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Abstract: Background: Serum mid-regional proadrenomedullin (MR-proADM) has emerged as a
marker of organ failure (mainly lungs and kidneys) and poor prognosis in patients admitted to
intensive care (IC); some reports also suggest it and other markers, such as Krebs von den Lungen-
6 (KL-6) and interleukin-6 (IL-6), as a prognostic biomarker of COVID-19. The aim of the study
was to evaluate the performance MR-proADM in hospitalized COVID-19 patients for predicting in-
hospital mortality and need for non-invasive or invasive respiratory support. Methods: We enrolled
74 patients hospitalized in the COVID Unit of Siena Hospital from March to May 2020, for whom
serum samples were available on admission for assay of MR-proADM, KL-6 and IL-6. Demographic
data, comorbidities, medical history and clinical laboratory data on days 1–3 of admission and
Simplified Acute Physiology Score and Simplified Organ Failure Assessment scores calculated at day
1 were collected retrospectively, as well as mortality and IC admission data. Results: 12 patients died
in hospital (16%) and 14 patients were admitted to IC (19%). Serum concentrations of MR-proADM
on admission and on day 1 were higher among non-survivors than among survivors (p = 0.015
and p = 0.045, respectively), while those on day 3 were not significantly different. Patients needing
respiratory support had higher MR-proADM concentrations on admission than the others (p = 0.046),
and those requiring invasive mechanical ventilation had higher MR-proADM on day 1 (p = 0.017).
Serum concentrations of KL-6 and IL-6 were significantly higher in non-survivors (p = 0.03 and
p = 0.004, respectively). ROC curve analysis showed that serum MR-proADM on day 1 had the
best accuracy in predicting death and/or IC admission (AUC = 0.9583, p = 0.0006); the combina-
tion of all three biomarkers further improved the accuracy of prediction of death or IC admission
(AUC = 0.9793; p = 0.00004). Conclusions: Our data sustain the potential of serum MR-proADM as a
reliable prognostic biomarker of hospitalized COVID-19 patients and confirms the utility of the three
markers in the management and risk stratification of hospitalized patients. The markers are collected
mini-invasively and are quick to analyze and cost-effective.

Keywords: COVID-19; KL-6; biomarkers; proADM

1. Background

The clinical spectrum of Coronavirus Disease 2019 (COVID-19) is variable, ranging
from asymptomatic or mild symptoms to severe pneumonia, respiratory failure and multi-
organ failure [1,2]. Mortality is higher in patients admitted to intensive care (IC), increasing
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from 15–20% in hospitalized patients to almost 40% in IC patients [3]. Although mass
vaccination and approval of targeted drugs have reduced its mortality and morbidity [4],
COVID-19 remains a real threat for elderly and frail patients, still being associated with
a significant number of hospitalizations and deaths. The identification and validation of
biomarkers that could help clinicians with early accurate severity assessment and prog-
nosis is, therefore, still needed for correct triage, rational resource allocation and early
identification of patients at risk of deterioration.

The pathogenesis of acute COVID-19 has been linked to a dysregulated immune
response and septic hyperinflammation [5,6]. Biomarkers studied in such a setting could
also be evaluated in the context of coronavirus infection [7,8]. Among these biomarkers,
serum mid-regional proadrenomedullin (MR-proADM) emerges as a promising marker of
organ failure, disease progression and poor prognosis. MR-proADM is a peptide derived
1:1 with ADM from a common precursor and, therefore, mirrors serum levels of ADM,
which is produced by endothelial cells and has vasodilatory, natriuretic, diuretic, anti-
inflammatory and immunomodulatory functions [9,10]. ADM is produced by endothelial
cells and is ubiquitous in the human body; it exerts its activity by binding specific receptors
in the lungs, kidneys, cardiovascular, gastrointestinal and endocrine systems. ADM is
difficult to detect in blood because of its molecular instability and brief half-life. By contrast,
MR-proADM has a half-life of hours, is easily quantified in plasma and has a reference
range value of 0.26–0.51 nmoL/L. By virtue of these features, it has already been validated
in clinical practice [11]. High levels of MR-proADM have been documented in septic
patients in the first 24 h after diagnosis and have been linked to higher mortality. Its
fast clearance under IC is predictive of better outcomes [12,13]. Serum MR-proADM has
emerged as a marker of organ failure, particularly acute respiratory failure and acute
kidney injury (AKI), and poor prognosis in an IC setting [13]. In patients admitted with
respiratory failure, MR-proADM has shown better accuracy in predicting prognosis and
28-day outcome than other biomarkers such as procalcitonin, C-reactive protein, troponin
and pro-brain natriuretic peptide [14]. Interestingly, it was recently proposed as a prognostic
biomarker of COVID-19 in hospitalized patients [15,16]. COVID-19 is associated with
various degrees and types of endothelial dysfunction [17]. Many histopathological studies
have demonstrated a direct viral cytopathic effect associated with significant infiltration of
inflammatory cells in endothelium, further suggesting that endotheliitis is directly related
to disease severity [18,19]. Faced with the need for reliable and cost-effective biomarkers
for COVID-19 patients to optimize management and prognostic estimation, MR-proADM
may be useful in clinical practice for detecting and/or predicting patients most at risk of
developing organ failure.

In this field, another proinflammatory cytokine and oxidative stress mediator of
lung injury is Krebs von den Lungen-6 (KL-6), a mucin protein produced mainly by
damaged or regenerating alveolar type II pneumocytes. It is recognized as a prognostic
bioindicator of interstitial lung diseases [20], especially idiopathic pulmonary fibrosis
and progressive pulmonary fibrosis [21], and it may also be associated with response to
antifibrotic treatment [22,23]. Since early 2020, KL-6 has showed promise as a prognostic
marker of COVID-19, although most studies have been single-center and with small
numbers of patients [24,25].

Since the beginning of the COVID-19 pandemic, serum IL-6 has emerged as a predictor
of severity and prognosis in hospitalized patients, probably due to its crucial role in
triggering the ‘cytokine storm’ leading to acute disease. This assumption is confirmed by
evidence from clinical trials investigating the efficacy of anti-IL-6 drugs in patients with
severe COVID-19 [26].

Since COVID-19 is still a global threat to health systems due to the associated morbidity,
hospitalization risk and mortality, the aim of the present study was to investigate the
performance of serum MR-proADM, alone and combined with KL-6 and IL-6, in predicting
in-hospital mortality and the need for invasive respiratory support on admission to hospital.
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2. Methods

This monocentric, prospective, observational study was conducted at Siena University
Hospital. All adult patients (age over 18 years) hospitalized for SARS-CoV-2 infection and
admitted to the COVID Unit between March and May 2020 were enrolled prospectively.
Inclusion criteria included informed consent to serum sampling and storage, and the blood
sampling for biomarker assessment had to have been performed at admission and on
days 1 and 3 after admission. Data were collected during the hospitalization period until
discharge or death, whichever came first. All patients included in the study underwent a
nasopharyngeal swab for SARS-CoV-2 infection on admission. The following data were
recorded: age, gender, comorbidities, previous therapies, date of onset and nature of
symptoms, clinical presentation, antiviral and immunosuppressive treatments, need for
respiratory or organ support, length of stay, complications and in-hospital death. The
following laboratory results were recorded on admission, day 1 and day 3: complete
blood count, C-reactive protein (CRP), procalcitonin, ferritin, D-Dimer, prothrombin time
(PT), international normalized ratio (INR), activated partial thromboplastin time (aPTT),
aspartate aminotransferase, alanine aminotransferase, albumin, bilirubin, creatinine, LDH,
pro-BNP and arterial blood gas parameters. The same timeline for blood sampling was
used for MR-proADM assessment. SAPS II (Simplified Acute Physiology Score) and SOFA
(Simplified Organ Failure Assessment) scores were calculated at day 1. All data were
entered in an anonymous electronic database.

Patients with known interstitial lung disease (ILD), chronic obstructive lung disease,
lung or pleural cancer or concomitant infections were excluded from the study, as well as
patients under 18 years or unable to give informed consent. Patients who died or were
discharged in the first 3 days of hospitalization and were, therefore, unable to perform
all blood samplings were excluded from the analysis. If a patient was admitted to IC in
the first 3 days of hospitalization, only pre-IC blood samples were used for biomarker
assessment and subsequently included in the statistical analysis.

According to our COVID Unit protocol, hospitalized patients were only admitted
to IC when orotracheal intubation due to respiratory failure was prescribed; patients
needing high-flow oxygen therapy and/or non-invasive ventilation were allocated to sub-
intensive care and managed by a multidisciplinary team, including respiratory physicians,
cardiologists and intensive care physicians.

In a subgroup of 22 patients, serum sampling for KL-6 and IL-6 assay performed on
the same day as baseline MR-proADM was available and biomarker levels were included
for outcome analysis.

The study was conducted according to the principles of the Declaration of Helsinki
and was approved by the local Ethical Committee (code BIOCOVID, C.E.A.V.S.E. protocol
number 180409).

2.1. Serum Biomarker Assay

Blood and serum samples were collected on admission and on days 1 and 3 of hospital
stay. Preparation and storage of serum was performed at the Clinical Pathology Laboratory,
University Hospital of Siena. Peripheral blood samples were collected in a tube containing
ethylenediamine tetra acetic acid (EDTA) anticoagulant (BD Vacutainer® EDTA tubes; BD
Biosciences, San Jose, CA, USA) and centrifuged (15,000× g for 10 min); plasma was stored
at −80 ◦C until assay. The method described by Sozio et al. [16] was used to measure plasma
concentrations of MR-proADM in our population (automated Kryptor analyzer, time-
resolved amplified cryptate emission (TRACE) technology assay (Kryptor PCT; Brahms
AG; Hennigsdorf, Germany) and commercially available immunoluminometric assay kits
(Brahms)). Serum concentrations of KL-6 (sKL-6) were measured by KL-6 reagent assay
(Fujirebio Europe, Gent, Belgium). The principle of the assay is agglutination of sialylated
carbohydrate antigen in samples with KL-6 monoclonal antibody by antigen–antibody
reaction. The change in absorbance was measured to determine KL-6 concentrations, which
were expressed in U/mL.
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2.2. Statistical Analysis

Continuous and categorical variables were reported as median [interquartile range,
IQR] and n (%), respectively. The Kolmogorov–Smirnov test was used to assess distribution
of variables. Considering mortality and/or IC admission as the main outcomes and
the predicted incidence of mortality for hospitalized COVID-19 patients in the Wuhan
population [1], we calculated that we needed to enroll a total of 80 subjects in the study,
since a total sample size of 70 patients would have a minimum power of 80% to detect
differences and similarities in primary variables. Differences between continuous variables
were compared using the Student’s t-test or Mann–Whitney test, while differences between
categorical variables were compared with Fisher’s exact or chi-squared tests, as appropriate.
The predictive value of MR-proADM for the predefined outcomes was assessed by area
under the receiver operating characteristic curve (AUROC). Sensitivity, specificity and
positive and negative predictive values (PPV and NPV, respectively,) were calculated for
MR-proADM. The Youden index (J = max [sensitivity + specificity − 1]) was used to
establish the best cut-off. The multivariate Cox proportional risk model was used to define
independent variables related to in-hospital death and development of complications.
Odds ratios (ORs) were computed with a 95% confidence interval. A p-value < 0.05 was
considered statistically significant. Statistical analysis and figure generation were conducted
with GraphPad Prism software (version 5) and SPSS Statistics (version 29.0).

3. Results
3.1. Study Population

From March to May 2020, 77 patients were hospitalized in the Siena COVID Unit after
testing positive to nasopharyngeal swabs performed in the previous 24 h. Applying the
exclusion criteria, we prospectively recruited 74 patients (49 males, 67.9 ± 15.4 years old).
The three patients excluded were not eligible because two were unconscious on admission
and one reported a previous diagnosis of ILD (Figure 1). Two patients were admitted to IC
on day 2, and in line with the study protocol, blood samples for MR-proADM assessment
were not obtained on day 3.
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Figure 1. Flow diagram describing the enrollment of study population. Blood samplings at admission
and day 1 of hospital stay were available for all patients included in the study. Two patients were
admitted to ICU by day 3.

Table 1 shows the main data of the study population. Common clinical presentations
in descending order were fever (74%), coryza (66%), dyspnea (55%), cough (47%), gas-
trointestinal symptoms (24%) and chest pain (5%). Comorbidities included hypertension
(58%), diabetes mellitus (20%), hypothyroidism (15%), dyslipidemia (12%), chronic atrial
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fibrillation (12%) and chronic obstructive pulmonary disease (COPD) (12%) without any
differences between survivors and non-survivors.

Table 1. Demographic features, clinical and treatment data and biomarker assessment of study
population at admission, day 1 and day 3 of hospital stay.

Parameter Total Population

N 74
Age (years) 67.9 ± 15.4
Male gender (%) 44 (59%)
Medical history
- Arterial hypertension (%) 43 (58%)
- Diabetes mellitus (%) 15 (20.2%)
- Atrial fibrillation (%) 11 (14.8%)
- Chronic kidney disease (%) 5 (6.7%)
- Chronic obstructive pulmonary disease (%) 9 (12%)
- Active/previous cancer (%) 6 (8.1%)

Admission Day 1 Day 3 p-value

Clinical assessment
- SOFA n.a. 3.1 ± 2.4 n.a.
- SAPS II n.a. 26 ± 12.3 n.a.
- Hemoglobin (g/dL) 13.1 ± 1.9 12.4 ± 1.9 12.6 ± 1.5 0.0621
- WBC (×103/mmc) 7.4 ± 4.4 7.5 ± 4.2 7.3 ± 3.1 0.6773
- Lymphocytes (×103/mmc) 1.07 ± 0.8 0.92 ± 0.53 1.04 ± 0.68 0.6911
- Neutrophils (×103/mmc) 5.61 ± 4.22 6.05 ± 3.91 5.59 ± 2.97 0.4849
- Platelets (×103/mmc) 217.3 ± 92.7 228.4 ± 104.5 261.7 ± 112.3 0.0155 *
- Creatinine (mg/dL) 1.2 ± 0.9 1.15 ± 0.9 0.9 ± 0.7 0.1919
- CRP (mg/dL) 9.9 ± 20.3 8.6 ± 8.2 6.2 ± 7.4 0.1438
- PCT (ng/mL) 0.8 ± 2.6 1.6 ± 4.3 0.3 ± 0.3 0.5669
- INR 1.3 ± 0.9 1.2 ± 0.4 1.2 ± 0.1 0.8612
- D-Dimer (FEU/mL) 1279 ± 1070 2043 ± 3751 8781 ± 27,965 0.4987
- Bilirubin (mg/dL) 0.8 ± 2.6 1.03 ± 3.4 1.1 ±4.2 0.3242
- LDH (U/L) 321 ± 133 340 ± 146 297 ± 115 0.4942
- pro-BNP (pg/mL) 723 ± 1225
- pH 6.9 ± 1.7
- paCO2 (mmHg) 33.6 ± 11.1
- paO2 (mmHg) 81.1 ± 33.4
- paO2/FiO2 (mmHg/%) 2.9 ± 1.2
- Serum lactate (mmol/L) 1.3 ± 0.4

Biomarker analysis
- MR-proADM (nmoL/L) 1.2 ± 1.3 1.2 ± 1.3 1.1 ± 1 ** 0.7772
- KL-6 (U/mL) 1279 ± 2484
- IL-6 (pg/mL) 26 ± 36.7

Data are reported as mean ± standard deviation. SOFA: sequential organ failure assessment; SAPS: Simplified
Acute Physiology Score; WBC: white blood cells; CRP: C-reactive protein; PCT: procalcitonin; INR: international
normalized ratio; LDH: lactate dehydrogenase; pro-BNP: N-terminal pro-brain natriuretic peptide; MR-proADM:
mid-regional proadrenomedullin; KL-6: Krebs von den Lungen-6; IL-6: interleukin-6. *: statistical significance
between admission and day 3 by Dunn’s post test; **: MR-proADM was available for 72 patients (the exceptions
were two patients admitted to IC between days 1 and 3).

3.2. Survival, IC and Outcomes

In the study population, 12 patients died in hospital (16%) and 14 patients were
admitted to IC (19%). Mortality in IC was 29%. Non-survivors were significantly older than
survivors (86 [71.5–89] years vs. 65 [55–75.2] years, p < 0.0001) while gender and smoking
differences were not significant.

During hospital stay, the following complications developed: bacterial super-infection
(28%), AKI (17%), pleural effusion (16%), atrial fibrillation (12%), gastrointestinal disease
(10%), liver failure (4%) and pneumothorax (4%). AKI and pleural effusions were signif-
icantly more frequent in non-survivors than in survivors (41.7% vs. 6.7%, p = 0.005 and
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50% vs. 9.7%, p = 0.001, respectively), and patients developing AKI were significantly older
(79 [69–86] years vs. 67 [56–79] years, p = 0.045).

A total of 55 patients (74%) needed conventional oxygen therapy (COT) and 21 (28%)
needed at least one type of respiratory support (27 cases altogether). HFNC was employed
in 10 cases (37%), continuous positive airway pressure (CPAP) with helmet in 20 (74%),
non-invasive ventilation (NIV) in 1 (3.7%) and invasive mechanical ventilation (IMV) in
14 (52%). Half the patients who underwent invasive ventilation were placed in prone
position and tracheostomy was performed in 5 cases (Table 2). Overall mortality in patients
with respiratory support of any type was significantly higher than in patients without it or
on COT (75% vs. 25%, p = 0.006).

Table 2. Comparison of respiratory support data of survivors and non-survivors. COT, conventional
oxygen therapy; HFNC, high-flow nasal cannula; CPAP, continuous positive airway pressure; NIMV,
non-invasive mechanical ventilation; IMV, invasive mechanical ventilation; ns: not significant.

All
(n = 74)

Survivors
(n = 62)

Non-Survivors
(n = 12) p-Value

COT, n (%) 55 (74.3) 47 (75.8) 8 (66.7) ns
HFNC, n (%) 10 (13) 7 (11.3) 3 (25) ns
CPAP, n (%) 20 (27) 15 (24.2) 5 (41.7) ns
NIMV, n (%) 1 (1.4) - 1 (8) ns
IMV, n (%) 14 (18.9) 10 (16.1%) 4 (33.3) ns
Tracheostomy 5 (6.8) 3 (4.8) 2 (16.7) ns

3.3. Biomarker Assessment

No significant differences in demographic features, clinical outcome and laboratory
values were observed between the entire study population and the subgroup of 22 patients
for whom all MR-proADM, KL-6 and IL-6 values were available (Table S1). Concerning the
principal outcome of the study (death and/or IC), no significant difference was observed
between these two subgroups (14/52 vs. 8/22, p = 0.4202).

MR-proADM levels on admission and on day 1 were higher among non-survivors
than among survivors (2.31 [1.25–3.9] nmol/L vs. 0.74 [0.53–1.02] nmol/L, p = 0.001 and
1.82 [1.12–5.25] nmol/L vs. 0.69 [0.53–1.07] nmol/L, p = 0.045, respectively), while levels on
day 3 were not significantly different (Figure 2).

Patients needing respiratory support (HFNC and/or cPAP) had higher MR-proADM
concentrations on admission than the others (1.1 [0.8–2.2] nmoL/L vs. 0.7 [0.5–1.0] nmoL/L,
p = 0.046). Those requiring invasive mechanical ventilation (IMV) had higher MR-proADM
levels on day 1 (1.8 [0.7–2.9] nmoL/L vs. 1.1 [0.7–1.0], p = 0.017). Patients who
developed AKI also showed higher MR-proADM levels on admission (2.5 [1–4] nmoL/L
vs. 1.1 [0.8–1.3] nmoL/L, p = 0.001).

Serum concentrations of KL-6 and IL-6 were significantly higher in non-survivors
(875 [403–1678] vs. 306 [158–1405] U/mL, p = 0.03 and 769 [285.5–906.4] vs.
38.6 [7–167.4] pg/mL, p = 0.004, respectively) (Figure 1); the same was found when death
and/or IC were taken as the main outcome (903 [437–1773] vs. 317 [212–1396] U/mL,
p = 0.04 and 701 [263.5–895.3] vs. 35.1 [7.4–178.2] pg/mL, p = 0.004, respectively), while no
differences were observed between those who did or did not develop AKI (p = 0.525 and
p = 0.654, respectively).

Concerning other serum tests commonly used in clinical practice, we observed that
only CRP at admission was significantly higher in non-survivors (8.6 [4.8–18.6] vs.
4.8 [4–15.8] mg/dL, p = 0.03); similar results were obtained taking death and/or IC as the
main outcome (8.1 [1.8–32.7] vs. 4.6 [4.1–8.9], p = 0.02).
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range. MR-proADM, KL-6 and IL-6 levels are expressed as µmoL/L, U/mL and pg/mL, respectively.
*: p < 0.05; **: p < 0.001. Abbreviations: ns, not significant; KL-6, Krebs von den Lungen-6; IL-6,
interleukin-6.

3.4. ROC Curve Analysis

ROC curve analysis showed that MR-proADM at baseline and on day 1 had the best
accuracy in predicting death and/or IC (AUC = 0.8269, p = 0.013 and AUC = 0.9583,
p = 0.0006, respectively), as well as severe respiratory failure (needing cPAP and/or
HFNC) and/or IC with orotracheal intubation (AUC = 0.8056, p = 0.019 and AUC = 0.9091,
p = 0.0021, respectively). IL-6 also showed good accuracy for death or IC (AUC = 0.8796,
p = 0.0035), while KL-6 did not reach statistical significance (AUC = 0.6731, p = 0.193). CRP
at admission also showed fair accuracy in predicting all-cause mortality or death and/or
IC in our study population (AUC = 0.6653, p = 0.0346 and AUC = 0.6875, p = 0.0262), albeit
with lower significance than MR-proADM on day 1 (difference in AUC: 0.293, p = 0.000067)
and IL-6 (difference in AUC: 0.2143, p = 0.0146).

When we combined all three biomarkers (MR-proADM on day 1, KL-6 and IL-6),
we observed a further improvement in accuracy in predicting death or IC (AUC = 0.9793;
p = 0.00004) (Figure 3), that was statistically significant compared to KL-6 (difference in
AUC = 0.3062, p = 0.00766) and IL-6 (difference in AUC = 0.0997; p = 0.0116), but not
compared to MR-proADM on day 1 (difference in AUC = 0.021, p = 0.7021).
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3.5. Univariate and Multivariate Analysis

Univariate analysis showed that patients with MR-proADM ≥ 1.02 nmoL/L at admis-
sion were significantly older (82 [71–87] year vs. 63 [55–73] years, p < 0.000), more often
had arterial hypertension (81.8% vs. 47.7%, p = 0.009), chronic atrial fibrillation (27.3% vs.
4.5%, p = 0.014) and chronic renal failure (18.2% vs. 0%, p = 0.01) and were likely to develop
AKI (30.4% vs. 2.2%, p = 0.002), bacterial super-infections (45.5% vs. 17.8%, p = 0.022) and
pleural effusions (39.1% vs. 4.3%, p = 0.003). Moreover, respiratory support was more
frequently needed (61.9% vs. 25.6%, p = 0.007), and patients were likely to be intubated
(ns). Minimum PaO2/FiO2 was lower in this group of patients (1.5 [0.7–3.6] vs. 2.8 [2–3.5],
p = 0.002). Mortality was higher in patients with MR-proADM ≥ 1.02 nmoL/L at admission
(39.1% vs. 2.2%, p = 0.019).

In the multivariate analysis with mortality as the dependent variable, only age, MR-
proADM level at admission and the combination of MR-proADM, KL-6 and IL-6 (all at
admission) proved to be independent predictors of this outcome. MR-proADM and LDH at
admission predicted need for respiratory support in hospital, while only the combination
of biomarkers (MR-proADM + KL-6 + IL-6 at admission) was found to be associated with
IC and IMV. With AKI as the dependent variable, only MR-proADM at baseline predicted
this complication (Table 3).
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Table 3. Multivariate analysis for outcomes.

OR 95% C.I. p-Value

Mortality
MR-proADM + KL-6 + IL-6 2.506 1.786–3.568 0.003
MR-proADM at admission 1.816 1.135–2.906 0.013
Age 1.080 1.005–1.160 0.036

Respiratory support
MR-proADM + KL-6 + IL-6 1.567 0.885–2.256 0.056
MR-proADM at admission 1.789 1.067–2.999 0.027
LDH at admission 1.010 1.004–1.017 0.002

ICU admission
MR-proADM + KL-6 + IL-6 1.746 1.125–3.054 0.016
LDH at admission 1.005 1.000–1.010 0.063

AKI
MR-proADM at admission 1.824 1.155–2.882 0.010

4. Discussion

Recent studies have suggested serum MR-proADM as a potential prognostic biomarker
of COVID-19 [15,27]. We confirmed these results in a monocentric prospective observational
study conducted at Siena University Hospital in which the prognostic value of MR-proADM
was compared for the first time with other COVID-19 markers of lung damage, including
KL-6 and IL-6. The potential utility of a combination of these biomarkers in clinical practice
was also evaluated.

Considering the resource allocation issues associated with the COVID-19 pandemic,
a biomarker that can predict patients at high risk of severe disease is surely of primary
interest. In our cohort, patients who developed more severe forms and had higher mortality
were older, more often needed respiratory support and developed complications such as
AKI and pleural effusions; these findings were consistent with the literature [1,28]. In this
population, MR-proADM levels > 1.02 nmoL/L at admission were associated with a higher
risk of mortality, respiratory failure (indicated by need for any type of respiratory device)
and AKI as a complication. Our findings substantially confirmed the results published by
Sozio et al. [14], who showed good accuracy of MR-proADM in predicting more severe cases
and/or need for IC at the time of hospitalization. Our findings are further strengthened
by the standardized prospective study design, which allowed us to standardize serum
sampling, clinical features and outcome data collection, and by multivariate analysis, which
shows the reliability of this biomarker for prognostic estimation. Hence, a single detection
at admission could guide clinicians in the correct triage of patients, identifying those at
risk of mortality and of developing severe forms of the disease. To our knowledge, this
is the first study in which serum concentrations of MR-proADM were measured not only
on admission to hospital but also on days 1 and 3 of hospital stay. We did not observe
any significant trend in the study population as a whole, but a decreasing trend of this
marker was found in the subgroup of patients with the worst outcome. These findings
may be explained by evidence that endothelial dysfunction occurs in an early phase of
COVID-19 disease, prior to onset of ARDS or multiorgan failure [17,18]. This hypothesis
is also supported by previous reports investigating the role of MR-proADM in critical
patients, where this marker proved to be promising in predicting but not in assessing the
severity of organ failure [29,30].

Interestingly, our results suggest that MR-proADM at admission has better perfor-
mance in predicting severe disease and mortality than CRP. This finding is of great interest,
since serum CRP has been reported to be one of the most reliable prognostic indicators in
large cohorts of hospitalized COVID-19 patients [2,31]. This issue was also addressed in
the paper by Sozio et al., in which MR-proADM still showed a higher AUC than CRP in
predicting need for IC (particularly for patients < 64 years of age) and in which the authors
proposed a conditional decision tree for patient allocation according to the combination
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of these two biomarkers [15]. Though underpowered for a reliable confirmation of these
findings, our results substantially confirmed a slightly better accuracy of MR-proADM than
CRP in predicting a negative outcome in COVID-19 patients. This may be explained by
its higher specificity for endothelial damage, which in turn is associated with the severest
forms of the disease [17,18]. The potential of endothelial-derived serum proteins for a more
accurate prognostic estimation in this field is further sustained by studies investigating
the performance of other biomarkers (such as serum von Willebrand factor, endocan and
vascular endothelial growth factor) in predicting mortality, need for IC or major thrombotic
events [32–35]. Unfortunately, we did not include evaluation of these biomarkers in our
study protocol, so we were unable to compare MR-proADM values with other markers of
endothelial dysfunction.

We first proposed a combination of serum markers, all of which have already demon-
strated their potential in previous studies [36]. Although values of all three biomarkers
were only available for a minority of our study population, our results showed that the
combination of MR-proADM, KL-6 and IL-6 improved accuracy for outcome prediction
and may be valuable in the clinical management of hospitalized COVID-19 patients. This
approach is sustained by evidence that COVID-19 is associated not only with a respiratory
syndrome but also with multiple organ failure that may be fatal or require admission to IC
for non-respiratory causes too. This assumption may also explain the better performance
of MR-proADM and IL-6 than KL-6 observed in our study, considering the specificity
of the latter for respiratory tissue damage. In this regard, our evidence of higher serum
concentrations of MR-proADM (but not KL-6 or IL-6) in patients experiencing AKI while in
hospital further confirms the potential of this biomarker for prognostic estimation of organ
failure. Our findings are in line with the literature, since MR-proADM had already been
reported to be a good predictive marker of AKI and need for renal replacement therapy
in critical patients with or without COVID-19, probably due to its reliability as a marker
of capillary leakage and endothelial dysfunction [29,37,38]. Since AKI is considered a
major negative prognostic factor in hospitalized COVID-19 patients [39], these findings
are important and are in line with previous reports focused on non-COVID-19 patients
in IC [13].

The present study has many limitations. First of all, the monocentric design and
quite small study population limit the scientific soundness of our findings, although the
prospective design of patient inclusion prevents reporting and recalling bias. Moreover,
since the study population was enrolled in the first phase of the COVID-19 pandemic, and
COVID-19 syndrome has maintained quite similar clinical features in hospitalized patients
since 2020, our findings may not be completely suitable for the subsequent SARS-CoV-2
variants. We have no data, therefore, on serum biomarker expression in vaccinated or
re-infected patients, or in those treated with antivirals.

In conclusion, although our findings need confirmation in a larger cohort in order
to be implemented in clinical practice, they are certainly promising; the three biomarkers
included in our study are readily collected in a mini-invasive manner, quick to analyze and
cost-effective. They promise, therefore, to be an intriguing new tool for more accurate risk
stratification and early treatment.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines11061680/s1, Table S1. Baseline demographic fea-
tures, clinical and laboratory data of study population, stratified according to the availability of
serum biomarkers.

https://www.mdpi.com/article/10.3390/biomedicines11061680/s1
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