-522, even though this study
was conducted on patients with stage II or III TNBC and not with a diagnosis of mTNBC.
Meanwhile, the KEYNOTE-119 trial, published in 2021 [67] was focused on mTNBC
patients specifically. Pembrolizumab or single-drug chemotherapy of the physician’s choice
(capecitabine, eribulin, gemcitabine, or vinorelbine) were randomly assigned (in a 1:1
ratio) to patients who had received one or two previous systemic treatments. However,
despite the promising results derived from previous studies concerning pembrolizumab
in the setting of mTNBC, this trial did not show significant improvements in terms of
OS, although the authors concluded that pembrolizumab should be reserved for PD-L1-
enriched tumors and, preferably, in combination therapies. Based on these observations, in
the KEYNOTE-355 trial, Cortes and colleagues [68] evaluated the effects of pembrolizumab
plus the investigator’s choice of chemotherapy (nanoparticle albumin-bound paclitaxel,
paclitaxel, or gemcitabine–carboplatin) in comparison with placebo plus chemotherapy,
finding that the mTNBC subjects with a higher expression of PD-L1 (combined positive
score, CPS ≥ 10) obtained better results with combined therapy of pembrolizumab plus
chemotherapy than chemotherapy alone.
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Dostarlimab-gxly is one of the newly developed ICIs. It is a monoclonal IgG4 antibody
targeting PD-1 and was recently approved by the FDA for all subtypes of breast cancer
presenting mismatch repair deficiency. The latest NCCN guidelines have introduced
this drug among those suggested for third- or higher-line treatment, considering their
favorable effect on treating mismatch repair-deficient (dMMR) advanced-stage breast
cancer in case of the unavailability of other treatment options [69]. In this sense, although
no RCTs concerning dostarlimab-gxly exist, patients with mTNBC who are candidates for
treatments including one ICI should undergo testing for mismatch repair/microsatellite
instability [70].

3.3. PARP Inhibitors

Behind developing carcinogenesis, DNA damage probably represents the leading
process and can occur through several mechanisms. Single-strand breaks (SSBs) and
double-strand breaks (DSBs) are represented by damage at one or two of the DNA strands,
respectively. While SSBs are common and efficient processes, DSBs are comparatively
rare. Other DNA damage mechanisms involve helix distortion and replication errors.
SSBs, helix-distorting damage, and replication errors are corrected by base excision repair,
nucleotide excision repair, and mismatch repair, respectively. On the contrary, DSBs are
considered among the most cytotoxic mechanisms of DNA damage, and a key role is
played by homologous recombination and non-homologous end-joining (NHEJ) [71,72].

Poly(ADP-ribose) polymerases (PARPs) include several multifunctional enzymes in-
volved not only in base excision repair mechanisms but also in DSB repair [73]. Among
them, PARP-1 is the most important one, being essential for maintaining genome in-
tegrity [74]. Approximately 25% of patients with TNBC are carriers of breast cancer
susceptibility gene 1 or 2 (BRCA1/2) deleterious mutations, which are, in turn, essential
components of homologous recombination repair (HRR) [75]. For this reason, tumors with
BRCA1/2-inactivating mutations are strongly dependent on the SSB repair pathways, thus
resulting in an accumulation of DNA alterations (and apoptosis) in cases of DNA damage
repair impairments [76]. In Figure 3, the mechanism of action of PARP inhibitors is shown.
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PARP inhibitors (PARPi) were developed with the aim of avoiding this tumoral cell
repair system, leading to the accumulation of unpaired damages and, thus, to tumor cell
death. This is obviously true in cases of tumors harboring HRR pathway defects, which are
tumors sheltering BRCA1/2 mutations. Two PARPis were recently approved by the FDA
for mTNBC treatment (olaparib and talazoparib), while other members of the same family
are still under investigation with the same goal.

Olaparib, an oral member of the PARPi family, was first approved for the treatment
of patients with recurrent ovarian cancer and evidence of a BRCA mutation. It was later
tested in the context of metastatic breast cancer in patients with germline BRCA1/2 muta-
tions in two separate trials in 2010 and 2015, showing safety and promising antitumoral
activity [77,78]. In 2017, Robson et al. published their phase III trial, in which patients
were randomly assigned (in a 2:1 ratio) to receive single therapy with olaparib or standard
therapy (with capecitabine or eribulin mesylate or vinorelbine). They calculated a median
PFS of 2.8 months longer and a risk of disease progression or death 42% lower in the
olaparib-treated group, showing a significant benefit of such therapy in HER-2-negative
metastatic breast cancer patients carrying BRCA1/2 mutations [79]. The second and final
part of the study (OlympiAD trial) was published in 2019, and, although it did not demon-
strate statistically significant improvement in terms of OS by olaparib treatment compared
to standard chemotherapy, it showed a possible meaningful OS benefit among the patients
not previously treated with chemotherapy [80].

As for talazoparib, instead, a first phase I trial was published in 2017 by De Bono et
colleagues [81]. Talazoparib monotherapy resulted in a 50% RR with an overall 86% clinical
benefit rate at 24 weeks in a small cohort of 18 patients with advanced BC and germline
BRCA1/2 mutations. Moreover, a phase II trial (ABRAZO study) by Turner et al. published
in 2018 showed that the response rate of patients with previous platinum chemotherapy
was 21%, while that registered in the group treated with three or more cytotoxic regimens
for advanced BC (not treated with platinum-base therapies) was 37% [82]. The leading
study concerning talazoparib treatment was published in the same year by Litton et al., the
EMBACA trial [83]. This was a randomized, open-label phase III trial, where patients with
advanced BC and a germline BRCA1/2 mutation were assigned (in a 2:1 ratio) to talazoparib
treatment or standard single-agent therapy. These researchers showed that talazoparib
treatment was able to induce a longer median PFS (8.6 vs. 5.6 months) compared to the
one registered in the control group of patients treated with single-agent therapy of the
physician’s choice (capecitabine, gemcitabine, or eribulin). Similarly, the ORR was higher
in the talazoparib group (62.6% vs. 27.2%), while in general, significant delays in the time
to clinical deterioration were favorable with PARPi treatment.

3.4. Tyrosine Kinase Inhibitors

Tyrosine kinase inhibitors (TKIs) consist of agents targeting peculiar enzymatic pro-
cesses involved in the phases of the cell cycle, and therefore affecting cell proliferation and
growth or angiogenesis [84]. This ability allows these molecules to act more specifically
compared to conventional chemotherapy, thereby determining theoretically minor side
effects and giving them the possibility of being administered in combination therapy [85].
We now discuss several kinases and molecular cascades that have been considered possible
targets for the treatment of TNBC.

Trilaciclib, an intravenous reversible inhibitor of CDK4/6, is able to arrest proliferation
in healthy cells, such as hematopoietic stem cells and lymphocytes, thereby protecting them
from the myelosuppressive effect of the subsequent systemic chemotherapy agent [86]
but appearing less effective in cases of TNBC [87]. However, the addition of trilaciclib to
combined chemotherapy (with gemcitabine and carboplatin) demonstrated a better overall
survival (17.8 vs. 12.6 months) in a phase II study by Tan et al., an effect that seemed to
not be influenced by the level of PD-L1 expressed [87]. Based on these promising results,
a phase III trial is ongoing by Goel et al. (PRESERVE 2), with the aim of establishing the
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efficacy and safety of trilaciclib administration in a first-line gemcitabine and carboplatin
regimen, stratifying patients according to PD-L1 status [88].

Capivasertib, buparlisib, and taselisib share the capability of acting along the phos-
phatidylinositol 3-kinase (PI3K)/AKT/mammalian target of the rapamycin (mTOR) signal-
ing pathway, which is often over-expressed in breast cancer [89], determining an increase
in cellular motility and proliferation and a reduced effect of cytotoxic agents [90]. The oral
agent capivasertib has a role as a PI3K/AKT inhibitor and displayed antitumor activity
on a pre-clinical level, especially when associated with taxanes [91]. In a phase II trial
by Schmid et al., the association of capivasertib with paclitaxel compared to paclitaxel
alone demonstrated in over 140 TNBC patients an increase in the survival rate (PFS 5.9
vs. 4.2 months; OS 19.1 vs. 12.6 months), which appeared to be even more significant
when considering patients with specific PIK3CA/AKT1/PTEN-mutated tumors (PFS 9.3
vs. 3.7 months) [22]. Buparlisib (BKM120) acts as a PI3K inhibitor as well, and in a phase
II study by Garrido-Castro et al., it was administered over four weeks on a cohort of
fifty women with metastatic TNBC, obtaining stability of the disease over four months in
12% of the patients (surprisingly, none of them had PIK3CA-, AKT1-, or PTEN-identified
mutations), with a median PFS and OS of 1.8 and 11.2 months, respectively [92]. As the
specificity of PI3K inhibitors favors their use in combination therapy, a phase IB/II study
by Lehmann et al. [93]. investigated the association of taselisib, another PI3K inhibitor,
with hormonal therapy in a small cohort of TNBC patients. When administered in combi-
nation with enzalutamide, taselisib obtained better responses than hormonal therapy alone
(CBR of 35.7% vs. 0%, and median PFS of 3.4 months), with patients expressing androgen
receptors showing a better response (CBR 75%).

ENMD-2076 is an orally active kinase inhibitor that acts upon Aurora A and other
kinases contributing to the process of angiogenesis, such as VEGFRs and FGFRs, with the
effect of inhibiting the neoplastic mitotic activity and angiogenesis [94]. In TNBC, this effect
was deepened in a phase II trial by Diamond et al. [95] involving forty-one patients with
either metastatic or local disease. The authors found a 6-month CBR of 16.7%, with stability
of the disease at 24 weeks for most patients, and partial response for only two of them. As
could be possibly expected, they also observed on tumor biopsies a decrease in cellular
proliferation and microvessel density, and increased p53 (a regulatory protein that is often
mutated in human cancers) and p73 (homolog of p53).

Another member of this family is cobimetinib, a molecule that antagonizes mitogen-
activated protein kinase (MAPK)/extracellular signal-regulated kinase (MEK), a cascade
that is often dysregulated in BC, leading to immunomodulation and chemoresistance [96],
and whose inhibition has been shown to potentiate in vitro the apoptotic effect of tax-
anes [97]. To further investigate its effect as a combination therapy in vivo, a phase II
study by Brufsky et al. was performed, and it showed a potential benefit with a better PFS
(5.5 vs. 3.8 months) when using the combination of cobimetinib and paclitaxel rather than
paclitaxel alone with placebo, despite not reaching statistical significance in a cohort of
about one hundred patients [98].

Further therapeutic targets appear to be of interest when considering therapy with
TKI. Larotrectinib and entrecitinib are TRK inhibitors that might have a future role in
TNBC therapy. Both drugs appear to have good tumor activity in neoplasms that are TRK
fusion-positive, including breast cancer [99], and despite the lack, to our knowledge, of
phase II/III trials on the role of these agents on TNBC patients specifically, there are some
case reports in the literature of TNBC patients with recognized NTRK fusion alterations
displaying optimistic results when treated with these agents [100]. Another molecule to be
considered is selpercatinib, an inhibitor of RET that is currently used in the treatment of
some solid neoplasms, such as thyroid and lung cancers, but is still underexplored in the
setting of TNBC [99,101].

Overall, although some TKIs have more solid evidence than others, it is essential to
characterize the molecular aberrations present in TNBC patients in order to be able to offer
the right therapy, especially when considering an approach with a selected TKI.
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3.5. Alternative Therapies

Alternative therapies were recently hypothesized to be useful in patients with TNBC,
especially in those with advanced cancer progression and previously treated with SOC
therapy. Although TNBC typically does not express estrogen or progesterone receptors (ER
and PgR, respectively), one TNBC subtype (the luminal androgen receptor, LAR subtype)
appears to be hormonally regulated, and its growth was thought to be driven by signaling
led by the androgen receptor (AR) [7,102,103]. However, recent studies have shown how
up to half of all TNBCs express Ars (not only the LAR subtype), suggesting that Ars could
act as potential targets for BC therapy. Enzalutamide, as a kind of AR inhibitor, has the
potential to reduce baseline cell proliferation, anchorage-independent growth, migration,
and invasion, and it is able to increase apoptosis in AR+-TNBCs [104]. Enzalutamide was
tested in the setting of mTNBC by Lehmann and colleagues in 2019 [93]. Its AR inhibition
efficacy was tested alone or in combination with taselisib. In the first phase of the study
(phase Ib), the researchers determined the maximum tolerated dose of both drugs, while
in the second phase (phase II), they randomly assigned patients to a single treatment or a
dual treatment, finding that the patients with LAR mTNBC had a better clinical response
to the associated therapy.

In the context of AR inhibition, recent studies have focused on the role of seviteronel
in AR+ tumor cells. Differently from enzatulamide, seviteronel is able to inhibit both
cytochrome P450 17α-hydroxylase/17,20 lyase (CYP17 lyase, an enzyme necessary for
androgen production [105]) and ARs. Besides the hypothetic role that this double inhibition
could have on TNBC cells, some researchers have recently reported that AR is able to act as
a mediator of radioresistance in TNBC, making it an interesting biomarker for predicting
the eventual response to radiotherapy [106]. In this sense, a group of researchers from the
USA recently explored the role of seviteronel in the radiosensitivity of AR+ TNBC, finding
a favorable effect of this drug in combination with radiotherapy, much different from that
reported for combined enzatulamide–radiotherapy treatment [107].

The field of research dedicated to antitumoral activities is in continuous progress, and
the interest in newly discovered factors promoting oncogenesis or inhibiting cell apoptosis
is always higher [108]. Among the second-messenger molecules, hydrogen sulfide (H2S)
has been found to participate in many physiological and pathological processes [109–111].
H2S liberation derives from endogenous production with the need for L-cysteine as a sub-
strate. Endogenous H2S and low levels of exogenous H2S are able to induce angiogenesis
and simultaneously inhibit cell apoptosis, accelerating their vital cycle [112]. Contrarily,
H2S donors can selectively inhibit cancer cell progression, inducing intracellular acidi-
fication and inhibiting the proliferation and metastasis of tumor cells through several
intracellular pathways [113,114], although the effect of these substances on animal health is
still uncertain. Hence, H2S donors are, theoretically, a possible therapeutic solution for all
types of tumors, and they have been studied also in the context of TNBC. Recently, Li et al.
reviewed the role of these compounds in this subtype of BC, leaving the door open for the
possibility of their use in the next future [115].

Some specific compounds have been developed in the last several years to restore p53
protein functionalities. The p53 protein is known for playing a significant role in conserving
DNA stability, thus preventing cancer development. In particular, after noticing any DNA
damage, this protein is induced and activated, causing cell-cycle arrest [116]. Nevertheless,
in the case of excessively extended damage, it leads to cell apoptosis and death. Several
cancers (and particularly TNBC) are associated with mutations in the p53 gene (mtp53),
located on chromosome 17, with obvious uncontrolled DNA damage repair and missed
cell apoptosis; by reverting this mutational process, it is theoretically possible to induce
altered cell apoptosis, defeating that subtype of cancer. Based on this idea, several natural
and naturally derived compounds have already been studied (or are currently being tested)
for their ability to target mtp53, especially in animal models, but also for the few side effects
caused, differently from classic antitumoral drugs.
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p53 reactivation and induction of mass apoptosis (PRIMA-1) was recently identified
and tested for its ability to induce conformational mtp53 changes that facilitate binding to
DNA, with the aim of leading to cell apoptosis [117]. PRIMA-1 is also able to recognize
cells expressing mtp53 and unmutated p53, and its effectiveness depends especially on the
intracellular mtp53 protein levels. Moreover, the effects of PRIMA-1 seem to be potentiated
by the addition of a methyl group, yielding PRIMA-1Met, called APR-246, which is more
soluble and more active than PRIMA-1. APR-246 activity was tested in animal models and
showed capabilities in increasing the levels of reactive oxygen species (ROS), leading cells
to autophagy [118].

Among mtp53 reactivators, together with other plant-derived nutraceuticals, such
as luteolin, curcumin, and members of the flavonoids family, which are currently under
investigation in the field of oncology, COTI-2, a third-generation thiosemicarbazone, was
recently shown to induce antitumor activity also in the context of TNBC, at least in vitro
and in vivo in animal models [119]. Besides its activity on mtp53 reaction, differently from
PRIMA-1 and APR-246, COTI-2 seems to be also effective at targeting rapamycin (funda-
mental in the mTOR pathways, which regulate cell growth, proliferation, and survival),
inhibiting it and activating AMP-activated protein kinase (AMPK) [120].

The use of non-coding RNAs (ncRNAs) is also a theoretically useful therapeutic
approach in the treatment of some types of cancers, and this happens because such ncR-
NAs have the ability to regulate gene expression at both the transcriptional and post-
transcriptional levels [121]. Short interfering RNA (siRNA) and microRNA (miRNA) are
two of the main ncRNAs, and both have the potential for treating aggressive tumors, such as
TNBC. miRNAs are able to regulate gene expression by translational repression or mRNA
degradation, while siRNAs can specifically silence genes implicated in cancer pathogenesis.
Patisiran and givosiran were the first developed siRNA-based therapies, and miravirsen
was the first drug belonging to the miRNA family. Currently, neither miRNA-based nor
siRNA-based therapies are approved for the treatment of BC, but a recent review shed
light on their potential to act as prognostic biomarkers for different cancers, including
TNBC [122].

Cancer cells are notably characterized by an aberrant gene expression, and the acety-
lation of histone proteins contributes to it [123]. Histone deacetylases (HDACs) are the
enzymes able to catalyze this reaction, and their inhibition was thought to be useful in
combination therapy for some types of cancer, including TNBC. In preclinical studies,
chidamide, an HDAC inhibitor, was found to inhibit both the proliferation and migration of
TNBC cells [124,125], and, based on this, a group of Chinese researchers recently tested, in
a phase II study, the effectiveness of chidamide in combination with cisplatin in the setting
of mTNBC [126]. However, this combined therapy did not lead to significant improvement
in the ORR or PFS, although the small size of the sample (16 patients enrolled) should
be considered.

In 2003, some researchers from the USA first identified from BC the stem cells that gave
start to carcinogenesis and were able to distinguish tumorigenic cells from non-tumorigenic
cells [127]. Aldehyde dehydrogenase (ALDH) and CD24/CD44 were recognized as two of
the main cancer stem cell (CSC) markers. Moreover, CXCR1, whose binder is CXCR1, was
found as the main marker of ALDH+CSC [128]. This binding on the CSC surface somehow
protected it from pro-apoptotic signals, and this was the rationale for the development
of an allosteric inhibitor of CXCR1, reparixin, which was first tested in vitro in single
administration or in combination with taxanes [129]. In 2017, reparixin was studied again
in a pilot study combined with taxanes, showing some good results, especially in long-
term observations [130], while in a more recent phase II trial (the fRida trial), a group of
researchers from several different countries randomly assigned patients (in a 1:1 ratio)
to a combined reparixin –paclitaxel treatment or placebo, without showing significant
improvement in terms of PFS prolongation [131].
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4. Focus on the New NCCN Clinical Practice Guidelines

In March 2023, the NCCN, the main association of cancer centers in the United States,
released the updated clinical practice guidelines for the treatment of breast cancer. Among
the aims of this review, there is a willingness to synthesize them in order to give readers a
more precise point of view on the choices made by the NCCN in the setting of mTNBC.

Once the presence of a metastatic TNBC is confirmed, the NCCN guidelines underline
that quantitative assessment of PD-L1 with the determination of the combined positive
score (CPS) is necessary to proceed further with cancer classification. The CPS is calculated
on the basis of the number of PD-L1+ cells (including tumor cells, lymphocytes, and
macrophages) in relation to the total tumor cells and is one of the factors influencing the
therapeutic choice [132].

As previously stated, immunotherapy has radically changed the approach of oncol-
ogists to cancers, and this is particularly true in the case of TNBC. In cases of recurrent
unresectable (local or regional) or stage IV (M1) TNBC, the NCCN guidelines recommend
both PD-L1 CPS and BRCA1/2 mutational status determination in the phase preceding the
first treatment.

Table 1 summarizes all the main phase II and III trials concerning the FDA-approved
drugs that are recommended in the most recent NCCN clinical practice guidelines for
the treatment of recurrent unresectable or metastatic TNBC. We report all the trials that
were specifically designed for TNBC, while all those considering other subtypes of BC
were excluded.

In Table 2, instead, we recapitulate the recommended steps of therapy as suggested by
the same NCCN guidelines.

When the PD-L1 CPS is more than or equal to 10, regardless of the BRCA mutation
status, mTNBC is supposed to be responsive to combination therapy with pembrolizumab
and systemic chemotherapy. On the contrary, in the case of a PD-L1 CPS lower than 10,
the treatment choice depends on the germline BRCA1/2 mutational status. In the case of
mutated BRCA1/2, PARP inhibitors and platinum-based chemotherapy are the preferred
regimens (both have a Category 1 recommendation, indicating uniform consensus in the
intervention). When BRCA1/2 mutations are absent, systemic chemotherapy becomes the
preferred regimen. More details concerning this particular subgroup of treatment can be
found in Table 3.

As for the second line of treatment, the choice must be taken depending on the
BRCA1/2 mutations, even if in any subtype of mTNBC, systemic chemotherapy (the same
agents reported in Table 3) and sacituzumab govitecan can be considered for treatment
(sacituzumab govitecan may be used for mTNBC patients who have received at least two
prior therapies). In cases of BRCA1/2 mutations, PARPis are again the preferred agents,
while in cases with an absence of mutations and, simultaneously, are HER2 IHC 1+ or
2+/ISH-negative, the choice falls on fam-trastuzumab deruxtecan-nxki (anti-HER2).

According to the NCCN guidelines, in the case of third-line treatment, there are two
main possibilities of treatment: systemic chemotherapy (again, the same agents reported in
Table 3) or targeted agents based on specific genetic mutations. All third-line therapeutic
agents are summarized in Table 4. Note that all of them are considered under Category 2A,
meaning that their choice is based on a lower level of evidence.
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Table 1. Main phase II and III trials concerning specific metastatic TNBC treatments.

Authors Trial Registration
Code

Sample
Size, n

Study
Design

Study
Type Study Duration Treatment PFS and/or OS Other Clinical Results

Zhang et al.
(CBCSG006 trial) [14] NCT01287624 240 Phase III RCT 11 January–13

November
Cisplatin + gemcitabine (GP) vs.

paclitaxel + gemcitabine (GT)

PFS: 7.73 (95% CI 6.46–9.00) for
GP vs. 6.07 (95% CI 5.32–6.83)

for GT arm
OS: NS

-

Yardley et al.
(tnAcity trial) [23] NCT01881230 191 Phase II RCT 13 September–15

April

Nab-paclitaxel + carboplatin
(nab-P/C) vs. nab-paclitaxel +

gemcitabine (nab-P/G) vs.
gemcitabine + carboplatin (G/C)

PFS: nab-P/C vs. nab-P/G 8.3
vs. 5.5 (HR 0.59, 95% CI

0.38–0.92); nab-P/C vs. G/C
8.3 vs. 6.0 (HR 0.58, 95% CI

0.37–0.90)
OS: NS

ORR: 73% for nab-P/C,
39% for nag-P/G, 44% for

G/C

Wang et al. (GAP
trial) [24] NCT02546934 254 Phase III RCT 16 March–19 October Nab-paclitaxel + cisplatin (AP) vs.

gemcitabine + cisplatin (GP)

PFS: 9.8 for AP vs. 7.4 for GP
OS: HR 0.62 (95% CI 0.44–0.90)

in favor of AP

ORR: 81.1% for AP vs.
56.3% for GP

Cortes et al.
(EMBRACE

trial) [36]
NCT00388726 762 Phase III RCT 6–8 November

Eribulin mesilate (EM) vs.
treatment of physician’s choice

(TPC)

OS: 13.1 (95% CI 11.8–14.3) vs.
10.6 (95% CI 9.3–12.5); HR 0.81
(95% CI 0.66–0.99) in favor of

EM arm

-

Anders et al. (LCCC
1525 trial) [47] NCT02768701 40 Phase II,

single arm SAT 16 November–18
February

Cyclophosphamide prior to
pembrolizumab PFS: 1.8 months ORR: 21%

Bardia et al.
(ASCENT trial) [50] NCT02574455 468 Phase III RCT 17 November–19

September
Sacituzumab govitecan (SG) vs.

chemotherapy (CT)

PFS: 5.6 (95% CI 4.3–6.3) for SG
arm vs. 1.7 (95% CI 1.5–2.6) for

CT arm
OS: 12.1 (95% 10.7–14.0) for SG
vs. 6.7 (95% CI 5.8–7.7) for CT

arm

ORR: 35% for SG vs. 5% for
CT arm

Schmid et al.
(IMpassion130

trial) [60]
NCT02425891 902 Phase III RCT 15 June–17 May

Atezolizumab + nab-paclitaxel
(AT-P) vs. placebo + nab-paclitaxel

(PP)

PFS: 7.5 vs. 5.0; HR 0.62 (95%
CI 0.49–0.78) in favor of AT-P

arm
OS: NS

-

Røssevold et al.
(ALICE trial) [62] NCT03164993 70 Phase IIb RCT 17 August–21

December

Atezolizumab + pegylated
liposomal doxorubin +

cyclophosphamide (AT-CT) vs.
placebo + doxorubicin +

cyclophosphamide (P-CT)

PFS: 4.3 vs. 3.5; HR 0.57 (95%
CI 0.33–0.99) in favor of AT-CT

arm
-

Miles et al.
(IMpassion131

trial) [63]
NCT03125902 651 Phase III RCT 17 August–19

September
Atezolizumab + paclitaxel (AT-P)

vs. placebo + paclitaxel (PP)

PFS: 6.0 for AT-P arm vs. 5.7 for
PP arm; HR 0.82 (95% CI

0.60–1.12)
OS: NS

-

Adams et al.
(KEYNOTE-086

trial) [64]
NCT02447003 170 Phase II,

single arm SAT 15 July–16 January Pembrolizumab PFS: 2.0 (95% CI 1.9–2.0)
OS: 9.0 (95% CI 7.6–11.2)

ORR: 5.3% in the total and
5.7% in the PD-L1+

population
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Table 1. Cont.

Authors Trial Registration
Code

Sample
Size, n

Study
Design

Study
Type Study Duration Treatment PFS and/or OS Other Clinical Results

Ho et al. [65] NCT02730130 17 Phase II,
single arm SAT 16 June–17 May Pembrolizumab + radiotherapy PFS: 2.6 months

OS: 8.25 months
ORR: 17.6% (95% CI

4.7–44.2)
Winer et al.

(KEYNOTE-119
trial) [67]

NCT02555657 622 Phase III RCT 15 November–17
April

Pembrolizumab (Pem) vs.
chemotherapy of physician’s

choice (TPC)

OS: 9.9 (95% CI 8.3–11.4) for
Pem arm and 10.2 (95% CI

7.9–12.6) for TPC arm
-

Cortes et al.
(KEYNOTE-355

trial) [68]
NCT02819518 847 Phase III RCT 17 January–18 June

Pembrolizumab (Pem) vs.
chemotherapy treatment of

physician’s choice (TPC)

OS: 23.0 for Pem arm (with
PD-L1 CPS ≥10) vs. 16.1 for
TPC arm; HR 0.86 (95% CI

0.72–1.04)

-

Tan et al. [87] NCT02978716 34 Phase II RCT 17 February–18 May
Trilaciclib (Tr) prior to

gemcitabine + carboplatin
(G/C) vs. G/C alone

OS: 12.6 for G/C arm, not
reached for Tr prior to G/C

arm, and 19.8 for Tr + Tr prior
to G/C arm

-

Schmid et al. (PAKT
trial) [22] NCT02423603 140 Phase II RCT 14 May–17 June Capivasertib + paclitaxel (CP)

vs. placebo + paclitaxel (PP)

PFS: 5.9 for CP arm vs. 4.2 for
PP arm, HR 0.74 (95% CI

0.50–1.08)
OS: 19.1 for CP arm vs. 12.6 for

PP arm, HR 0.61 (95% CI
0.37–0.99)

-

Garrido-Castro et al. [92] NCT01790932 50 Phase II,
single arm SAT 12 June–14

September Buparlisib PFS: 1.8 (95% CI 1.6–2.3)
OS: 11.2 (95% CI 6.2–25) -

Lehmann et al. (TBCRC
032 trial) [93] NCT02457910 17 Phase

IB/II RCT 15 May–18 August Enzalutamide alone (Ez) vs.
enzalutamide + taselisib (Ez/T) PFS: 3.4 months CBR: 35.7%

Diamond et al. [95] NCT01639248 41 Phase II,
single arm SAT 12 July–16 October ENMD-2076 PFS: 1.84 (95% CI 1.73–3.73) CBR: 16.7% (95% CI

6–32.8%)

Brufsky et al. (COLET
trial) [98] NCT02322814 106 Phase II RCT 15 March–16 October Cobimetinib + paclitaxel (CoP)

vs. placebo + paclitaxel (PP)

PFS: 5.5 for CoP arm vs. 3.8 for
PP arm, HR 0.73 (95% CI

0.43–1.24)

ORR: 38.3% (95% CI
24.4–52.2) for CoP arm vs.

20.9% (95% CI 8.8–33.1) for
PP arm

Goldstein et al. (fRIDA
trial) [131] NCT01861054 123 Phase II RCT 15 July–18 May Reparixin + paclitaxel (RP) vs.

placebo + paclitaxel (PP)
PFS: 5.5 for RP arm vs. 5.6 vs.

PP arm -

PFS = progression-free survival, ORR = objective response rate; OS = overall survival; NS = not significant; CBR = clinical benefit rate; RCT = randomized controlled trial;
SAT = single-arm trial.
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Table 2. Systemic therapy regimens for recurrent unresectable or metastatic (stage IV) disease (NCCN
Guidelines Version 4.2023).

Setting Subtype/Biomarkers Regimen

First-line

PD-L1 CPS ≥ 10 regardless of germline
BRCA mutation

Pembrolizumab + chemotherapy (nab-paclitaxel, or
gemcitabine and carboplatin) (Category 1)

PD-L1 CPS < 10 and no germline
BRCA1/2 mutation Systemic chemotherapy (see Table 3)

PD-L1 CPS < 10 and germline BRCA1/2
mutation

PARPi (olaparib, talazoparib) or platinum (carboplatin or
cisplatin) (both Category 1)

Second-line
Germline BRCA1/2 mutation PARPi (olaparib, talazoparib) (Category 1)

Any Sacituzumab govitecan (Category 1)
No germline BRCA1/2 mutation and
HER2 IHC 1+ or 2 + /ISH negative Fam-trastuzumab deruxtecan-nxki (Category 1)

Third-line and beyond Biomarker positive Targeted agents (see Table 4)
Any Systemic chemotherapy (see Table 3)

Table 3. Systemic chemotherapy for HR-positive or negative and HER2-negative breast cancer
(NCCN Guidelines Version 4.2023).

Preferred Regimens Other Recommended Regimens Useful in Certain Circumstances

Anthracyclines (doxorubicin or liposomal
doxorubicin) Cyclophosphamide AC (doxorubicin and cyclophosphamide)

Taxanes (paclitaxel) Docetaxel EC (epirubicin and cyclophosphamide)
Anti-metabolites (capecitabine or

gemcitabine) Nab-paclitaxel CMF (cyclophosphamide and methotrexate
and fluorouracil)

Microtubule inhibitors (vinorelbine or
eribulin) Epirubicin Docetaxel and capecitabine

Ixabepilone GT (gemcitabine and paclitaxel)
Carboplatin and paclitaxel or nab-paclitaxel

Gemcitabine and carboplatin

Table 4. Additional targeted therapies and associated biomarker testing for recurrent unresectable or
metastatic (stage IV) disease (NCCN Guidelines Version 4.2023).

Biomarker Detection Method FDA-Approved Agents

NTRK fusion FISH, NGS, PCR
(tissue block) Larotrectinib or entrectinib (Category 2A)

MSI-H/dMMR IHC, NGS, PCR
(tissue block)

Pembrolizumab or dostarlimab-gxly
(Category 2A)

TMB-H (≥ 10 mut/Mb) NGS Pembrolizumab (Category 2A)
RET-fusion NGS Selpercatinib (Category 2A)

FISH = fluorescent in situ hybridization; NGS = next-generation sequencing; PCR = polymerase chain reaction;
TMB-H = tumor mutational burden—high; mut/Mb = mutation per megabase.

Table 5 summarizes all the main mechanisms of action of the antineoplastic agents
described above, considering only the categories of drugs approved by the FDA for
mTNBC treatment.
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Table 5. Mechanisms of action of the main antineoplastic agents approved for metastatic TNBC.

Antineoplastic Agents Main Mechanism of Action

Chemotherapeutic agents
Platinum-based chemotherapy Covalent binding to DNA, leading to the formation of DNA cross-links

Taxanes Binding to microtubules, preventing their depolymerization
Anthracyclines Disruption of DNA by poisoning topoisomerase

Microtubule inhibitors Inhibition of the AKT/mTOR signaling pathway
Alkylating agents Direct action on DNA, resulting in crosslinking and strand breaks

Antibody–drug conjugates Delivery of deactivated cytotoxins to specific cancer cells

Immune checkpoint inhibitors Targeted inhibition of the bindings between cancer cell checkpoint ligands and
their complementary receptors on the CD8+ cell

PARP inhibitors Inhibition of DNA repair pathways, leading to apoptosis of cancer cells, especially
in homologous recombination deficient cells

Tyrosine kinase inhibitors Phosphorylation of specific amino acids on substrate enzymes, causing altered
signal transduction

5. Conclusions and Future Perspectives

Although immunotherapy has largely revolutionized the treatment of many types of
tumors, including TNBC and its metastatic forms, chemotherapy still represents the treat-
ment of choice for most mTNBC patients. New strategies considering different pathways
are under consideration for improving the outcomes of the disease since there is still an
unmet need for effective and precise treatments.

In this sense, precision therapy represents the approach chosen by the recent trials
concerning anti-mTNBC drugs because of the significant burden of side effects caused
by chemotherapeutic agents, but also because of their potential benefits in clinical prac-
tice. The extreme molecular and clinical variability of mTNBC has inspired the expansion
of knowledge in the fields of genome-sequencing technology (where next-generation
sequencing, NGS, is considered the method of choice), biomarker, and immunologic
target investigation.

Various types of vaccines have been introduced in the last several years in the field of
cancer prevention and treatment, and some of them have already been tested in preclinical
studies concerning TNBC [133,134]. A recent review by Hosseini et al. [135] took stock of
the evolving trends in this setting, concluding that, despite encouraging results in early
trials, this strategy still needs to be explored in phase III randomized studies.

Similarly, the advances in viral genetic engineering have allowed for the development
of oncolytic viruses able to recognize some cell receptors overexpressed in tumor tissues,
but also to encode pro-apoptotic genes to deliver to cancer cells [136]. One study has
recently focused on the role of one oncolytic virus in enhancing the functions of NK CD8+
T cells in the setting of TNBC, showing promising results [137], even though immune viral
therapy still remains in its embryological stages and needs further exploration through
randomized trials.

The advances in the field of metastatic TNBC have exponentially focused attention
on patients’ quality of life since these subjects are often treated with several lines of anti-
neoplastic agents and burdened with several side effects. These include early and late side
effects, such as fatigue, alopecia, cytopenia, neurocognitive dysfunction or peripheral neu-
ropathy, cardiomyopathy, and others, only considering the chemotherapeutic agents [138].
Diarrhea, infection, rash, hyperglycemia, and fatigue are commonly found in patients
treated with kinase inhibitors [22,92,93], while dermatological reactions and autoimmune
inflammatory diseases are frequently reported in patients treated with immune checkpoint
inhibitors [139]. A lower burden of undesirable effects is usually registered, instead, in
combined therapy regimens, which need to be preferred for their multiple different sites of
action and the possibility of minimizing the adverse effects that higher doses of a single
drug would cause.
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Moreover, the oncologist cannot ignore that other medical conditions are frequently
reported in mTNBC patients’ clinical history, and each of them could theoretically interfere
in all phases of treatment. Diabetes and obesity, for example, were found to be particularly
associated with a higher incidence of TNBC in the United States [140]. The findings
concerning active smoking are controversial, while more certain results were reported in
patients with chronic kidney disease (CKD) and renal replacement therapies, which seem
to be strongly associated with TNBC development and deserve to be mentioned among the
factors to consider for each step of therapy. Although neither CKD nor renal replacement
therapy contraindicates surgery or radiotherapy, reduced renal function could affect the
pharmacokinetics of drugs used in the systematic treatment to a different extent, increasing
their toxicity and the risk of adverse drug reactions [141].

Although the research in the field of TNBC has moved forward in the last few years,
it is clear how a great deal of progress is still needed. The high mortality rates caused
by this subtype of breast cancer and the poor outcomes derived from metastases and/or
relapses still require appropriate and specific therapies. To date, it seems that no single
pharmacological therapy can contrast the multitude of clinical and molecular alterations
induced by the cancer, while combination therapy with diverse agents could represent the
opportunity for improving patients’ outcomes, with manageable safety profiles.

We are confident that research advances and both ongoing and future trials will
further clarify other complicated aspects of TNBC and will provide new opportunities for
contrasting one of the most aggressive forms of cancer.

Obviously, this study presents some limitations, and they are mainly related to the
potential article selection biases. All articles were in fact screened by the authors, and we
tried to minimize such biases with a double-blind screening; in addition, a third author was
consulted in cases of eventual disagreement between the first two reviewers. Moreover,
the research was limited to the two databases mentioned above (PubMed and Scopus) and
not extended to other databases. Finally, the data cover a period of five years; this was the
authors’ choice and it was based on the fact that the last five years indicatively represent
the keystone in the field of mTNBC. Additionally, in the last several years, many systematic
reviews (with or without meta-analyses) have been published on the same topics, and in
our opinion, more extensive research would not have led to better conclusions. We still
believe that, although, on one hand, this could represent a limitation of our findings, at the
same time, it has allowed us to screen a huge number of studies and findings in the field
of mTNBC.
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