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Abstract: Gastrointestinal (GI) cancers are the most frequent neoplasm, responsible for half of all
cancer-related deaths. Metastasis is the leading cause of death from GI cancer; thus, studying the
processes that regulate cancer cell migration is of paramount importance for the development of
new therapeutic strategies. In this review, we summarize the mechanisms adopted by cancer cells
to promote cell migration and the subsequent metastasis formation by highlighting the key role
that tumor microenvironment components play in deregulating cellular pathways involved in these
processes. We, therefore, provide an overview of the role of different microRNAs in promoting tumor
metastasis and their role as potential biomarkers for the prognosis, monitoring, and diagnosis of GI
cancer patients. Finally, we relate the possible use of nutraceuticals as a new strategy for targeting
numerous microRNAs and different pathways involved in GI tumor invasiveness.

Keywords: gastrointestinal tumors; miRNA; biomarker; nutraceuticals; tumor microenvironment;
tumor cell migration; metastasis; EMT

1. Introduction

Gastrointestinal (GI) cancers are complex and heterogeneous diseases caused by the
interaction of genetic and environmental factors. These types of tumors can affect several
organs, such as the pancreas, liver, gallbladder, bile ducts, and colon. Because of the large
cell mass and rapid turnover, GI cancers are among the most frequent neoplasms and are
responsible for about half of all cancer-related deaths [1]. In fact, they account for 26% of
global cancer incidence and 35% of all cancer-related deaths [2]. These neoplasms have
different clinical features but share some similar characteristics; the most common is their
poor prognosis meaning that most treatments can often be ineffective. Although much
progress has been made in the early detection of colorectal cancer (CRC) through screen-
ing, the prognosis of other GI tumors tends to be unfavorable due to patients presenting
late-stage diagnoses [3]. Current therapies involve adjuvant and neoadjuvant chemora-
diotherapy, targeted therapy, or immunotherapy, which stimulate an antitumor immune
response [3,4]. Despite these multidisciplinary approaches, a fair number of patients still
develop distant metastasis and show resistance to therapy [5,6]. Indeed, metastasis is the
leading cause of death from GI cancer, so it is of paramount importance to study the players
and mechanisms that regulate tumor migration, invasion, and metastatic dissemination, in
order to evaluate the possibility of using these substrates as new therapeutic targets.
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In this review, we first provide an overview of the molecular basis of the tumor
microenvironment (TME) in regulating cell migration, invasion, and metastasis formation in
four GI tumors: gastric cancer (GC), cholangiocarcinoma (CCA), hepatocellular carcinoma
(HCC), and CRC. We also describe the role of miRNAs as tumor invasivity biomarkers with
a final focus on nutraceuticals in driving TME remodeling.

2. Gastrointestinal Cancers: A General Overview
2.1. Gastric Cancer

GC is one of the most common malignancies in the world, accounting for 5.6% of all
cancers and 7.7% of all cancer-related deaths worldwide [7]. GC can develop in the stomach
and spread throughout other organs, such as the small intestines, lymph nodes, liver,
pancreas, and colon [8]. Most GCs are adenocarcinomas, which can be further subdivided
into intestinal and diffuse types according to the Lauren classification [9,10] and are also
associated with infectious agents, including the bacterium Helicobacter pylori and the
Epstein–Barr virus [11,12]. Therapies are mainly based on chemotherapy, radiotherapy, and
immunotherapy and are effective alternatives for patients who cannot undergo surgical
resection [8,13,14]. However, a proportion of patients can develop resistance to therapy
with subsequent metastasis formation. About 40% of patients with GC present metastasis,
and only 5% of these patients have a 5-year survival [15]. The reasons are complex, and
one of the most important issues is the potentiality of cancer cells to metastasize. The
prognosis of GC patients with metastatic disease remains poor due to a lack of effective
therapies and limited information regarding the mechanisms that regulate metastasis
formation [16]. TME plays a key role in the initiation and formation of pre-metastatic
niches, promoting the ability of cancer cells to proliferate, invade, and migrate [17]. Indeed,
TME regulates multiple signaling pathways involved in migration and invasiveness, such as
the Wnt/β-catenin pathway, nuclear factor kappaB (NF-κB), extracellular regulated kinase
1/2 (ERK1/2), transforming growth factor-β (TGF-β)/Smad, and phosphatidylinositol
3-kinase (PI3K)/Akt pathway [5,17].

2.2. Cholangiocarcinoma

CCA includes a heterogeneous group of malignancies arising along the biliary tree
epithelium and represents an estimated 3–5% of all GI system malignancies [18,19]. Ac-
cording to their anatomical origin, CCAs are classified into three groups: intrahepatic (10%
of all CCA), perihilar (50–60%), or distal (20–30%) [19]. They share similarities but also
have important differences that can affect the pathogenesis and outcome. Although this
anatomical classification is widely used, other factors such as tumor growth pattern and cell
of origin (cholangiocytes, perishable glands, liver progenitor cells, or hepatocytes) provide
alternative methods of classification that can better predict tumor behavior [20]. Patients
with CCA are often asymptomatic in the early stages of the tumor, and, for most of them,
diagnosis occurs at an advanced stage. Both late diagnosis and high chemoresistance of
these tumors compromise possible curative treatment options and contribute to their poor
prognosis [19]. Currently, the most effective treatment options consist of surgery or liver
transplantation, although these are indicated in less than 30% of patients, and the possibility
of tumor recurrence is high [21]. For unresectable cases, palliative treatment, consisting
of a combination of different chemotherapeutic agents, such as gemcitabine and cisplatin,
and the use of immune checkpoint inhibitors (ICIs), remains the only possible option, with
overall survival of 12 months [21]. Similar to GC in CCA, TME plays a primary role in the
ability of tumor cell invasion and subsequent metastasis formation. Indeed, the increase
in TGF-β levels in CCA is responsible for the switch of E-cadherin to N-cadherin, which
leads to a subsequent loss of cell–cell adhesion and promotion of tumor invasion [22,23].
In addition, cancer-associated fibroblasts (CAFs) in the adjacent stroma release factors
responsible for invasion and metastasis formation through the E-to-N-cadherin conversion
and activation of the PI3K-Akt pathway [22,24].
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2.3. Hepatocellular Carcinoma

Hepatic carcinoma (HCC) is the most frequent neoplasm of the liver. It originates from
the malignant transformation of hepatocytes and frequently evolves from chronic diseases
such as hepatitis, fibrosis, and cirrhosis [25]. HCC is the third leading cause of cancer
deaths worldwide, with a relative 5-year survival rate of approximately 18%. The similarity
between incidence and mortality underlines the dismal prognosis associated with this
disease [26]. When diagnosed at an early stage, it is curable with localized approaches, in-
cluding surgical resection, chemotherapy, radiation therapy, or liver transplantation [27,28].
However, HCC is usually diagnosed in advanced stages when the tumor is unresectable,
rendering these treatments ineffective. Hepatic tumor development is controlled by both
extracellular factors and intracellular signaling pathways [29]. These pathways are found to
be significantly altered and upregulated to promote tumorigenesis and cancer progression.
TGF-β plays an important role in HCC tumor progression because it promotes epithelial–
mesenchymal transition (EMT) and, thus, tumor cell motility [30]. It is worth noting that
along with the role of TGF-β, other signaling pathways such as PI3K/Akt, ERK/c-Jun
amino-terminal kinases (JNK), Wnt/β-catenin, and NF-κB are also closely involved in the
migration and invasiveness of HCC cancer cells and metastasis formation [29].

2.4. Colorectal Cancer

CRC is the second most common cancer in terms of mortality and the third type in
frequency in both men and women [7,31]. About 50% of patients develop early metastasis
and a poor prognosis because of resistance to chemotherapy [7,32]. This is due to the
different molecular mechanisms responsible for CRC tumor progression. From a genomic
standpoint, CRC is not a single disease but a heterogeneous group of malignancies arising
within the colon. Indeed, the accumulation of genetic and epigenetic alterations deregulates
several signaling pathways responsible for the activation of proliferative signaling, resis-
tance to cell death, escape from immunosurveillance, deregulation of energy metabolism,
induction of angiogenesis, and tumor invasion [33]. Approximately 15% of CRC cases
display microsatellite instability secondary to a defective mismatch repair [34]. Based
on this, CRC may have alternative therapeutic options relying on the administration of
certain immunologic agents. Actually, immunotherapy is widely used for the treatment
of CRC, along with preoperative radiation therapy, surgery, chemotherapy, and targeted
therapy [35–37]. Additionally, in CRC, crosstalk between TME and tumor cells plays a key
role in invasiveness, metastasis formation, and drug resistance. TME regulates a plethora
of cellular signaling pathways that control multiple stages of tumor progression and inva-
sion, such as mitogen-activated protein kinase (MAPKs), PI3K/Akt, NF-κB, JAK/STAT,
Wnt/β-catenin, TGF-β, and Notch [38].

2.5. Gastrointestinal Stromal Tumor

Gastrointestinal stromal tumors (GISTs) are a subgroup of rare mesenchymal GI tu-
mors that arise most frequently in the stomach (∼60%) and small intestine (∼25%) and less
frequently in the rectum (∼5%) and esophagus (<1%) [39,40]. Recently, the incidence has
increased with 10–15 new cases per 100,000/year, mainly in older patients and rarely in
younger patients [41,42]. GISTs develop from a particular type of cell called interstitial cells
of Cajal (ICC). These are “pacemaker” cells responsible for the physiological contraction of
the digestive tract and have specific characteristics according to their localization in the
GI tract [43]. ICC and smooth muscle cells derive from the same precursors and express
the tyrosine kinase receptor (KIT). While mature smooth muscle cells lose KIT expression,
ICCs continue to express it [44]. In GISTs, diffuse hyperplasia of ICC is observed, which is
considered a pre-neoplastic lesion. The pathogenesis of GISTs is determined by mutations
in KIT or platelet-derived growth factor receptor A (PDGFRA) genes [45]. Surgery is the
primary choice for resectable GISTs; however, the therapeutic treatment for unresectable
metastatic GIST patients has been radically changed by the introduction of targeted ther-
apy [46]. Administration of imatinib mesylate, together with other kinase inhibitors, has



Biomedicines 2023, 11, 1761 4 of 34

been associated with good improvement in clinical outcomes and survival [46]. Despite
the many benefits, patients may develop resistance due to secondary mutations in KIT
and PDGFRA that lead to the deregulation of crucial signaling pathways involved in cell
proliferation and migration, such as RAS/RAF/MAPK and PI3K/Akt/mTOR [47].

3. Tumor Microenvironment in Promoting Cancer Cells Migration and Invasion

Over the past decade, several studies have shown that cancer growth is determined
not only by tumor cells but also by the TME [48]. Indeed, it consists of a complex network
of malignant and non-malignant cells that potentiate cancer progression and metastasis
and modulate responses to therapy [48,49]. Specifically, the TME is composed of various
elements, including tumor cells, immune cells such as T cells, B cells, dendritic cells
(DC), myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs),
CAFs, and blood and lymphatic vessels [50,51]. Intercellular communication is driven by a
complex and dynamic network of cytokines, chemokines, growth factors, and inflammatory
and matrix-remodeling enzymes, all of which can promote tumor progression and invasion
(Figure 1) [52]. In particular, the TME of GI tumors is characterized by the presence of
CAFs, which promote tumor growth, angiogenesis, invasion, and metastasis, along with
extracellular matrix (ECM) remodeling and even chemoresistance [53]. In addition, TME
is defined by the presence of an immunosuppressive immune infiltrate mainly composed
of M2 macrophages, MDSCs, and T regulatory cells (Tregs), and finally by the presence of
soluble factors such as TGF-β, which has a primary role in promoting tumor migration and
metastases (Figure 1) [54].
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Figure 1. Schematic representation of gastrointestinal TME and biological events leading to cell
migration and metastasis formation. A pro-tumoral environment is established in the TME of GI
tumors given by the presence of activated CAFs and immunosuppressive immune cells, leading
to the production of cytokines, chemokines, and soluble factors. These are responsible for ECM
remodeling and promotion of EMT that enhances tumor cell motility and subsequent metastasis
formation. The figure was created with BioRender.com.

3.1. Cancer-Associated Fibroblasts

CAFs constitute a dominant stromal component of the TME of GI cancers and con-
tribute in many ways to tumor progression and resistance to therapy [53,55,56]. They
originate predominantly from tissue-resident fibroblasts that are activated in response
to signals from cancer cells and the TME [57]. In GI tumors, particularly in CRC and
HCC, the presence of activated CAFs lead to increased expression of activated markers,
such as α-smooth muscle actin (α-SMA) and fibroblast activation protein (FAP), and the
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production of large amounts of glycoproteins, including tenascin-C and collagen matu-
ration enzymes, which are responsible for ECM remodeling [58,59]. Alterations in the
biomechanical properties of the ECM can trigger cancer cell migration [53,60]. CAFs can
generate gaps in stromal and basement membrane components that are connected through
cell–cell junctions to promote EMT and mediate collective migration of tumor cells through
matrix metalloproteases (MMP)-dependent or -independent mechanisms [61]. In addition,
CAFs produce interleukin-(IL)-6 that induces the activation of the JAK2/STAT3 axis in GC
and promotes EMT, increasing migration and invasion [62].

Activated CAFs can even produce abundant soluble molecules, including basic fi-
broblast growth factor (bFGF), members of the vascular endothelial growth factor (VEGF)
family, platelet-derived growth factor (PDGF), ligands of epidermal growth factor receptor
(EGFR), interleukins, and TGF-β [63,64]. The production of these soluble factors promotes
cancer invasion and metastasis formation [63]. Further studies have shown that CXCL12
and its receptor CXCR4 derived from CAFs can promote cell invasion in GC and CRC
tumors [65]. Activation of the CXCL12/CXCR4 axis in the TME, thus, provides paracrine
signaling that mediates integrin β1 clustering on the surface of tumor cells, promoting
tumor EMT [65]. In addition, CAFs recruit and polarize immune cells such as macrophages,
neutrophils, T lymphocytes, and DCs toward a pro-tumorigenic phenotype by secreting
various cytokines, chemokines, and other effector molecules such as IL-6, IL-8, CXCL12,
CCL2, TGF-β, SDF-1, VEGF, and indoleamine-pyrrole2,3-dioxygenase (IDO) [66–69].

Finally, the accumulation of activated CAFs correlates with resistance to therapy. For
example, the increase in FAP protein can cause resistance to chemotherapy, radiotherapy,
and immune checkpoint blockade [55,70]. Furthermore, in experimental models of CRC,
chemotherapy-stimulated CAFs increase the secretion of specific cytokines, such as IL-
17A, which promotes chemoresistance through the NF-κB pathway and increases tumor
invasion and growth in vivo. Of note, an increase in IL-17 was also observed in patients
with therapy-resistant CRC [55,71].

3.2. Cytokines and Chemokines

Cytokines and chemokines are inflammatory mediators secreted by several compo-
nents of the TME. Their action in promoting cancer development includes an antagoniz-
ing antitumor immune response, recruiting tumor-supportive stromal cells and immune-
suppressive cells, inducing angiogenesis and metastasis, and altering the responses to
therapeutic agents [72].

Several cytokines may contribute to tumor progression, particularly IL-1β, TNFα, and
IL-6 play key roles in promoting and enhancing EMT. IL-6, secreted by CAFs, promotes
STAT3 activation and, thus, tumor invasion and metastasis formation [73]. Similar to IL-6,
IL-23 also acts by increasing the expression level of STAT3 and inducing EMT-mediated
metastasis [74].

In addition to cytokines, several chemokines are also responsible for promoting tumor
invasiveness. CXCL1 promotes the proliferation and migration of colon cancer cells and has
a facilitating effect on tumor angiogenesis [75]. Increased CXCL1 promotes TAM2 migra-
tion by inhibiting the recall of CD4+ and CD8+ T cells at tumor sites [76]. CXCL5, in the GC
TME, facilitates metastasis by promoting the invasion and migration of tumor cells through
the activation of the ERK signaling pathway in cancer cells [77,78]. The CXCL12–CXCR4
axis is particularly important in tumor development to participate in CRC, pancreatic
cancer, and HCC metastasis [79,80]. The binding of CXCL12 to its receptor CXCR4 on
CRC cells causes pro-metastatic signaling through decreasing E-cadherin and inducing
ICAM-1 expression [79]. CXCL12–CXCR4 also induces the Wnt/β-catenin pathway with
increased MMP-2, MMP-9, and plasminogen activator and consecutive metastatic initiation
in CRC [81]. As mentioned above, CAFs are responsible for the production of CXCL12;
several studies have claimed that CXCL12 increases the proliferation, migration, and in-
vasion of CRC cells through the induction of M2 polarization [65]. Another chemokine
associated with the development of CRC and its liver metastasis is CXCL8, which promotes
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angiogenesis, proliferation, invasion, migration, and survival of tumor cells through the
induction of EMT [82]. TGF-β promotes the generation of an immunosuppressive envi-
ronment through the recall of TAM2, MDSC, and Tregs at the tumor site via activation
of the Smad transcription factor [83–86]. TGF-β is a dominant effector in all GI cancers
and mediates the conversion of fibroblasts to CAFs, promoting cell migration and tumor
invasiveness through the induction of EMT [64,85]. In these tumors, TGF-β may have an
antitumoral function in the early stage of tumor development by inducing apoptosis; on
the contrary, in more advanced stages, it can support tumor progression by improving
cell survival, EMT, migration, invasion, and metastasis [85]. In addition, TGF-β induces
MMP-8 gene expression through PI3K/Akt/Rac1 signaling in HCC cells that promotes
tumor cell EMT and malignant progression [87]. Finally, in addition to TGF-β, insulin-like
growth factor-1 (IGF-1) can also promote cancer proliferation and survival, inducing EMT
that contributes to tumor migration, invasiveness, and metastasis [88].

3.3. Immune Infiltrating Cells

The immune cell populations within the TME play a significant role in patient progno-
sis and response to treatment [89]. The presence of a good immune infiltrate, such as tumor-
infiltrating lymphocytes (TILs), correlates with a good prognosis in a large spectrum of solid
tumors, including GI cancers [90,91]. However, pro-tumor immune populations, including
TAM2, MDSCs, neutrophil N2, and Tregs, are highly present in these tumors [92–94]. Each
one contributes to tumor aggressiveness through the secretion of inflammatory cytokines
and chemokines, key effector molecules such as MMPs, prostaglandin E2 (PGE2), and
TGF-β. The production of these molecules in the TME, as already described, is responsible
for EMT and the promotion of tumor migration and invasiveness [95,96].

TAMs play an important role in tumor progression by promoting pro-angiogenic and
immunosuppressive signaling [97]. Through the production of chemokines such as CCL17,
CCL22, and CCL24, they lead to the recruitment of T helper 2 cells, Tregs, eosinophils,
and basophils, inducing an immunosuppressive environment [98,99]. In addition, TAM2s
produce inflammatory cytokines and TGF-β, which are associated with a more invasive
tumor profile [99]. For these reasons, in GI tumors, especially in CRC, GIST, and HCC,
they have a pro-tumor and pro-metastatic action, are associated with poor prognosis, and
correlate with worse overall survival [100,101].

MDSCs play an important role in suppressing the immune response through a series
of secretory factors such as arginases, nitrites, reactive oxygen species (ROS), immuno-
suppressive cytokines, and the expansion of immunosuppressive cells such as Tregs [102].
In GI tumors, MDSCs are strongly involved in the regulation of the immune system and
act to dampen its response to tumors, promoting the escape of tumor cells from immuno-
surveillance and increasing both metastasis and recurrence [102]. For this reason, they are
associated with poor prognosis and low survival [103]. MDSCs induce immunosuppres-
sive effects through the production of several cytokines, such as IL-6, IL-10, PGE2, and
TGF-β [104–106]. In addition, MDSCs promote tumor progression through the induction of
MMP-9 and TGF-β, which are responsible for the establishment of a more invasive tumor
phenotype [105].

Tumor-associated neutrophils (TANs) play a controversial role in tumor progression.
Although they are known to have antitumor activity, many studies have shown that the
presence of TANs is associated with the promotion of tumor metastatic potential and poor
prognosis in many tumor types [107,108]. Especially, type 2 TANs have immunosuppressive
action characterized by the production of chemokines, some having a role in cancer cell
migration, such as CCL2, CCL3, CCL4, CCL8, CXCL8, and CXCL16 [109]. In HCC, TAN2
promotes tumor progression and metastasis by inducing the recruitment of TAM2 and
Tregs into the TME [109].

Tregs are essential for the maintenance of immunological homeostasis and self-tolerance.
In tumors, they may have extensive suppressive activity, secreting immunomodulatory
cytokines and cytolytic molecules that allow them to regulate immune responses [110].
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In GI tumors, high numbers of Tregs are often associated with poor prognosis and low
survival rates [111,112]. It has been extensively studied that Tregs generate a strong pro-
inflammatory environment in GI tumors through the secretion of inflammatory cytokines
such as IL-12, TGF-β, and TNF-α promoting an immunosuppressive TME and, therefore,
supporting tumor invasiveness and metastasis formation [113,114].

4. miRNA in Gastrointestinal Cancer

MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs, 17–25 nucleotides
long that regulate gene-expression post-transcriptionally by recognizing complementary
sites in the 3′untraslated region (UTR) of the target messenger RNA (mRNA). A single
miRNA is able to target hundreds of mRNAs and influence the expression of many genes.
A disruption of the miRNA-mediated gene expression control may lead to environmental
stresses usually implicated in the development and progression of human cancer, such as
starvation, hypoxia, oxidative stress, and DNA damage [115]. As a matter of fact, miRNAs
are involved in cancer initiation, progression, and metastasis. Indeed, many miRNAs are
found to be up- or down-regulated in cancer samples when compared to normal tissue
(Table 1). miRNAs can modulate the expression of mechanisms such as toll-like receptors,
Wnt/β-catenin, Hedgehog, and Jak/Stat signaling pathways [116]. Of note, they can act as
oncogenes or tumor suppressors through various mechanisms [117].

Table 1. Up- or down-regulated miRNAs in various gastrointestinal tumors compared to normal tissues.

miRNA Up/Down-Regulated Type of Cancer Ref.

let-7

Up Colon cancer [118]

Down Hepatocellular
carcinoma [119]

Down Gastric cancer [120]

Up Hepatocellular
carcinoma [121]

Down Cholangiocarcinoma [122]

miR-9
Up Hepatocellular

carcinoma [123]

Up Gastric cancer [124]

miR-10a-5p Up Cholangiocarcinoma [125]

miR-21
Up Colorectal cancer [126]

Up Hepatocellular
carcinoma [127]

Up Cholangiocarcinoma [128]

miR-23 Up Hepatocellular
carcinoma [121]

miR-23a-3p Up Colorectal cancer [129]
miR-27a Up Gastric cancer [130]
miR-29s Down Cholangiocarcinoma [131]
miR-31 Down Colorectal cancer [132]

miR-93-5p Up Colorectal cancer [133]
miR-103a-3p Up Colorectal cancer [134]
miR-152-3p Up Colorectal cancer [135]

miR-199a-5p Down Hepatocellular
carcinoma [136]

miR-210 Up Gastric cancer [137]
miR-922 Up Gastric cancer [138]

5. miRNA and Tumor Microenvironment

As previously described, TME is a key factor in the progression and proliferation of
tumor cells and drug resistance [139]. Recently, attention was given to the role of miR-
NAs in the modulation of different types of cells in the TME, such as immune cells and
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CAFs [139–141]. Aberrant expression of miRNAs leads to the reprogramming of cells in
CAFs in HCC and GC. In detail, miR-21 converts hepatic stellate cells in activated CAFs
by regulating TGF-β signaling and inducing phosphatase and tensin homolog (PTEN)
down-regulation and consequent up-regulation of the PI3K/Akt signaling pathway in
HCC [127,142]. miR-1247-3p converts normal fibroblast in CAFs promoting HCC progres-
sion [143]. miR-27a acts as an oncogene inducing the reprogramming of normal fibroblast
in CAFs promoting cancer proliferation and metastasis in GC [130]. Moreover, miR-106b
directly targets the PTEN gene in CAFs promoting proliferation, migration, and invasion
of GC cells [144].

CAFs-derived miR-493-5p plays a role in the progression and cell growth in CCA. In
fact, miR-493-5p expression levels are higher in extracellular vesicles derived from CAFs
than the ones from normal fibroblasts [141]. miRNAs secreted by CAFs also play a role
in drug resistance. For example, GC cells’ resistance to cisplatin treatment is due to the
expression of miR-522 derived from CAFs [145]. miRNAs secreted by CAFs also play an
important role in CRC. Jiang et al. highlighted the correlation between the expression of
exosomal miR-181b-3p derived from CAFs and CRC development and progression [146]. A
recent study by Liu et al. demonstrated that exosomal miR-29a targets and reduces proteins
expressed on the vascular endothelial cells in CRC, facilitating metastasis [147].

Like CAFs, the activation of TAMs also plays a role in the modulation of TME. In GC,
exosomal miR-21 derived from TAMs leads to resistance to cisplatin through suppression
of apoptosis and activation of the PI3K/Akt signaling pathway in cancer cells [148]. Other
miRNAs promote cancer progression and metastasis regulating immune cell responses,
such as miR-192-5p, which modulates tumor-infiltrating Tregs in GC activity [149].

6. miRNAs as Potential Biomarkers in Gastrointestinal Cancers

As mentioned above, miRNA levels are altered in different pathological processes
of several tumors, including GI cancers. This deregulation may act as a specific tumor
signature and could be useful in differential diagnosis and in correlation with specific
clinical characteristics. miRNA expression levels could be associated with a better or
worse prognosis. For example, miR-451 is associated with a worse prognosis in GC and
CRC [150]. Therefore, the idea of using miRNAs as potential biomarkers for GI tumor
screening, prognosis, diagnosis, and disease monitoring is increasingly dominant [151,152].
Profiling of miRNAs has advantages over mRNA and protein, such as their stability in
body fluids and human formalin-fixed paraffin-embedded (FFPE) tissues, their small size,
and their regulatory function on different target molecules and pathways [153].

Moreover, miRNA expression profiles could be analyzed with miRNA microarray
platforms, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), or
Next-Generation Sequencing (NGS) approaches (such as RNA-seq analysis) [151].

6.1. miRNAs as a Biomarker in Gastric Cancer

Usually, oncogenic miRNAs are up-regulated in GC, while tumor-suppressor miRNAs
are down-regulated [151]. An alteration of miRNA expression can induce changes in cell
proliferation, cell cycle progression, apoptosis, cell migration, and invasion that may lead
to GC (Table 2). Several studies demonstrated that miRNAs are able to promote migration
and invasion of cancer cells. Hu et al. studied the over-expression of miR-532 in GC tissues
and cells compared to normal stomach tissue and surrounding non-cancer tissue [154].
Wound healing and transwell assay demonstrated that miR-532 induces cell migration and
invasion in the GC by targeting Nkd1 and inhibiting the Wnt/β-catenin pathway [154].
Numerous miRNAs affect cell migration and invasion in GC, such as miR-215, targeting
FOXO1 and up-regulating activated leukocyte cell adhesion molecule (ALCAM) [151] or
miR-186, which modulates Twist1 (Table 2) [155,156]. miR-192-5p expression facilitates
cell proliferation, the EMT process, and cell invasion in GC by regulating Wnt, TGF-β,
and PI3K/Akt signaling pathways [157,158]. Shayimu et al. studied the role of miR-922
on normal gastric epithelial and GC cell lines. This study highlighted the capability of
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miR-922 to induce cell invasion and migration by promoting MMP-2 and MMP-9 while
suppressing SOCS1 expression [138]. Moreover, miR-922 is able to block apoptosis and
promote cell proliferation in GC cell lines [138]. The capability of miR-210 to induce, alone
or in synergy with long non-coding RNA MIR210HG, cell migration and metastasis was
also studied [137]. In particular, c-myc activates miR-210 and MIR210HG, resulting in the
induction of cell migration by promoting MMPs [137]. As noted by Zhang et al., miR-21 has
an important role in tumor invasion and metastasis in GC. It is up-regulated in GC, and its
main target is RECK, a protein involved in the modulation of MMP-2, MMP-9, and MMP-
14 expression [159]. Moreover, miR-21 modulates PTEN and Programmed Cell Death 4
(PDCD4) expression, supporting invasion, migration, EMT, and metastasis. These processes
are also promoted by the modulation of several EMT proteins, such as vimentin, SNAIL,
ACTA2, and TWIST1 [160]. Other studies reported that miR-196a/b over-expression
increases radixin (RDX) protein levels and down-regulates MAX dimerization protein 1
(MDX1), promoting cell migration, invasion, and metastasis [161,162]. Other miRNAs,
such as miR-370, interfere with the TGF-β signaling pathway, involved in cell migration,
and with the Ubiquinol–cytochrome c reductase core protein 2 (UQCRC2) axis regulating
EMT [163,164]. On the other side, decreased expression of tumor suppressor miRNAs,
such as miR-218 and let-7, promote tumor invasiveness in GC by eliminating repression of
the Robo1 pathway and increasing high mobility group AT-hook 2 (HGMB2) expression,
respectively [165,166]. In addition, miR-200 family members increase EMT by reducing
the expression of E-cadherin repressors [167]. The down-regulation of miR-335 and miR-
153 promotes invasion and metastasis processes targeting BCL-w and SNAIL [168,169].
Furthermore, some miRNAs, such as miR-9, miR-10b, and miR-223, have a dual role in
GC progression, acting as both tumor promoters and suppressors according to their target
genes [151]. Table 2 lists the principal miRNAs that are deregulated in GC.

Table 2. Aberrantly expressed miRNAs in Gastric cancer, with their specific targets.

miRNA Target Effects Refs.

let-7
RAB40C
HMGA2
CCR7

Induces proliferation
Promotes invasion [166]

miR-9
NKFB1
CCND1
CDX2

Induces proliferation
Metastasis [170,171]

miR-10b HOXD10
Promotes cell migration and
invasion
Metastasis

[172]

miR-21

RECK
PTEN
PDCD4
VIMENTIN
SNAIL TIMP3

Promotes cell migration
Induces EMT
Metastasis
Drug resistance

[159,160,173]

miR-106b
PTEN
RB1
TIMP2

Induces cell proliferation
Promotes cell migration and
invasion

[174]

miR-107 DICER1 Promotes cell migration and
invasion [175]

miR-124 ROCK1 Induces cell proliferation
Promotes cell invasion [176]
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Table 2. Cont.

miRNA Target Effects Refs.

miR-126 CRK
PI3KR2

Induces cell proliferation
Promotes cell migration and
invasion
Metastasis

[177,178]

miR-130a RUNX3 Induces metastasis [179]

miR-135b n.d. n.d. [180]

miR-148a CDKN1B
Induces cell proliferation
Regulates cell cycle
Metastasis

[181]

miR-153 SNAIL
Promotes cell migration and
invasion
Metastasis

[169]

miR-186 TWIST1 Promotes cell migration [156]

miR-192-1-3p PDCD2 Induces cell proliferation [182]

miR-192-5p SMG-1 Induces cell proliferation and EMT [158]

miR-196 RADIXIN
MXD1

Promotes cell migration and
invasion
Metastasis

[161,162]

miR-200

DLC-1
ZEB1
ZEB2
BCL-2
XIAP

Induces cell proliferation and EMT
Promotes cell migration and
invasion

[167,183]

miR-210 DRD5 Promotes cell migration and
invasion [137]

miR-215 FOXO1 Promotes cell migration [155]

miR-218 ROBO1 Promotes cell invasion
Metastasis [165]

miR-223 STMN1 Promotes cell invasion
Metastasis [184,185]

miR-324-5p PTEN Induces cell proliferation
Promotes apoptosis [186]

miR-335 BCL-w Metastasis [168]

miR-370 TGF-β-RII
UQCRC2

Induces EMT
Metastasis [163,164]

miR-452 EPB41L3 Promotes cell migration and
invasion [187]

miR-532 NKD1 Promotes cell migration and
invasion [154]

miR-633 n.d. n.d. [188]

miR-922 SOCS1 Induces cell invasion
Promotes cell migration [138]

6.2. miRNAs as Biomarker in Cholangiocarcinoma

The aberrant expression of several miRNAs (Table 3) modulates the expression of
genes involved in the processes of invasion and cell proliferation in CCA. The up-regulation
of miR-10a-5p induces proliferation in CCA cell lines by targeting and modifying PTEN and
phospho-Akt (ser473) expression [125]. Zhang et al. also demonstrated that the aberrant
expression of miR-30a-5p can inhibit CCA cell apoptosis and promote CCA progression
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by targeting the SOCS3 gene [189]. In 2018, Wan et al. showed that CCA tissues presented
an elevated expression of miR-383 compared to normal hepatic tissue samples [190]. Wan
et al. demonstrated that the over-expression of miR-383 negatively regulates the interferon
regulatory factor-1 (IRF1), involved in the cell cycle, inhibiting its tumor suppressor role
and inducing cell proliferation and migration [190]. It was demonstrated that several
miRNAs were identified as prognostic and diagnostic biomarkers in CCA. For instance,
Kishimoto et al. demonstrated miR-21 over-expression, thus indicating that it may be
used as a biomarker able to distinguish cancer patients from healthy ones. Notably, miR-
21 targets NAD(+)-linked 15-hydroxyprostaglandin dehydrogenase (15-PGDH/HPGD),
promoting cell growth and up-regulates EMT-related KLF4, N-cadherin, vimentin, Akt and
ERK1/2, inducing EMT and invasion [191–193]. In addition, the over-expression of miR-
27a promotes cell proliferation, migration, and invasion. Effectively, high levels of miR-27a
are associated with lymph node metastasis and a poor prognosis in CCA patients [194].
Many studies reported an abnormal expression of miR-29b in several human cancers.
miR-29b was down-regulated and associated with poor overall survival in CCA cells and
tissues [195]. Proliferation tests, together with flow cytometry analysis, demonstrated that
miR-29b influences both cell cycle and apoptosis in CCA cell lines [195].

Sheng et al. reported the up-regulation of Yes-associated protein 1 (YAP1), a tran-
scriptional coactivator of the tumor-suppressive Hippo pathway, and implicated in CCA
pathogenesis. Moreover, it was discovered that YAP is the target of miR-16, which results
in suppressed CCA determining proliferation, invasion, and metastasis [196].

However, it was observed that seven miRNAs, miR-21, miR-26, miR-106a, miR-150,
miR-192, and miR-194, could be employed for differential diagnosis to distinguish patients
with CCA from controls [197]. Furthermore, it was discovered that the 4-miRNA CCA
signature (miR-30a, miR-200c, miR-141, and miR-425) could differentiate CCA from other
GI tumors [198] (Table 4).

Table 3. Aberrantly expressed miRNAs in Cholangiocarcinoma, with their specific targets.

miRNA Target Effects Refs.

let-7c EZH2
Promotes cell migration and
invasion
Metastasis

[122]

miR-10a-5p PTEN Induces cell proliferation [125]

miR-16 YAP1
Induces cell proliferation
Promotes cell invasion
Metastasis

[196]

miR-21

KLF4
N-Cadherin
VIMENTIN
AKT
ERK1/2
15-PGDH

Induces cell proliferation and EMT
Promotes cell invasion
Metastasis

[191–193]

miR-23 DNM3 Induces cell proliferation [199]

miR-27a

D1 CYCLIN
E-Cadherin
KRAS
YAP

Induces cell proliferation
Promotes cell migration and
invasion
Metastasis

[194]

miR-29b DNMT3B Influences cell cycle and apoptosis [195]

miR-30a-5p SOCS3 Inhibits apoptosis
Induces cell proliferation [189]
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Table 3. Cont.

miRNA Target Effects Refs.

miR-96 MTSS1 Induces cell proliferation
Metastasis [200]

miR-137 WNT2B Regulates apoptosis
Induces cell migration and invasion [201]

miR-181b-5p PARK2 Promotes cell migration [202]

miR-196 HAND1 Promotes cell growth
Metastasis [203]

miR-320 VEGFR2
NRP-1

Induces cell growth and
proliferation
Metastasis

[204]

miR-383 IRF1 Induces cell proliferation
Promotes cell migration [190]

miR-424-5p ARK5
Promotes cell migration and
invasion
Induces EMT

[205]

Table 4. Up- or down-regulated miRNAs employed in differential diagnosis in Cholangiocarcinoma.

miRNA Up/Down-Regulated Ref.

miR-21 Up-regulated [206]
miR-26 Up-regulated [206]

miR-30a Up-regulated [198]
miR-106a Down-regulated [207]
miR-141 Down-regulated [198]
miR-150 Up-regulated [206]
miR-192 Up-regulated [208]
miR-194 Up-regulated [209]
miR-200c Down-regulated [198]
miR-425 Down-regulated [198]

6.3. miRNAs as Biomarkers in Hepatocellular Carcinoma

Recently, numerous studies have analyzed the role of miRNAs in the development
and progression of HCC [210]. miRNA profiles have proven that they are an important
source for potential biomarkers as they made possible the distinction of liver cancer cells
from hepatocytes [144] (Table 5). The WNT/β-catenin pathway is frequently up-regulated,
and it is involved in the proliferation, migration, invasion, and survival of liver cancer cells.
Moreover, it was discovered that several miRNAs implicated in this deregulation, including
miR-21, miR-106b, miR-135, and miR-315, are overexpressed, and miR-122, miR-145, miR-
214 are down-regulated [144]. Additionally, the down-regulation of miR-221/-222, miR-30,
and miR-148a contribute to the E-cadherin loss, reducing cell–cell adhesion and promoting
EMT [211]. Down-regulation of miR-23b and miR-34a plays a role in HCC progression by
inducing cell proliferation, migration, invasion, and metastasis [212].

It has been demonstrated that down-regulation of different miRNAs, such as miR-199a-
5p or miR-29c, promotes tumorigenesis and increases cell invasion in HCC by modulating
MMP activities and regulating the cell cycle, respectively [213,214]. Instead, miR-9 over-
expression promoted migration and invasion in HCC cells, likewise in other types of GI
cancer such as colon cancer and GC [123,124,215,216]. Sun et al. studied the connection
between the over-expression of miR-1246 and the putative target CADM1, involved in
cell–cell interaction, and the capacity of the miRNA to induce metastasis in HCC [217].
Various miRNAs, in addition, enhance HCC progression mediating the EMT event, such as
miR-330-3p and miR-192 [218].
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About nineteen deregulated miRNAs are implicated in angiogenesis, invasion, and
metastasis, such as miR-122, which enhance these processes by inhibiting the p53 signaling
pathway and modulating disintegrin and metalloprotease 17 (ADAM17) [219]. miR-139 and
miR-151 were also involved in the ADAM17 pathway facilitating angiogenesis, invasion,
and metastasis [220].

Aberrant miRNA expression profiles between liver cancer and normal liver tissues
have been identified. For instance, Nagy et al. identified several overexpressed miRNAs,
such as miR-421, miR-183, miR-182, miR-96, and miR-301, in liver cancer patients. At the
same time, they also identified a number of down-regulated miRNAs, including miR-195,
miR-139, miR-326, and miR-145 [221].

Table 5. Aberrantly expressed miRNAs in Hepatocellular carcinoma, with their specific targets.

miRNA Target Effects Refs.

miR-9 KLF17 Promotes cell migration and
invasion [123]

miR-21 PTEN
PDCD4 Metastasis [222]

miR-23b uPA
MET

Promotes cell proliferation
Induces cell invasion [212,223]

miR-29c RPS15A Promotes cell invasion
Regulates cell cycle [214]

miR-30 SNAIL Induces EMT [211]

miR-34a

HDAC1
D1 CYCLIN
CDK2/4
FOXMI
BCL-2

Induces cell proliferation
Promotes cell invasion and
migration
Drug resistance

[212,224–226]

miR-96 SOX6
Induces cell proliferation
Promotes cell migration and
invasion

[227]

miR-106b PTEN
Induces cell proliferation
Promotes cell migration and
invasion

[228]

miR-122

ADAM17
WNT1
TACE
LMNB2

Induces cell proliferation
Promotes cell invasion
Angiogenesis and metastasis

[219,229,230]

miR-124-3p CRKL
Promotes cell migration and
invasion
Metastasis

[231]

miR-130b Notch-Dll1 Promotes cell migration and
invasion [232]

miR-135 APC
AXIN Metastasis [222]

miR-139 ADAM17
ROCK2

Induces cell proliferation
Metastasis [229]

miR-144 FOXK1 Modulates glycolysis [233]

miR-145
IRS1 IRS2 OCT4
β-Catenin
IGF-IR

Induces cell proliferation
Promotes cell migration and
invasion

[234]
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Table 5. Cont.

miRNA Target Effects Refs.

miR-148a

c-MET
HRIP
c-MYC WNT1
SNAIL1
DNMT1

Induces EMT
Metastasis [211]

miR-151 ADAM17
RHOGDIA

Promotes cell invasion
Angiogenesis and metastasis [235]

miR-182

FOXO3a
MTSSI
pRB
CEPBA
RASA1
c-MYC

Induces cell proliferation
Angiogenesis and metastasis [236–238]

miR-183 SOCS6 Induces cell proliferation
Promotes cell invasion [239]

miR-185 AKT1 Induces cell proliferation [240]

miR-195

CDK6
CYCLIN D1
YAP
WNT3a
VEGF

Regulates cell cycle and apoptosis
Induces EMT
Angiogenesis and metastasis

[241,242]

miR-199
DDR1
mTOR
c-Met

Promotes cell invasion
Regulates cell cycle
Drug resistance

[213,243]

miR-214 HDGF
β-Catenin Angiogenesis [244]

miR-221/-222 PTEN
E-cadherin Induces EMT [211]

miR-301 GAX Metastasis [222]

miR-315 APC
Axin Metastasis [222]

miR-326 LASP1
RAB21

Induces cell proliferation
Promotes cell invasion [245]

miR-330-3p EREG Regulates EMT [218]

miR-409 JAK2
STAT3

Inhibits apoptosis
Induces cell proliferation
Promotes cell viability

[246]

miR-421
SOX9
PTEN
MMP-3

Induces cell proliferation and EMT
Promotes cell invasion [247–249]

miR-520c-3p PTEN Promotes cell migration and
invasion [250]

miR-539 MAP2K1

Promotes cell migration and
invasion
Induce cell proliferation
Inhibits apoptosis

[251]

miR-579-3p PIK3CA Tumor development [252]

miR-1246 CADM1 Metastasis [217]

miR-4521 FAM129A Regulates cell growth and apoptosis [253]
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6.4. miRNAs as Biomarkers in Colorectal Cancer

As mentioned above, CRC cells are characterized by a high capability of proliferation,
invasion, and metastasis. Among the factors that are involved in CRC development,
epigenetic modifications have been reported. CRC pathogenesis is characterized by a
stage-specific miRNA expression. Table 6 lists miRNAs involved in the development and
progression of CRC. Let-7, miR-21, miR-29a, and cluster miR-17-92 are relevant [254]. Let-7
is deregulated in several GI cancers and modulates Ras and Myc expression controlling
tumor progression and metastasis in CRC [255]. The increased expression level of miR-
21 is associated with invasion and liver and lymph node metastasis [256]. miR-29a is a
metastasis-promoter due to its tumor suppressor target gene Kruppel-like factor 4 (KLF4)
that up-regulates MMP-2 expression and, at the same time, down-regulates E-cadherin
expression [257]. Cluster miR-17-92 is typically amplified and has several target genes
involved in CRC progression and metastasis. Especially, miR-17 targets the MYC family,
increasing tumor progression and invasion [258,259]. Sun et al. demonstrated the role of
miR-103a-3p in the promotion of cell invasion and metastasis by regulating the glycolysis
process mediated by the Hippo pathway [134]. MiR-152-3p also promotes cell adhesion
and metastases. In particular, miR-152-3p negatively regulates the Aquaporin-11 (AQP11)
protein, which is usually involved in the repression of cell growth and adhesion [135].
Moreover, Zhu et al. suggested that inhibition of miR-152-3p could stop the progression of
CRC [135]. The aberrant expression of miR-23a-3p is also involved in CRC development.
This miRNA, in fact, inhibits the expression of NDRG4 in cancer cells with the consequent
increase in cell proliferation, migration, and invasion [129]. miRNAs are also implicated
in drug resistance phenomena. It has been demonstrated that miR-93-5p is up-regulated
in CRC cells that are resistant to chemotherapeutics and may regulate proteins involved
in multidrug resistance and target cyclin-dependent kinase inhibitors [133]. Additionally,
miR-101 was reported as a tumor suppressor that is down-regulated in CRC, and its direct
target is Cyclooxygenase-2 (COX-2), whose high expression contributes to cell growth and
invasion [153].

The over-expression of miR-125b promotes invasion and EMT, enhancing CXCR4
expression; in turn, the CXCL12/CXCR4 axis induces miR-125b expression. Moreover,
miR-125b down-regulates the p53 pathway, promoting cell proliferation [260].

Recent studies have demonstrated that the tumor suppressor miR-137-3p is down-
regulated in several cancers, such as non-small cell lung cancer (NSCLC), liver cancer,
breast cancer, and CRC. miR-137-3p promotes migration, EMT, and invasion of CRC cells
in a lysine-specific demethylase 1 (LDS-1)-dependent manner [260].

In addition, miR-106b up-regulation determines the enhancement of proliferation,
invasion, and migration in CRC cells via PTEN modulation [144].

miR-145-5p targets cell cycle-associated protein-3 (CDCA3), determining cell growth
and EMT suppression [261].

Finally, Volker et al. investigated miR-192, miR-17, and miR-200c down-regulation in
CRC invasion and metastatic process. These three miRNAs negatively control target genes
associated with ECM remodeling in fibroblasts. Notably, miR-192 targets integrins, such as
ITGB1 and ITGAV, inhibiting cell adhesion and metastasis; miR-200c modulates the EMT
process via E-cadherin repressors, ZEB1 and ZEB2 [259]. In fact, in this study, it was shown
that the enhancement of miR-192, miR-17, and miR-200c suppresses the invasiveness and
metastasis of CRC cells.
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Table 6. Aberrantly expressed miRNAs in Colorectal cancer, with their specific targets.

miRNA Target Effects Refs.

let-7 RAS
MYC

Induces cell progression
Metastasis [255]

miR-9 E-Cadherin Promotes cell migration and
invasion [215]

miR-17 P130 Induces cell progression [262]

miR-17-92
cluster

C-MYC
E2F

Induces cell progression
Promotes cell invasion [258,259]

miR-20a-5p SMAD4
Promotes cell invasion and
migration
Metastasis

[263]

miR-21
TNF-α
PDCD4
RECK
PTEN

Promotes cell migration
Induces cell proliferation and
EMT
Metastasis

[256,264]

miR-23a-3p NDRG4
Induces cell proliferation
Promotes cell migration and
invasion

[129]

miR-29a KLF4
MMP-2

Induces EMT
Metastasis [257]

miR-31 FIH1
Promotes cell invasion and
migration
Induces cell proliferation

[265]

miR-34 TP53 Induces cancer progression [266]
miR-93-5p CDK inhibitor Drug resistance [133]

miR-101
COX-2
ZEB1
EZH2

Induces cell proliferation and
EMT
Promotes cell invasion

[153]

miR-103a-3p Hyppo Promotes cell invasion
Metastasis [134]

miR-106b PTEN
Induces cell proliferation
Promotes cell migration and
invasion

[144]

miR-125b
BAK1
BMF
CXCR4

Induces cell proliferation and
EMT
Promotes cell invasion

[260]

miR-126 CXCR4 Metastasis [267]
miR-135 APC Promotes tumorigenesis [268]

miR-137-3p LDS-1
Induces EMT
Promotes cell migration and
invasion

[260]

miR-145-5p CDCA3 Induces EMT
Promotes cell invasion [261]

miR-148a MMP7 Promotes cell invasion [269]
miR-152-3p AQP11 Metastasis [135]

miR-192 ITGB1
ITGAV

Promotes cell invasion
Metastasis [259]

miR-200c
SOX2
ZEB1
ZEB2

Promotes cell invasion and EMT [259,270]

miR-483 EI24
Induces cell proliferation
Promotes cell invasion
Metastasis

[271]
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6.5. miRNAs as Biomarkers in Gastrointestinal Stromal Tumors

A growing number of research has shown that miRNAs play an important role not only
in tumorigenesis but also in the risk stratification of GIST [272]. Table 7 briefly summarizes
miRNAs of major significance in invasion, EMT, and metastasis in GIST.

miR-196a is one of the most relevant miRNAs involved in tumor progression. In
fact, a positive correlation was found between the over-expression of miR-196a and tumor
progression from metaplasia to adenocarcinoma [272]. In particular, miR-196a up-regulates
annexin A1 (ANXA1), involved in the invasion process, increasing the risk of metastasis for-
mation [273]. miR-186 inhibition is associated with the over-expression of genes implicated
in GIST metastasis by modulating the Met/Akt signaling pathway [274]. Therefore, miR-
196a over-expression and low expression of miR-186 are associated with poorer prognosis
in GIST patients [47].

Yamamoto et al. demonstrated that the down-regulation of miR-133b determines
the over-expression of Fascin-1, an actin-binding protein important in the regulation of
cell adhesion and migration. In addition, they discovered the correlation between over-
expression of Fascin-1 and worse prognosis in GIST patients. For this reason, Fascin-1
should be a useful biomarker to predict cancer aggressiveness [275].

It was found that the down-regulation of miR-137 can control EMT in GIST via TWIST1
inhibition [276]. Liu et al. demonstrated that miR-152 plays a tumor suppressor role by
targeting genes associated with cell proliferation, migration, and invasion, and it results
in down-regulated in GIST [277]. Recently, a study on miR-218 showed that its down-
regulation inhibits cell proliferation, migration, and invasion through direct targeting of the
KIT gene [278]. Many different tumors exhibit a down-regulation of let-7 family members,
which is also implied in GIST migration, invasion, and metastasis [272].

Gyvyte et al. investigated two deregulated miRNAs in GIST: miR-375-3p and miR-
200b-3p. Their down-regulation increases cell viability and migration through the modula-
tion of different target gene expressions, such as KIT, EGFR, ETV1, and the JAK/STAT3
pathway [279].

Table 7. Aberrantly expressed miRNAs in Gastrointestinal Stromal cancer, with their specific targets.

miRNA Target Effects Refs.

let-7-c
HOXA1
MMP1
C/EBP-α

Induces cell proliferation
Promotes cell migration and invasion [272]

miR-133b FSCN1 Enhance cell proliferation
Promotes cell invasion [276]

miR-137 TWIST1
Induces cell cycle arrest
Promotes cell migration and EMT
Apoptosis

[276]

miR-152 CTSL Induces cell proliferation
Promotes cell migration and invasion [277]

miR-186

IGFBP3
AKT
HGFR
CXCR4
EFEMP1

Promotes cell migration and invasion
Metastasis [274]

miR-196a ANXA1 Promotes cell invasion [272,273]

miR-218 AKT
KIT

Induces cell proliferation
Promotes cell migration and invasion [276,278]

miR-200b-3
EGFR
ETV1
STAT1

Induces cell proliferation
Promotes cell migration and invasion [279]

miR-375-3p KIT
PDGFRA JAK2

Induces cell proliferation
Promotes cell migration and invasion [279]
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7. Other Biomarkers in Gastrointestinal Cancers

In addition to the use of miRNAs as possible biomarkers, several molecules have
emerged over the years as biomarkers helpful for the diagnosis, follow-up, and response to
treatment in GI cancers. To date, the most widely used biomarker in the clinic for GI cancer
is carcinoembryonic antigen (CEA), a protein found in CRC and CCA patients that plays an
important role in cell adhesion and intracellular signaling [280]. It is used as a prognostic,
diagnostic, and response-to-therapy biomarker and as a target for cancer immunotherapy
(DOTAP) [281]. Indeed, high levels of CEA in the blood of patients with CRC are associated
with disease progression, while a decrease is found in patients after surgery [282]. Moreover,
tumor-associated antigens, such as CA19-9, a marker in the diagnosis and follow-up of some
GI cancers such as pancreatic cancer, CRC, GC, and CCA [283–285], are extensively used.
The first is found at high levels in the serum of CRC patients, while the second is considered
the first tumor marker for GC [286–288]. Alpha-fetoprotein (AFP) is a glycoprotein capable
of binding to different types of membrane receptors and intracytoplasmatic proteins,
blocking or enhancing the responses of intracellular signaling pathways. It is an important
biomarker used for early diagnosis and prognosis of HCC patients [289].

8. Nutraceuticals

Nowadays, conventional anticancer therapy implicates the use of radiotherapy and
chemotherapy, but such treatments are still expensive and inefficient, especially due to
drug resistance and severe adverse events. To date, there are many experimental studies
showing the usefulness of nutraceuticals as a complementary approach to standard therapy,
thanks to their low toxicity and multiple biological activities [290,291]. Nutraceuticals are
also known as bioactive compounds isolated from plants or food and include dietary fibers,
antioxidants, phytochemicals, polyunsaturated fatty acids, amino acids, prebiotics and
probiotics, and other types of natural food [292].

Many of them have multiple therapeutic properties, such as antioxidant, anti-inflammatory
and anticancer, and they seem to be very interesting in the management or treatment of
malignancies, cardiovascular diseases, diabetes, obesity, osteoporosis, and the immune
system, used alone or in combination with other drugs [293].

Much evidence has revealed that numerous amounts of bioactive substances or ex-
tracts from medical plants play an important role in the treatment of different types of GI
tumors [290].

Cairicoside E (CE) is a natural herbal medical compound isolated from Ipomoea Cairica
(Convolvulaceae). CE modulates the EMT through the down-regulation of aquaporine-5
(AQP5), determining an anti-metastatic effect [294].

Berberine (BBR) is an alkaloid used in Chinese plant-based medicines. It has a wide
spectrum of therapeutic actions, such as inhibition of cell proliferation, migration, induction
of cellular death, and the enhancement of chemosensitivity through the modulation of NF-
κB, PI3K/Akt, and the MAPK signaling pathways. In addition, it is involved in immunity,
inflammation [295,296], and, in some cases, in reversing gastric cancerogenesis [297].

Particularly, BBR up-regulates E-cadherin expression and down-regulates N-cadherin,
fibronectin, and vimentin expressions to modulate the EMT. Furthermore, BBR suppresses
migration and invasion of tumor cells via the IL-6/JAK2/STAT3 signaling pathway and
inhibiting MMP-9 protein levels.

BBR up-regulates miR-203 expression, a tumor-suppressive miRNA that binds at the
3′-UTR of Bcl-w oncogene, also resulting in a decrease in chemoresistance [298].

Oleanolic acid (OA) is a pentacyclic triterpene isolated from several plants, including
Olea europaea [299]. An antitumoral effect has been demonstrated through the over-
expression of miR-98-5p involved in the regulation of Treg/Th17 balance in GC tissues [300].

Paeoniflorin is a bioactive substance of Radix Paeoniae Rubra and is potentially used
as a novel therapeutic agent in GC TME. In fact, it improves the immune microenvironment
through the up-regulation of miR-149 in gastric CAFs, inhibiting the secretion of IL-6 and
leading to the inactivation of the IL-6/STAT3/MMP signaling axis [301].
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Sulforaphane is an isothiocyanate derived from the Brassicaceae family, including cab-
bage and broccoli. It has several activities, including chemopreventive and chemotherapeu-
tic, in different tumors such as lung, bladder, and CRC. As an anticancer drug, Sulforaphane
affects all three stages of carcinogenesis. Many studies revealed that it is able to suppress
progression and angiogenesis processes in CRC by the inhibition of HIF-1α and VEGF
expression [302,303].

Resveratrol (RV) is a polyphenol found in red wine, grapes, peanuts, and other food
products that has been reported to have antineoplastic activity on different malignan-
cies [304]. It could present an antitumor potentiality in CCA. In fact, RV can inhibit the
secretion of IL-6 from CAFs, preventing the induction of EMT and cancer cell migration.
Furthermore, it strongly promotes E-cadherin expression while suppressing N-cadherin,
thus, resulting in a reverse phenomenon of the EMT and a reduction in invasiveness and
metastasis in cancer cells [305].

Curcumin (CUR) is a non-flavonoid polyphenol purified from the rhizome of the Cur-
cuma longa. It is a pleiotropic molecule with anti-inflammatory, antioxidant, immunomod-
ulatory, and antimicrobial properties [306]. Recent studies have shown that CUR has an
antitumor effect on several malignancies, including GI cancers [307].

CUR is a multitarget drug capable of decreasing the expression of molecules involved
in angiogenesis, such as VEGF, and tumor invasion, such as intracellular adhesion molecule-
1 (ICAM-1), MMP-2, and MMP-9 in CCA [308].

Furthermore, CUR can suppress proliferation, migration, and invasion processes pro-
moting apoptosis of cancer cells in HCC by targeting the circ_0078710/miR-378b/PRIM2
signaling pathway [309] and up-regulating the miR-200 family, involved in the EMT sup-
pression [310].

CUR down-regulates miR-21 expression in CRC and GC. As mentioned above, miR-21
plays an important role in cancer cell migration and invasion through the activation of the
PI3K/Akt/mTOR pathway and modulation of MMP-2, MMP-9, and MMP-14 [159,310].

Several plant- and food-derived compounds have a high potential to treat GI tumors in
line with relatively low toxicity to normal cells. Indeed, they could be used in combination
with conventional anticancer drugs in order to have a potential synergistic effect in cancer
therapy [295,311].

9. Conclusions and Perspective

In summary, this review systematically describes aspects related to the mechanisms
responsible for tumor migration and invasiveness in GI cancers. Metastasis is the leading
cause of death from GI cancer, so it is of paramount importance to study the mechanisms
that regulate tumor migration, invasion, and metastasis to propose novel therapeutic tar-
gets and biomarkers. The migration of tumor cells and their ability to form metastases are
regulated by mechanisms driven by the TME. In GI tumors, the TME is composed of differ-
ent cell types which cooperate to promote and trigger metastasis formation. Specifically,
CAFs play a pivotal role in tumor progression by enhancing EMT and, thus, promoting
migration and metastasis formation. These processes are further supported by the presence
of an immunosuppressive infiltrate, mainly composed of Treg, MDSC, and TAM2 cells, and
by the presence of chemokines and cytokines such as CXCL12, IL-6, and TGF- β.

Recent studies have also demonstrated the critical role of miRNAs in promoting
tumor progression and metastasis formation in GI tumors. They may modulate signaling
pathways involved in migration and tumor invasion, such as Wnt/β-catenin, Hedgehog,
and Jak/Stat. Many miRNAs are found to be up- or down-regulated in tumor tissues
compared to healthy tissues, and to date, they are being considered as potential predictors
for prognosis, monitoring, and diagnosis of GI cancer patients. Of note, recent studies have
shown that the use of nutraceuticals, bioactive compounds isolated from plants or foods,
would be useful in GI cancers as a complementary approach to standard therapy. Indeed,
they are able to target miRNAs and other molecules that regulate several mechanisms
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involved in tumor migration and invasiveness. This could pave the way for new targeted
therapies for GI cancer treatment.

The high aggressiveness and late diagnosis in patients with GI tumors often result
in a poor prognosis. Therefore, it is necessary to develop new tools to improve early
diagnosis and prognosis for these patients. A growing number of studies are highlighting
the important role of miRNAs as potential markers in many neoplasms. The use of miRNAs
as biomarkers offers the great advantage of developing minimally invasive methods due to
their stability, which renders them easy to detect in different body fluids, such as blood.

On the other hand, the main disadvantage of their use in large-scale therapeutic
applications could be the difficulty of predicting the overall effect of the miRNAs of interest
due to the possible high number of target genes. Especially in a therapeutic context, their
application could represent a risk because of the occurrence of unknown and unpredictable
side effects, possibly triggering physiological function disorders or the development of
additional diseases. For this reason, Zhang et al. proposed the design of new delivery
systems for miRNA that recognize specific features at the site of the malignant lesion [312].

Further investigations are, therefore, needed for the application of miRNAs as tumor
biomarkers. In fact, they could offer important opportunities for the development of new
diagnostic and prognostic strategies that would help to improve the clinical outcome of
patients with GI tumors.
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ALCAM Activated leukocyte cell adhesion molecule
ANXA1 Annexin A1
AQP5 Aquaporine-5
AQP11 Aquaporine-11
AFP Alpha-fetoprotein
bFGF Basic fibroblast growth factor
BBR Berberine
CE Cairicoside E
CAFs Cancer-associated fibroblasts
CEA Carcinoembryonic antigen
CTSL Cathepsin L
C/EBP-α CCAAT Enhancer Binding Protein Alpha
CXCR4 CXC chemokine receptor 4
CDCA3 Cell cycle-associated protein-3
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CCA Cholangiocarcinoma
JNK c-Jun amino-terminal kinases
CRC Colorectal cancer
CUR Curcumin
COX-2 Cyclooxygenase-2
DC Dendritic cells
ADAM17 Disintegrin and metalloprotease 17
EFEMP1 Epidermal growth factor-containing fibulin-like extracellular matrix protein 1
EGFR Epidermal growth factor receptor
EMT Epithelial-mesenchyme transition
ETV1 ETS transcription factor 1
ECM Extracellular matrix
ERK1/2 Extracellular regulated kinase 1/2
FSCN1 Fascin actin-bundling protein 1
FAP Fibroblast activation protein
FFPE Formalin-fixed paraffin-embedded
GC Gastric cancer
GI Gastrointestinal
GIST Gastrointestinal stromal tumor
HCC Hepatocellular carcinoma
HGFR Hepatocyte growth factor receptor
HGMB2 High mobility group AT-hook 2
ICIs Immune checkpoint inhibitors
IDO Indoleamine-pyrrole2,3-dioxygenase
IGF-1 Insulin-like growth factor-1
IGFBP3 Insulin-like growth factor-binding protein 3
IRF1 Interferon regulatory factor-1
ICC Interstitial cell of Cajal
ICAM-1 Intracellular adhesion molecule-1
JAK Janus kinase
KLF4 Kruppel-like factor 4
LDS-1 Lysine-specific demethylase 1
MMP Matrix metalloproteases
MDX1 MAX dimerisation protein 1
mRNA Messenger RNA
miRNAs MicroRNAs
MAPKs Mitogen-activated protein kinase
MDSCs Myeloid-derived suppressor cells
15-PGDH/HPGD NAD(+)-linked 15-hydroxyprostaglandin dehydrogenase
NGS Next-Generation Sequencing
NSCLC Non-small cell lung cancer
NF-κB Nuclear factor kappaB
OA Oleanolic acid
PTEN Phosphatase and tensin homolog
PI3K Phosphatidylinositol 3-kinase
PDGF Platelet-derived growth factor
PDGFRA Platelet-derived growth factor receptor A
PDCD4 Programmed Cell Death 4
PGE2 Prostaglandin E2
AKT Protein kinase B
qRT-PCR Quantitative reverse transcription-polymerase chain reaction
RDX Radixin
RKT Receptor tyrosine kinase
ROS Reactive oxygen species
RV Resveratrol
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RECK Reversion Inducing Cysteine Rich Protein with Kazal Motifs
STAT Signal transducer and activator of transcription
Tregs T regulatory cells
TGF-β Transforming growth factor-β
TME Tumor microenvironment
TAMs Tumor-associated macrophages
TANs Tumor-associated neutrophils
TILs Tumor-infiltrating lymphocytes
TWIST Twist family bHLH transcription factor 1
KIT Tyrosine kinase
UQCRC2 Ubiquinol-cytochrome c reductase core protein 2
VEGF Vascular endothelial growth factor
YAP1 Yes-associated protein 1
α-SMA α-smooth muscle actin
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