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Abstract: Several noninvasive vascular biomarkers have been proposed to improve risk stratification
for atherothrombotic events. To identify biomarkers suitable for detecting intermediate-risk indi-
viduals who might benefit from lipid-lowering treatment in primary prevention, the present study
tested the association of plasma LDL-cholesterol with coronary artery calcification (CAC) Agatston
score, high carotid and femoral intima-media thickness (IMT), low carotid distensibility and high
carotid-femoral pulse-wave velocity in 260 asymptomatic individuals at intermediate cardiovascular
risk and without diabetes and lipid-lowering treatment. High or low vascular biomarkers were
considered when their value was above the 95th or below the 5th percentile, respectively, of the
distribution in the healthy or in the study population. LDL-cholesterol was independently associated
with the CAC score = 0 (OR 0.67; 95%CI 0.48–0.92, p = 0.01), CAC score > 100 (1.59; 1.08–2.39, p = 0.01)
and high common femoral artery (CFA) IMT (1.89; 1.19–3.06, p < 0.01), but not with other biomarkers.
Our data confirm that in individuals at intermediate risk, lipid-lowering treatment can be avoided in
the presence of a CAC score = 0, while it should be used with a CAC score > 100. CFA IMT could
represent a useful biomarker for decisions regarding lipid-lowering treatment. However, sex- and
age-specific reference values should be established in a large healthy population.

Keywords: lipid-lowering treatment; primary prevention; coronary calcium; intima-media thickness;
arterial stiffness; carotid artery; femoral artery

1. Introduction

Low-density lipoprotein cholesterol (LDL-C) is the most abundant atherogenic lipopro-
tein in plasma, and its infiltration of the arterial wall is considered a key event in the
initiation and progression of the atherosclerotic process. Increased plasma LDL-C levels
are causally related to atherosclerotic cardiovascular (CV) disease [1] and lowering LDL-C
values by lifestyle or therapeutic interventions has been shown to reduce the risk of CV
events, both in primary and secondary prevention [1–5].

The 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Dis-
ease [6] suggests statin treatment not only in individuals with diabetes, very high LDL-C
levels (≥190 mg/dL) or high 10-year risk of CV disease (≥20%), but even in individuals at
intermediate CV risk (≥7.5–20%), in the presence of risk enhancers such as coronary artery
calcification (CAC). In the absence of CAC, statin therapy can be avoided or withdrawn,
while in the presence of the Agatston CAC score above 100, statins are recommended at
any age.

Biomedicines 2023, 11, 1753. https://doi.org/10.3390/biomedicines11061753 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines11061753
https://doi.org/10.3390/biomedicines11061753
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0003-0628-2312
https://orcid.org/0000-0002-0628-2729
https://doi.org/10.3390/biomedicines11061753
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines11061753?type=check_update&version=2


Biomedicines 2023, 11, 1753 2 of 10

CAC, a highly specific feature of coronary atherosclerosis, is the most predictive single
CV risk marker in primary prevention. CAC scoring using the Agatston method was suc-
cessfully incorporated into the coronary heart disease prediction model based on traditional
risk factors [7–10]. However, the utility of the Agatston score for evaluating the effectiveness
of statin therapy is limited because the score considers both the total area and the maximal
density of coronary calcification, and as demonstrated by serial intravascular ultrasound,
intensive statin therapy induces regression of atheroma volume but promotes its calcifi-
cation [11,12]. This process leads to the stabilization of the atherosclerotic lesion but may
increase the CAC score. Various studies have shown that statin treatment can accelerate coro-
nary calcification [13,14], even as it reduces all-cause mortality and major vascular events
among people without evidence of CV disease [15]. Therefore, the CAC score helps define
individual CV risk. Still, repeated computed tomography to assess the response to statin
therapy is probably inappropriate, considering also the cumulative radiation dose [16].

Other noninvasive vascular biomarkers, such as carotid and femoral intima-media
thickness (IMT) and plaques or carotid and aortic stiffness, have been proposed for risk
estimation and decision-making regarding statin treatment, as well as for assessing re-
sponse to statin therapy. Previous studies have demonstrated that statins can slow the
progression of carotid IMT and improve arterial stiffness [17–20], but this beneficial effect
is not necessarily related to the main action of statins, i.e., lowering serum LDL-C levels.
Statins have pleiotropic effects that include reducing inflammatory cytokines and reactive
oxygen species, inhibiting smooth muscle cell proliferation, improving endothelial function
and lowering blood pressure (BP) [21–25]. These mechanisms may be involved in reducing
arterial wall thickness and stiffness.

The aim of this cross-sectional study was to evaluate the association of various noninvasive
vascular biomarkers [26,27] with plasma LDL-C levels in order to identify biomarkers that
could reflect the impact of LDL-C on vascular trees and could be used to select individuals
suitable for lipid-lowering treatment and to monitor its effect. The study population included
asymptomatic individuals at intermediate 10-year risk of CV disease, without diabetes and with
LDL-C ≥ 190 mg/dL, i.e., individuals for whom additional risk assessment is recommended
before starting statin therapy [6]. Vascular biomarkers tested were CAC score, high common
carotid artery (CCA) or common femoral artery (CFA) IMT, low CCA distension and high
carotid-femoral pulse wave velocity (cfPWV). Abnormally high or low vascular biomarkers
were considered when their value was above the 95th percentile or below the 5th percentile [28],
respectively, of distribution in a healthy population (if data in a healthy population were
available) or in the study population (if data in healthy population were not available).

2. Materials and Methods
2.1. Study Population and Protocol

The study population is a part of the population enrolled in the prospective cohort study
“MHeLP, Montignoso Heart-Lung Project”, aimed at defining the predictive value of CAC
score for CV events in a community-based (the village of Montignoso, Tuscany, Italy) general
population. The original population consisted of 638 individuals. For this study, we included
only individuals aged 40–75 years, without CV symptoms, lipid-lowering therapy, and diabetes,
with plasma LDL-C levels < 190 mg/dL and at intermediate 10-year risk of CV disease as
estimated by Framingham Risk Score. The final population consists of 260 individuals.

All individuals underwent an examination protocol that included anthropometry,
brachial BP measurements, a fasting blood test, ECG, a high-resolution carotid and femoral
ultrasound and a computed tomography scan. Carotid-femoral pulse wave velocity was
measured in 182 individuals. Hypertension was defined as systolic BP > 140 mmHg and/or
diastolic BP > 90 mmHg or hypertensive treatment [29].

2.2. Body Size and BP Measurement

Body weight and height were measured, and body mass index (BMI) was calculated.
Waist circumference was measured as the narrowest circumference between the lower
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rib margin and anterior superior iliac crest. Brachial BP was measured at two visits by a
validated digital electronic tensiometer (Omron, model 705cp, Kyoto, Japan) in participants
seated for at least 10 min, using regular or large adult cuffs according to the arm circum-
ference. Two measurements were taken at both visits, separated by 2-min intervals, and
the average was calculated. The average of two separate visits was used to estimate BP
(mmHg). Pulse pressure was calculated as the difference between systolic and diastolic BP.

2.3. Assessment of the 10-Year Risk of CV Disease

A 10-year risk of CV disease was estimated by the Framingham risk score prediction
model that considers age, total cholesterol, high-density lipoprotein cholesterol (HDL-C),
systolic brachial BP, ongoing treatment of hypertension, smoking and diabetes status [30].
The risk was classified as intermediate when the 10-year risk of CV disease ranged between
7.5 and 20% [6].

2.4. Assessment of LDL-C Plasma Level

Plasma LDL-C was measured by direct enzymatic colorimetric method (Beckman
Coulter, Danaher Corporation, Sunnyvale, CA, USA). LDL-C levels were considered as
optimal (<100 mg/dL), near-optimal (100–129 mg/dL), borderline high (130–159 mg/dL)
and high (160–189 mg/dL) as recommended [31].

2.5. Coronary Calcium Score (CAC)

A low-dose radiation scan without contrast agent was done (120 KV, 60 mA) by a
64-detector scanner (Aquilion 64; Toshiba Medical Systems, Otawara, Japan) (2–3 mSv
estimated dosimetry, with 1- and 3-mm collimation and reconstruction thickness, respec-
tively). Prospective electrocardiographic triggering in sequential slice mode was used
for scanning the heart. The CAC score was calculated by Agatston [32] with a dedicated
program available (Vitrea 2.0; Vital Images Inc., Minnetonka, MN, USA). The Agatston
score was determined by multiplying the area of calcification expressed in mm3 by the
corresponding density number using the following density scale (1 = 130–199 Hounsfield
units (HU), 2 = 200–299 HU, 3 = 300–399 HU, 4 = ≥400 HU). For this study, we identified
individuals with a CAC score = 0 and a CAC score > 100.

2.6. Vascular Examination

All vascular examinations were carried out by the same operator (G.J.) in a quiet room
with a stable temperature of 22 ◦C on individuals resting comfortably for at least 15 min in
the supine position. All individuals were asked to abstain from cigarette smoking, caffeine
and alcohol consumption and vigorous physical activity for 24 h.

Carotid ultrasound was performed on the right CCA using an ultrasound scanner
equipped with a 10 MHz linear probe (MyLab 70, Esaote, Genova, Italy) and implemented
with a previously validated radiofrequency-based tracking of the arterial wall (QIMT®,
QAS®, Esaote, Genova, Italy) that allows an automatic and real-time determination of
far-wall CCA IMT, CCA outer diameter and distension with a high spatial and temporal
resolution (sampling rate of 550 Hz on 32 lines). CCA IMT, diameter and distension were
measured within a rectangular 1-cm-long ROI placed approximately 1 cm before the flow
divider. IMT was defined as the distance between the lumen-intima and media-adventitia
interfaces of the far (posterior) wall. Distensibility coefficient (DC) was calculated from
the distension curves as follows: DC = (∆A/A)/PP, where A = π ∗ (D/2)2, ∆A = π ∗ [(D +
∆D)/2]2—π ∗ (D/2)2, D = diastolic outer diameter and PP = Pulse Pressure [33].

Femoral ultrasound was performed on the right CFA using the same ultrasound
scanner with radiofrequency-based tracking of the arterial wall. Far wall IMT was measured
within a rectangular 1-cm-long ROI placed approximately 1 cm before the flow divider.

To identify individuals with high CCA IMT, the sex- and age-specific normality tables
deriving from IMT measurements performed by the same radiofrequency-based system in
4234 healthy men and women were used [34], and a cutoff point of the 95th percentile for
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given sex and age was adopted [28]. To identify individuals with low CCA DC, the sex-
and age-specific normality tables deriving from DC measurements performed by the same
radiofrequency-based system in 3601 healthy men and women were used [33], and a cutoff
point of the 5th percentile for given sex and age was adopted [28]. As no normalcy data
were published for CFA IMT, a cutoff point of the 95th percentile of CFA IMT distribution
in our population was adopted for defining high CFA IMT.

Radiofrequency-derived measures represent an average of over six consecutive cardiac
beats. The mean of two acquisitions was used for statistical analysis. BP was measured
at the left brachial artery (Omron, Kyoto, Japan) during each acquisition of the distension
curves. Intra-individual variability of acquisitions was evaluated in 25 volunteers, in
whom the acquisitions were performed in two sessions separated by 30 min. Brachial
pulse pressure was comparable between the two acquisitions (p = 0.88). Intra-individual
variability of CCA IMT, CCA distension and CFA IMT was 6.7 ± 4.2, 8.7 ± 6.4% and
8.1 ± 5.4%, respectively.

Carotid-femoral pulse wave velocity (cfPWV) was measured in 182 participants ac-
cording to current guidelines [35] using the Complior device (Alam Medical, Vincennes,
France). To identify individuals with high cfPWV, the sex-, age- and mean BP-specific
normality tables deriving from cfPWV measurements performed in 2158 healthy men and
women were used [36] and a cutoff point of the 95th percentile for given sex, age and mean
BP was adopted [28]. Intra-individual variability of carotid-femoral PWV measurement
was 4.3 ± 2.8%.

2.7. Statistical Analysis

Data are expressed as mean ± SD, and categorical data as percentages. Variables with
skewed distribution were summarized as median [interquartile range] and were logarith-
mically transformed for parametric statistical analysis. Multivariate logistic regression
was performed to identify risk factors associated with CAC score = 0, CCA score > 100,
high CCA IMT, high CFA IMT, low CCA DC and high cfPWV. Results are given as odds
ratio (OR) and 95% confidence interval (CI). ORs were calculated for 1SD of the continuous
variable. Statistical tests were two-sided, and significance was set at a value of p < 0.05.

3. Results

Characteristics of the study population are reported in Table 1. Twenty-nine individu-
als had optimal LDL-C levels, ninety-three near optimal levels, ninety-five borderline high
and forty-three high levels.

Table 1. Characteristics of Study Population.

Mean ± SD, Median [IR],
n (%) Range

Male: Female 119 (46):141 (54)
Age (years) 63 ± 6 50–74

BMI (kg/m2) 26.9 ± 3.9 17.3–51.7
Waist circumference (cm) 95 ± 11 67–147

Systolic BP (mmHg) 136 ± 14 105–180
Pulse pressure (mmHg) 61 ± 13 30–95

Total cholesterol (mmo/L) 5.45 ± 0.78 3.28–6.88
LDL-cholesterol (mmo/L) 3.42 ± 0.6 1.66–4.85

LDL-C O:NO:BH: H 29 (11):93 (36):95 (36):43 (17)
HDL-cholesterol (mmo/L) 1.58 ± 0.37 0.89–2.64

Triglycerides (mmo/L) 0.89 [0.75] 0.23–3.89
Fasting glucose (mmo/L) 5.36 ± 0.49 4.44–6.70

Current smoking (yes) 43 (17)
Hypertension (yes) 113 (43)

Hypertensive treatment (yes) 38 (15)
O: optimal; NO: near-optimal; BH: borderline high; H: high.
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Table 2 reports data on CAC score, CCA IMT and distensibility, CFA IMT and cfPWV.
One hundred eighty-two individuals had CAC score = 0, 36 had CAC score > 100, 49 had
high CCA IMT, 15 had low CCA DC, 25 had high CFA IMT, and 27 had high cfPWV.

Table 2. CAC Score, CCA IMT and Distensibility, CFA IMT and Aortic Stiffness.

Mean ± SD, n (%) Range

CAC = 0 182 (70)
CAC score > 100 36 (14)

CCA IMT (microns) 731 ± 135 459–1202
CCA IMT > 95th percentile 49 (19)

CCA DC (10−3kPa−1) 14.2 ± 4.5 4.31–30.2
CCA DC < 5th percentile 15 (6)

CFA IMT (microns) 736 ± 202 340–1671
CFA IMT > 95th percentile 25 (10)

cfPWV (m/s) (n = 182) 9.4 ± 2.4 4.1–23.6
cfPWV > 95th percentile (n = 182) 27 (15)

Figure 1 reports risk factors associated with CAC score = 0, CAC score > 100, high
CCA IMT or CFA IMT, low CCA DC and high cfPWV. LDL-C was independently associated
with CAC score = 0, CAC score > 100 and high CFA IMT, but not with high CCA IMT, low
CCA DC or high cfPWV. Neither HDL-C nor triglycerides were related to any vascular
biomarker.

Figure 1. Risk factors associated with CACs score = 0, CAC score > 100, high CCA IMT, high CFA
IMT, low CCA DC and high cfPWV.

Odds ratios are calculated for 1SD of the continuous variable.
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4. Discussion

In our asymptomatic population at intermediate CV risk, LDL-C was associated with
coronary calcification and CFA IMT in the highest 5 percent distribution. Neither high CCA
IMT, low carotid distensibility, nor high aortic stiffness was associated with plasma lipids.

These results confirm the association between LDL-C levels and coronary calcification
in asymptomatic patients at intermediate CV risk. The 2019 ACC/AHA Guideline on the
Primary Prevention of Cardiovascular Disease [6] does not recommend statin therapy in
intermediate-risk individuals if the CAC score is 0, while it recommends starting statin
therapy at any age if the CAC score is greater than 100. In our population, LDL-C was
associated with a CAC score of 0 with OR = 0.67 and a CAC score above 100 with OR = 1.59.

The relationship between LDL-C exposure and vascular calcification has been demon-
strated in both clinical and experimental studies. It reflects the fact that in the arterial wall
are cells capable of osteoblastic differentiation and mineralization and that oxidized lipids
accumulated in the subendothelial space induce differentiation of these cells and promote
calcification [37,38]. Vascular smooth muscle cells, endothelial cells, fibroblasts, mesenchy-
mal stem cells, and endothelial progenitor cells can transdifferentiate into osteoblast-like
cells [39]. However, calcification in atherosclerotic lesions is associated with both progres-
sion of disease (microcalcification) and the healing of inflammation (macrocalcification),
and statins may reduce arterial wall inflammation through a variety of mechanisms [40]. In
the Heinz Nixdorf Recall Study, statin intake enhanced CAC progression, mostly in the less
advanced stage of atherosclerosis, but this progression did not increase the risk for coronary
events [14]. A meta-analysis of 7 studies suggested that in asymptomatic populations at
high risk of CV diseases, statins do not reduce or enhance CAC score but slightly slow its
progression, above all in individuals with CAC score > 400 [41]. CAC score can therefore
help adjust individual CV risk and select suitable candidates for statin therapy, but its value
for monitoring treatment efficacy is limited.

Among the other vascular biomarkers tested in our study, neither high CCA IMT, low
CCA distensibility, nor high aortic stiffness was related to plasma LDL-C. On the other
hand, all these biomarkers were independently associated with pulse pressure and waist
circumference. Pulse pressure is considered a major mechanical determinant of arterial
remodeling because repeated cyclic stress exerts a fatiguing effect on the load-bearing ele-
ments of the arterial media, above all on elastin, causing its fracture and degeneration and
leading to luminal enlargement and wall stiffening. Luminal enlargement is accompanied
by a further increase in circumferential wall stress, which activates intracellular signaling
pathways promoting smooth muscle cell proliferation and migration, resulting in wall
thickening and reducing stress [42]. Indeed, the results of various studies suggest that
an increase in carotid IMT reflects, rather than atherosclerosis, a physiologic remodeling
aimed to maintain stable circumferential wall stress when BP increases [43,44]. One of the
pleiotropic effects of statins is BP reduction [25], above all in individuals with higher BP and
in users of anti-hypertensive medication [45,46]. Thus, the reported deceleration of carotid
IMT progression with statin therapy [17–19] could be partially explained by the decrease in
BP and arterial wall stress and by the inhibition of smooth muscle cell proliferation and
migration [24]. In a longitudinal community-based Taiwanese study evaluating the effect
of changes in LDL-C and systolic BP on carotid IMT, baseline IMT was associated with both
LDL-C and BP, but changes in IMT during a 6-year observational period were associated
only with changes in BP [47].

Another independent determinant of high CCA IMT, low CCA distensibility and high
aortic stiffness was waist circumference. Central obesity is related to low-grade systemic
inflammation [48,49], and in hypercholesterolemic patients, low-grade systemic inflamma-
tion and abdominal fat were the main determinants of reduced arterial distensibility [50].
Similarly, in patients with type 2 diabetes mellitus, carotid IMT was associated with waist
circumference and plasma inflammatory markers [51]. Therefore, anti-hypertensive and
anti-inflammatory action of statins might explain the positive effect of stain therapy on
elastic arteries structure and function, independent of LDL-C levels [21,25].
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Unlike CCA IMT, high CFA IMT was independently associated with plasma LDL-C.
Previous studies comparing the relationships between risk factors and IMT in the carotid
and femoral arteries have not reported significant differences. In the AXA study [52],
evaluating the association between large-artery wall thickness and risk factors in men
and women 17 to 65 years old, both carotid and femoral IMT were associated with age,
BMI, BP, total cholesterol and glucose, and in a study including normocholesterolemic and
hypercholesterolemic subjects, carotid and femoral IMTs increased with total cholesterol
(r = 0.35, p < 0.001 for both arteries) and LDL-C (r = 0.33, p < 0.001 and r = 0.34, p < 0.001,
respectively) in a similar way [53]. Yet, when the impact of 2-year simvastatin treatment
on carotid and femoral IMT was assessed in patients with familial hypercholesterolemia,
a more important IMT regression was observed in the femoral than in the carotid artery
(−0.283 vs. −0.053 mm). In addition, hypercholesterolemic patients with a history of
CV disease compared with those without CV disease had significantly higher CFA IMT
at baseline (2.31 ± 0.81 vs. 1.72 ± 0.63 mm, p < 0.001), whereas differences in CCA IMT
were less significant (0.99 ± 0.17 vs. 0.90 ± 0.19 mm, p = 0.01) [54]. Based on these results,
authors suggested that the femoral artery could be more sensitive to the reduction of LDL-C
levels and that a greater regression of femoral IMT might be clinically relevant because the
association between IMT and CV disease was better in the femoral compared to the carotid
artery. Likewise, in the Regression Growth Evaluation Study (REGRESS), a double-blind,
placebo-controlled, prospective study of 885 men with coronary artery disease, the most
significant effect of pravastatin was seen in the CFA IMT. During the 2-year observational
period, far wall IMT in CFA increased by 0.13 ± 0.05 (SE) mm in the placebo group but
decreased by 0.06 ± 0.05 mm in the pravastatin group (p = 0.004). In contrast, the two
groups did not differ for changes in far wall CCA IMT (0.05 ± 0.02 vs. 0.04 ± 0.02 mm;
p = 0.67) [55].

4.1. Study Limitations

We cannot evaluate the association between LDL-C levels and carotid or femoral
plaques because the prevalence of plaques in our asymptomatic participants at intermediate
CV risk was very low. C-reactive protein or other markers of systemic inflammation were
not assessed.

4.2. Conclusions

Among vascular biomarkers used in primary prevention of asymptomatic individuals
at intermediate 10-year CV risk, only coronary calcification, and CFA IMT in the highest
5 percent of distribution were independently related to plasma LDL-C levels. To identify
intermediate-risk individuals who can benefit from lipid-lowering therapy and to monitor
its effect, age- and sex-specific CFA IMT reference values should be established in a large
healthy population, as has been done for CCA IMT, CCA DC and cfPWV. High CCA IMT,
low CCA distension and high aortic stiffness were not associated with blood lipids but
with pulse pressure and waist circumference. The latter observation suggests that the
positive effect of statins on the elastic artery wall thickness and stiffness, already described
by others, could be independent of LDL-C and mediated by the anti-hypertensive and
anti-inflammatory actions of statins. Overall, our data indicate that different vascular
biomarkers may reflect the impact of different risk factors on CV systems and that assessing
more than one biomarker could provide a more accurate estimate of CV risk.
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