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Abstract: Kidney diseases can cause severe morbidity, mortality, and health burden. Determining the
risk factors associated with kidney damage and deterioration has become a priority for the prevention
and treatment of kidney disease. This study followed 497 patients with stage 3–5 chronic kidney
disease (CKD) who were treated at the ward of Taipei Veterans General Hospital from January 2006
to 2019 in Taiwan. The patients underwent 3-year-long follow-up sessions for clinical measurements,
which occurred every 3 months. Three time-dependent survival models, namely the Cox proportional
hazard model (Cox PHM), random survival forest (RSF), and an artificial neural network (ANN),
were used to process patient demographics and laboratory data for predicting progression to renal
failure, and important features for optimal prediction were evaluated. The individual prediction of
CKD progression was validated using the Kaplan–Meier estimation method, based on patients’ true
outcomes during and beyond the study period. The results showed that the average concordance
indexes for the cross-validation of the Cox PHM, ANN, and RSF models were 0.71, 0.72, and 0.89,
respectively. RSF had the best predictive performances for CKD patients within the 3 years of follow-
up sessions, with a sensitivity of 0.79 and specificity of 0.88. Creatinine, age, estimated glomerular
filtration rate, and urine protein to creatinine ratio were useful factors for predicting the progression
of CKD patients in the RSF model. These results may be helpful for instantaneous risk prediction at
each follow-up session for CKD patients.

Keywords: artificial neural network; chronic kidney disease; Kaplan–Meier; random survival forest

1. Introduction

Chronic kidney disease (CKD) is a significant global health problem and a common
health issue. The prevalence is increasing worldwide, amounting to more than 800 million
patients [1]. CKD is considered a high-risk clinical disease with frequent adverse events [2]
and is associated with significant mortality [3]. The ratio of prevalence and incidence
of CKD in Taiwan is relatively high compared with other countries [4]. Additionally,
numerous complications of CKD have been observed. For example, hypertension [5],
cardiovascular disease (CVD) [6], and diabetes [7], all of which are recognized as strong risk
factors for renal disease. Importantly, the progression of CKD may be correlated with the
individual risk factors of each patient, and early identification and accurate prognostication
may help clarify the natural history of CKD progression.

The estimated glomerular filtration rate (eGFR) is one of the most important risk
factors for identifying the classification of CKD [8]. A lower eGFR represents progres-
sively more severe stages of CKD and eventually leads to end-stage renal disease (ESRD).
Tangri et al. concluded that eGFR is a time-dependent predictor that can improve the
risk prediction of CKD progression [9]. Additionally, the magnitude of proteinuria is
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an important marker of prognosis in CKD [10]. Hoy et al. showed progressively lower
eGFRs in people with increasing intensities of pathologic albuminuria [11]. Raised urinary
albumin excretion was associated with increased renal and cardiovascular mortality in a
remote Australian aboriginal community [12]. Another study showed that serum albumin,
serum creatinine, albumin/creatinine ratio, and hemoglobin are multivariate risk factors
for ESRD, which were taken from 1513 subjects included in the reduction of endpoints in
noninsulin-dependent diabetes with the Angiotensin II Antagonist Losartan study [13]. In
our recent study, using the Shapley additive explanation value method, the urine creati-
nine and eGFR were the most and second-most important predictive features in patients
diagnosed with advanced-stage CKD within 3 and 5 years. In addition, serum creatinine
was the most important predictive feature in patients diagnosed with advanced-stage
CKD within 1–3 years [14]. Ultimately, the key predictive features may help determine the
optimal predictive models for the progression from CKD to ESRD.

The prediction of CKD progression is an important task for patient care in clinical
management. Machine learning (ML) methods have been used to predict the risk of CKD
applications in recent years [15–18]. In addition, several risk prediction models have been
proposed for CKD applications [14,19–22]. The published models applied to renal diseases
include the Cox proportional hazard model (Cox PHM) [19,23], random survival forest
(RSF) [24], and artificial neural network (ANN) models [22,25]. Cox PHM is the most widely
used method to predict the risk factors of clinical diseases in cohort studies. Cox PHM can
be used to examine the covariate effects on the hazard function to determine the failure
time variable. However, it may not fit the data well due to several limitations, such as its
reliance on restrictive assumptions such as the proportionality of hazards and linearity [26].
Therefore, there is an increased risk of overfitting, which diminishes the statistical power
of the model. In our recent study, using baseline data, five available classification models
(i.e., Gaussian naïve Bayes, linear regression, random forest (RF), support vector machine,
and extreme gradient boosting) were developed for predicting the risk of progression
among patients with CKD. The results showed that the RF model demonstrated the highest
performance compared to the other models [14]. RF can be adapted to handle complex
survival data, including nonlinear effects and complex interactions between features, which
may be inappropriate for conventional statistical models. RSF is a nonparametric method
that generates multiple decision trees to analyze right-censored survival data [27]. A
cumulative hazard function (CHF) can be generated from each decision tree, which is
averaged into an ensemble CHF. RSF has demonstrated better performance compared to
Cox PHM based on the prediction error criterion [28], and it has been used for clinical
applications, such as tumor and incident risk of diabetes [29,30]. On the other hand, the
deep neural networks have received considerable attention for predicting the occurrence of
events of interest, especially for right-censored time-to-event data. Recently, Zhao and Feng
noted that DNNSurv is capable of predicting the conditional survival probability in each
interval, and the marginal survival probability can be used to evaluate the discrete-time
survival framework to predict both the marginal and the conditional survival probabilities,
or the complementary risks [31]. Several neural network models, including Cox-nnet,
DeepSurv, nnet-survival, and DNNSurv, have been utilized in survival analyses and have
undergone peer review. These models also have well-documented source codes. Among
them, DNNSurv and nnet-survival do not rely on the proportional hazard assumption,
which is less questionable when the number of covariates is large. In comparison to nnet-
survival, DNNSurv employs a theoretically justified pseudo-value approach to handle
censored data, irrespective of whether the censoring occurs in the first or second half of
the interval. Furthermore, DNNSurv can handle data with covariate-dependent censoring,
a capability lacking in nnet-survival. Additionally, DNNSurv is specifically designed
to circumvent the sophisticated network structure introduced by censored data, which
is required by deep neural network models such as convolutional or recurrent neural
networks [31]. The Cox-based DNNSurv model was selected as an ANN method for
comparison among models in our study.
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The time-to-event data in CKD typically refers to the duration it takes for a specific
event to occur, such as ESRD or death. By incorporating right-censored time-to-event data
into the analysis, the risk factors of CKD progression can be evaluated for the varying
follow-up times of patients. This allows for a more comprehensive assessment of the
disease’s progression and a better understanding of the risk factors that influence the
timing of events in CKD patients. Accurate risk prediction models can inform clinical
decision-making and help identify patients who are at a higher risk of adverse outcomes,
such as ESRD or mortality. Thus, a suitable model with a time-dependent covariate for
predicting CKD progression is required. However, such a model has yet to be developed
and established.

In the present study, the performances of the Cox PHM, RSF, and ANN models with
time-dependent variables were used to determine the risk of CKD progression over 3 years.
Furthermore, the important features were evaluated as high-risk factors for determining the
optimal predictive features for the models. The integration of time-dependent covariates
into survival analysis using ML methods for predicting CKD progression was investigated.
By characterizing and considering time-dependent covariates, the proposed methodology
can predict the instantaneous risk prediction at each follow-up session for CKD patients and
provide a more comprehensive understanding of the factors influencing disease progression.
This novel approach has the potential to improve the precision of prognostic predictions
and could assist in developing tailored interventions and treatment strategies to better
manage CKD.

2. Materials and Methods
2.1. Patient Population and Study Design

A retrospective cohort study using de-identified pathological records was conducted
in this study. The dataset was collected from November 2006 to December 2019 in a branch
of the Taipei Veterans General Hospital. A total of 947 patients were collected from the
National Health Insurance (NHI) CKD program, which is a clinical care and education
program for patients initiated by the NHI administration under the Ministry of Health
and Welfare in Taiwan. This study was approved by the Institutional Review Board of the
Taipei Veterans General Hospital (No. 2020-01-024BC).

In the data, the patients who had been diagnosed with stages 1 and 2 were excluded.
Similarly, patients with insufficient follow-up data (less than 3 clinical visits) were also
excluded. Missing values in patients with insufficient pathological records were replaced
with multiple imputations [32]. Data imputation was performed using the multivariate
imputation method and chained equations module in the R package. Then, the patients
diagnosed with stages 3–5 were investigated (N = 497), focusing on patients who progressed
from CKD to ESRD within 3 years. This study included 352 patients in stage 3, 69 patients
in stage 4, and 76 patients in stage 5. The number of patients with stage 3 who progressed
to dialysis was 22. In addition, the number of patients with stages 4 and 5 that progressed
to dialysis was 6 and 40, respectively. A flow chart depicting the patient selection and
categorization processes is shown in Figure 1.

The characteristics of pathological records for each patient were determined during
the prespecified 90-day assessment period, starting from the first clinic visit until the study
endpoint date. The baseline characteristics of pathological records were defined as an initial
point. The endpoint was defined as the requirement for dialysis or kidney transplantation.
The patients were followed up until the endpoint date, when patients with dialysis or renal
failure were established during the observation period.
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Figure 1. Flow chart for the selection of study subjects.

The study investigated the time-dependent predictive risk factors of CKD patients
with stage 3–5 progression. The eGFR, serum creatinine, natural logarithm-transformed
urine protein to serum creatinine ratio (PCRln), and glycated hemoglobin (HbA1c) were
used as time-dependent predictors for data characterization. To further characterize the
differences among the risk factors of CKD, the time-dependent variability analysis γ(i) was
used, which is defined as the predictor variables divided by the observation period and is
represented as follows:

γ(i) =


vi+1−vi
ti+1−ti

, i = 1, 2
∑j∈Ri (vj−vi)(tj−ti)

∑j∈Ri (tj−ti)
2 , i = 3, 4, · · · , f

, vi =
∑j∈Ri

vj

i
, ti =

∑j∈Ri
tj

i
, Ri =

{
j
∣∣∣tj ≤ ti

}
, (1)

where f is the number of patient clinic visits, v1, v2, · · · , v f is each measurement of risk
factor, ti is the observation period, and vi is the mean value of risk factors during the
previous i period. In addition, the regression analysis was performed to determine the
relationship between the predictor variables and observation period for i ≥ 3.

To assess the high-risk factors in predictive models for progression from CKD to
ESRD, the important characterized factors of CKD were selected by multivariate analysis
of variance (MANOVA) and the independent chi-squared test. Randomized data subsets
were used for cross-validation (K = 5). The Cox PHM, RSF, and ANN were used to
determine the time-dependent prediction of CKD progression. Then, a comparison of the
concordance index (C-index) and Kaplan–Meier method (KM) was used to predict the risk
of progression to eventual ESRD among CKD patients with stages 3–5. The models were
used to identify risk factors for predicting disease progression in CKD within 3 years. The
predictor variables of Cox PHM were normalized by z-score transformation, and the value
important (VIMP) of RSF was used for feature selection and prediction. The flow chart of
model training and performance evaluation is shown in Figure 2.
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2.2. Mathematical Modeling

In this study, the proportional hazards regression with time-dependent covariates was
evaluated. The conditional-hazard function is shown below [33]:

λ(t | v) = lim
∆t→0

P(t < T ≤ t + ∆t |T > t, v(t))/∆t (2)

where T is the failure time of interest, ∆t is a small interval from t to t + ∆t,
v(t) =

(
v1(t), v2(t), · · · , vp(t)

)
is a set of possibly time-dependent covariates, and v(t)

is the history of covariates up to time t (v(t) = {v(s) : 0 ≤ s ≤ t}). The time-dependent
Cox PHM is specified as follows [33,34]:

λ(t|v) = λ0(t)eβ′v(t) (3)

where λ0 is the baseline hazard function, β′ =
(

β1, β2, · · · , βp
)

is a vector coefficient of
regression. In addition, the log-rank rule was used to determine the best split for the
node of RSF model. Suppose (T1, δ1), (T2, δ2), · · · , (TN , δN) are the survival outcomes
corresponding to the N individuals within the node of a tree. Where δi = 1 is event case,
and δi = 0 is censored case. Then, the optimized log-rank statistic for the best split of the
node on covariate v at split point c is represented as [27,35]:

L(v, c) =
∑

f
i=1

(
di1 − ni1

di
ni

)
√

∑
f
i=1

ni1
ni

(
1− ni1

ni

)(
ni−di
ni−1

)
di

(4)

where di1 = ∑N
j=1 I{ti≤Tj<ti+dt, δi=1, vj(ti)≤c} is the total number of events during the instant

interval [t, t + dt) and the covariate vj is smaller than c, di = ∑N
j=1 I{ti≤Tj<ti+dt,δi=1} is the

total number of events during the instant interval, ni1 = ∑N
j=1 I{Tj≥ti , vj(ti)≤c} is the total

number of risk at ti and the covariate is smaller than c, and ni = ∑N
j=1 I{Tj≥ti} is the total

number of risk at ti, i = 1, 2, · · · , f , and IA is indicator function of set A.
L(v, c) is a measure of node separation. Herein, the predictor v* and split value

c* were determined such that |L(v∗, c∗)| ≥ |L(v, c)| and used for all v and c. The CHF
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and survival probability S( t|v) = P(T > t|v) were calculated at the end node. The KM
estimated survival function for any arbitrary time t is given by [36]:

Ŝ(t) = ∏
{ti≤t}

(
1− di

ni

)
(5)

The Cox-based DNNSurv model was used. In DNNSurv model, the function pseudo
survival probability for the jth patient was computed by [31,37]:

Ŝj(t) = NŜ(t)− (N− 1)Ŝ
−j
(t), j = 1, 2, · · · , N (6)

Ŝ−j(t) is the KM estimator using a sample size of N− 1, excluding the jth patient. Then,
Ŝj(t), j = 1, 2, · · · , N are used as numeric response variables in the standard regression
analysis. Furthermore, the C-index and KM method were used to predict the performance
of CKD progression. The C-index is one of the most common discriminatory measures of
the survival models and is defined as:

C− index = P
(
Tj1 < Tj2 | ηj1 < ηj2

)
, f or j1 6= j2, and j1, j2 = 1, 2, · · · , N, (7)

where ηj1 = β′vj1
, ηj2 = β′vj2

, Tj1 , and, Tj2 are the predicted marker values and event
times, respectively. An estimator of the C-index for survival data is given by [38]:

Ĉsurv =
∑N

i 6=j I{Tj<Ti} I{ηj<ηi}δj

∑N
i 6=j I{Tj<Ti}δj

(8)

Ĉsurv is a consistent estimator of the C-index where no censoring is present. The
C-index depends critically on the variation of the predictors in the cohort study. Similar to
the AUROC, a C-index equal to 1 indicates a perfect model prediction, and a C-index of 0.5
represents a random predictor.

The KM method was used as a survival function Ŝ(ti) at event time ti, as expressed
below [39]:

Ŝ(ti) =
i

∏
j=1

nj − dj

nj
= Ŝ(ti−1) ∗

ni − di
ni

, i = 1, 2, · · · , f. (9)

We utilized grid search to determine the parameters of the ANN models for hyperpa-
rameter tuning while training the model using the defined dataset. Multilayer perceptron
was selected to achieve the optimal architecture. Specifically, the model was trained for 10
epochs, consisting of 3 layers with 3 neurons each, a hidden layer of size 3, a batch size of
32, momentum of 0, a learning rate of 0.02, an input layer of size 10 for predictors, an input
layer and output layer of size 6 for outcomes, a sigmoid activation function, and an Adam
optimizer were used for the network prediction model.

2.3. Variables

The baseline characteristics and predictor variables of 497 patients were investigated
from the first clinical visit to the endpoint date. Blood tests were performed during the
clinical visit for biochemistry testing. In this study, the suitability of categorized and
continuous variables of risk factors was assessed and compared for CKD patients with
stages 3 to 5. The categorized variables included gender, hypertension, diabetes, and
CVD. The continuous variables included age, systolic blood pressure (SBP), diastolic blood
pressure (DBP), serum creatinine, HbA1c, PCRln, body mass index (BMI), and eGFR. The
eGFR was calculated using the simplified Modification of Diet in Renal Disease equation,
which was mentioned in a previous study [40]. All baseline characteristics and predictor
variables were obtained from the NHI pre-ESRD patient care and education program
administered by the NHI.
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3. Results

The categorized and continuous variables of CKD patients with stages 3–5 were
analyzed. Table 1 depicts the occurrence frequency of categorized variables in CKD patients
with stages 3–5, and the number of observations per category is provided. The number
of observations for CKD patients in stages 3, 4, and 5 was 935, 416, and 213, respectively.
In the present study, a high percentage of hypertension (81%) was observed in stage 5,
which increased rapidly and progressively from stages 3–5. The occurrence frequency of
diabetes was approximately 50%, with the highest percentage observed in stage 3 (59%).
The percentage of CKD patients with stage 3 and CVD was 16%, which decreased from
stage 3–5. Additionally, the chi-squared statistical test was used to analyze the difference
in CKD patients with and without dialysis. The results showed significant differences in
hypertension, diabetes, and CVD between the patients with and without dialysis.

Table 1. Occurrence frequency of variables categorized by CKD stage.

Variances Stage 3
(Sub Dataset = 935)

Stage 4
(Sub Dataset = 416)

Stage 5
(Sub Dataset = 213)

Stages 3–5 (Dataset = 1564)

With Dialysis
(Sub Dataset = 247)

Without Dialysis
(Sub Dataset = 1317) χ2 p Value

Male 568 (61%) 324 (78%) 126 (59%) 167 (68%) 851 (65%) 0.6944 0.4047

Hypertension 611 (65%) 326 (78%) 175 (81%) 194 (79%) 918 (70%) 14.554 0.00013

Diabetes 552 (59%) 205 (49%) 105 (49%) 164 (66%) 698 (53%) 7.4833 0.0062

CVD 148 (16%) 40 (10%) 3 (1%) 7 (3%) 184 (14%) 23.036 1.58 × 10−6

Table 2 shows the clinical characteristics of patient observations with CKD stages 3–5.
The serum creatinine and PCRln levels increased progressively from stages 3–5, while the
eGFR decreased progressively during the same stages. Furthermore, the F-statistics of
clinical characteristics in CKD patients with and without dialysis were analyzed. MANOVA
was used to calculate the F-statistics for covariates, allowing the assessment of important
risk factors in CKD progression. Significant differences were found in age, serum creatinine,
PCRln, and eGFR between the patients with and without dialysis.

Table 2. The clinical characteristics are categorized by the CKD stage.

Variances

Stage 3
(Sub Dataset = 935)

Stage 4
(Sub Dataset = 416)

Stage 5
(Sub Dataset = 213) Stages 3–5 (Dataset = 1564)

Mean (SD) Mean (SD) Mean (SD)
With Dialysis

(Sub Dataset = 247)
Without Dialysis

(Sub Dataset = 1317) F Value

Mean (SD) Mean (SD)

Age 80.57 (11.14) 87.00 (13.11) 76.14 (13.48) 75.85 (13.15) 81.35 (11.77) 43.649 ***

SBP 136.20 (17.92) 136.40 (19.22) 139.60 (19.25) 138.72 (18.65) 136.37 (18.43) 3.391

DBP 73.44 (26.47) 70.34 (12.77) 73.06 (13.21) 73.32 (13.24) 72.42 (23.36) 0.345

Creatinine 1.49 (0.30) 2.56 (0.66) 6.27 (3.55) 4.7 (3.23) 1.99 (1.46) 440.43 ***

HbA1c 6.79 (2.33) 6.47 (1.30) 6.27 (1.17) 6.69 (1.47) 6.61 (2.06) 0.347

PCRln 5.63 (1.49) 6.02 (2.10) 6.78 (2.04) 6.81 (1.93) 5.71 (1.7) 82.182 ***

BMI 26.43 (7.00) 26.66 (15.30) 27.22 (18.16) 26.99 (6.05) 26.52 (12.44) 0.33

eGFR 44.73 (8.18) 22.59 (4.16) 10.15 (3.77) 20.3 (14.19) 36.72 (13.78) 292.58 ***

The significant difference was defined as *** p < 0.001.

The predictive performances of the three models were investigated using the C-index
score and KM curves. Table 3 shows the C-index scores of the Cox PHM, RSF, and ANN
models obtained through five-fold cross-validation. The average of the C-index scores for
RSF is 0.89, with a maximum of 0.95. The average C-index scores of Cox PHM and ANN
are 0.71 and 0.72, respectively. Among CKD patients progressing to ESRD within 3 years,
RSF demonstrated the best performance. The sensitivity, specificity, and accuracy of RSF
are 0.79, 0.88, and 0.86, respectively.
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Table 3. The C-index scores of five-fold cross-validation in Cox PHM, RSF, and DNNSurv models.

C-Index
Average

1 2 3 4 5

Cox PHM 0.73 0.61 0.73 0.77 0.72 0.71

RSF 0.95 0.91 0.91 0.88 0.81 0.89

ANN 0.75 0.62 0.74 0.73 0.73 0.72

Herein, different cut-off points (0.65, 0.7, and 0.75) of probability in CKD progression
were used to determine the sensitivity and specificity of the three models, as shown in
Table 4. The results showed that the RSF model had higher sensitivity and specificity
compared to the Cox PHM and ANN models. For the RSF model, the sensitivity at the
0.65, 0.70, and 0.75 cut-off points provided values of 0.708, 0.791, and 0.917, respectively.
Similarly, the specificity at the same cut-off points provided values of 0.897, 0.880, and
0.794, respectively. Although a high sensitivity (0.917) was observed for the 0.75 cut-off
point, a lower specificity was obtained. In addition, the accuracy, precision and F1 score
demonstrated the best performance at a cut-off point of 0.70. In the present study, a
cut-off point of 0.70 was used to evaluate the CKD patient with and without dialysis in
KM curves. The suitable cut-off point could be used to predict the risk factors of CKD–
ESRD progression.

Table 4. The sensitivity and specificity of three models at different cut points.

Model Cut off Point Sensitivity Specificity Accuracy Precision F1 Score

RSF

0.65 0.708 0.897 0.867 0.567 0.630

0.70 0.791 0.880 0.897 0.792 0.791

0.75 0.917 0.794 0.813 0.458 0.610

Cox PHM

0.65 0.083 0.929 0.793 0.181 0.114

0.70 0.125 0.920 0.793 0.231 0.162

0.75 0.125 0.897 0.920 0.187 0.150

ANN

0.65 0.000 0.984 0.827 0.000 0.000

0.70 0.000 0.952 0.800 0.000 0.000

0.75 0.041 0.913 0.773 0.083 0.055

Furthermore, the KM curves for nondialysis in CKD patients with different variables
(gender, with/without diabetes, stages, and age) were categorized according to the different
endpoints. Figure 3 shows the KM curves for the three models in male and female CKD
patients with and without dialysis. In Figure 3a, the RSF model demonstrated a higher
predicted performance than other models for a male patient without dialysis (the endpoint
is 497 days). The predicted probability of the three models is consistently over 0.7, aligning
with the actual condition. The three models showed a similar prediction for a male patient
without dialysis at an endpoint of 1988 days, as shown in Figure 3b. For a male patient
with dialysis, the RSF model showed the best performance within 3 years of progression.
The predicted probability of the RSF model is 0.59, which is lower than that of the Cox
PHM and ANN models at an endpoint of 1114 days (with a predicted probability of 0.7), as
shown in Figure 3c.

In Figure 3d, the RSF model showed a higher performance than other models for a
female patient without dialysis (the endpoint is 1420 days). The three models have similar
performance to a female patient within less than 1000 days, as shown in Figure 3e. However,
the performance of RSF improves after 1000 days, aligning with the actual condition (the
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endpoint is 835 days). For a female patient with dialysis, a high performance of RSF can be
achieved after 625 days (within 2 years), as shown in Figure 3f.
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Figure 3. The KM curves of nondialysis in a male CKD patient without dialysis were analyzed at
endpoints of (a) 497 days and (b) 1988 days, (c) and that with dialysis at an endpoint of 1114 days.
The KM curves of nondialysis in a female CKD patient without dialysis were analyzed at endpoints
of (d) 1420 days and (e) 835 days (f), and with dialysis at an endpoint of 1281 days (categorized
variable is gender).

The KM curves of the three models for a CKD patient without diabetes were analyzed.
The probability of the three models for patients without dialysis exceeds 0.7 for endpoints
of 917 days and 669 days, as shown in Figure 4a,b. For a patient with dialysis, the RSF
model demonstrated the best performance for an endpoint of 620 days (within 2 years), as
shown in Figure 4c. The predicted probabilities of ANN, Cox PHM, and RSF are 0.8, 0.6,
and 0.4, respectively.
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Figure 4. The KM curves of nondialysis in a CKD patient (without diabetes) without dialysis were
analyzed at endpoints of (a) 917 days and (b) 669 days, (c) and with dialysis at an endpoint of 620 days.
The KM curves of nondialysis in a CKD patient (with diabetes) without dialysis were analyzed at
endpoints of (d) 469 days and (e) 591 days (f), and that with dialysis at an endpoint of 768 days.
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In addition, the KM curves of the three models for a CKD patient with diabetes were
analyzed. The RSF model shows a higher prediction than other models for endpoints
of 469 days and 591 days, as shown in Figure 4d,e. For a patient with dialysis, the best
performance of RSF was observed at 768 days (within 3 years), as shown in Figure 4f. The
predicted probabilities of ANN, Cox PHM, and RSF are 0.8, 0.8, and 0.2, respectively.

The KM curves of the three models for a CKD patient with stage 3 were analyzed. The
ANN model shows a higher predicted performance than the other models at 658 days, as
shown in Figure 5a. The three models exhibited similar performance for a patient for 1988
days, as shown in Figure 5b. For a patient on dialysis, a lower predicted performance of
RSF was observed. However, the performance of RSF improves after 900 days, as shown in
Figure 5c.
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Figure 5. The KM curves of nondialysis in a CKD patient (stage 3) without dialysis were analyzed at
endpoints of (a) 658 days and (b) 1988 days, (c) and that with dialysis at an endpoint of 1217 days.
The KM curves of nondialysis in a CKD patient (stage 4 to 5) without dialysis were analyzed at
endpoints of (d) 469 days and (e) 532 days (f), and that with dialysis at an endpoint of 768 days
(categorized variable is the stage of CKD).

Moreover, the KM curves of the three models for a CKD patient with stages 4–5 were
analyzed. The RSF showed a higher prediction performance than the other models at
469 days, as shown in Figure 5d. The ANN model showed a higher predicted performance
than the other models after 300 days, as shown in Figure 5e. For a patient with dialysis,
the best performance of RSF was observed at the endpoint of 768 days (within 3 years), as
shown in Figure 5f. The predicted probabilities of ANN, Cox PHM, and RSF are 0.7, 0.7,
and 0.2, respectively.

The KM curves of the three models were analyzed for a CKD patient under 80 years
old. The RSF showed a higher predicted performance than the other models at 1095
observation days (within 3 years), as shown in Figure 6a,b. For a patient on dialysis, a
lower predicted performance of RSF was observed. However, the performance of RSF
improves after 900 days, as shown in Figure 6c.

Furthermore, the KM curves of the three models were analyzed for a CKD patient
over 81 years old. The RSF model showed a higher prediction than other models after 497
and 532 days, as shown in Figure 6d,e. For a patient with dialysis, the best performance of
RSF was observed at the endpoint of 768 days (within 3 years), as shown in Figure 6f.
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The RSF was constructed with 100 trees (ntree = 100) and achieved a mean prediction
error rate of 0.148. The probability of nondialysis prediction for all CKD patients (N = 429)
was analyzed using the three models as shown in Figure 7a. The bold line represents the
median, which indicates the average probability of the three models. The interquartile
ranges from the bottom to the top of the boxes indicate the 75th and 25th percentiles,
respectively. Three models showed great performances for CKD patients who progressed
within 3 years. The average probabilities of RSF, Cox PHM, and ANN are 91%, 90%, and
90%, respectively. Moreover, the probability of dialysis prediction for all CKD patients
with dialysis (N = 68) was analyzed using the three models, as shown in Figure 7b. The
RSF model showed the best performance compared with the Cox PHM and ANN models
for patients who progressed within 3 years. The average probability of RSF is 45.38%,
which is higher than that of the Cox PHM (14.78%) and ANN models (5.47%). The results
demonstrated that the RSF model provides high performance for the prediction of CKD
patients with and without dialysis.
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According to the C-index values, KM curves, and boxplots for the three models, the
best performance was obtained using the RSF model. The VIMP values of risk factors in
CKD were analyzed for feature selection and prediction, as shown in Figure 8. Higher
VIMP values indicate that the variable may improve the prediction accuracy of the model.
The results show that serum creatinine, age, eGFR, and PCRln levels are the most influential
features of the RSF model in this study.
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4. Discussion

This retrospective cohort study included CKD patients who participated in disease
management programs for education purposes and the prevention of dialysis in Taiwan.
The study demonstrated that PCRln and eGFR showed significant differences among CKD
patients with stages 3–5, which were consistent with our previous study [19]. Additionally,
hypertension, diabetes, and CVD were significant risk factors among CKD patients with
stages 3–5. ESRD among patients was concurrent with many symptoms [41–43]. A high
ratio (52.3%) of patients with hypertension among 128 ESRD patients was observed by
Seyedzadeh [41]. Furthermore, both hypertensive nephrosclerosis and diabetic nephropa-
thy symptoms have a 55% causative role in developing ESRD [42]. Another study shows
that diabetes mellitus was the most prevalent comorbidity factor and occurred in 59% of
patients, followed by 32.7% with heart disease, among 110 ESRD patients [43]. Thus, hy-
pertension, diabetes, and CVD are important risk factors for ESRD patients. The important
categorized and continuous variables can be used as high-risk factors to determine the
optimal predictive features for CKD progression.

In the present study, the RSF model demonstrated the best performance, followed
by the Cox PHM and ANN models, for the CKD patients who progressed within 3 years.
Creatinine, age, GFR, and PCR were found to be correlated with CKD progression in the RSF
model. In the Cox PHM model, CVD, along with creatinine, age, and PCR, showed higher
predictability for dialysis patients. When applying the same time-dependent design, the
RSF model in the present study outperformed the Cox PHM model used in our previous
study, even though they utilized different risk factors [19]. However, identifying key
features that serve as high-risk factors for determining optimal predictive features is crucial.
In past work, de Bruijne et al. showed that the multivariate Cox PHM with time-dependent
renal function covariates (serum creatinine, the ratio of serum creatinine, the ratio of serum
creatinine at 6 months, and the time elapsed since the last observation) can be used to
predict late graft failure in renal transplantation up to 1 year in advance [23]. Moreover,
Cox multiple regression with time-dependent covariates has been used for patients with
cirrhosis and may be useful for updating the clinical prognosis [44]. Thus, developing a
suitable model with important predictors based on time-dependent covariates can increase
the efficiency of the clinical strategy intervention.
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KM survival curves are commonly used to determine whether risk outcomes vary
over time. Recently, the multivariable Cox PHM and KM survival curves were utilized
to examine different prognostic factors in 16,752 confirmed cases of COVID-19 [45]. Our
findings revealed that the RSF model exhibited higher predictive performance than the Cox
PHM and ANN models, regardless of gender and the presence or absence of diabetes. RSF
also exhibited the best predictive performance, followed by Cox PHM, for patients with
stages 4–5 or ages over 80 years. In contrast, for patients in stage 3 or younger ages, Cox
PHM shows a slightly higher prediction performance than RSF among those who eventually
received dialysis treatment. Overall, RSF is more suitable than Cox PHM and ANN models
for time-dependent risk assessments among CKD patients. A previous study also showed
that the performance of RSF (C-index: 0.965) is significantly better than conventional Cox
PHM (C-index: 0.766) for 378 patients with kidney transplantation, with RSF particularly
useful for intuitive variable selection [24]. Recently, Mondol achieved high accuracy in early
CKD prediction using convolutional neural network, ANN, and long short-term memory
models [25]. In our recent study, high performance was obtained for predicting CKD
progression using random forest methods, with C-indexes of 0.96 within 5 years in the early
stage and 0.97 within 1 year in the advanced stage [14]. Although the models proposed by
previous studies show high performance, the quality and accuracy of the estimates may
vary over time [24,25]. The use of time-independent covariates for individual risk variables
often leads to a higher accuracy rate and overestimation percentage. Overestimation can
have more significant implications for the care of CKD patients than underestimation.
Considering that the trajectories of pathological indicators depend on individual therapy
sessions or lifestyle changes, it is crucial to account for the time-dependent influence of
covariates on pathological progression.

Data characterization is a common method used to identify important features, which
may enhance the credibility of the hypothesis testing in prediction models. Previous studies
indicated that the methods of z-score standardization [46], min-max normalization [47],
nonlinear transformation [48], and cartesian product [49] can be used for disease prediction
with characterized data. In the present study, the time-dependent covariates of renal
function were characterized, combining data standardization with the relationship between
predictor variables and the observation period. The RSF model, utilizing characterized
time-dependent covariates, was used to evaluate CKD progression, which was associated
with changes in the pathological records of individual CKD patients with time-varying
factors. The RSF model demonstrated a high performance compared to the Cox PHM and
ANN models for CKD patients with and without dialysis at stages 4–5. In addition, RSF
model could be used to predict the progression for CKD patients with or without diabetes.
On the other hand, Cox PHM shows a slightly better prediction performance than RSF
for patients with stage 3 or younger ages, among those who were eventually treated with
dialysis. The results reveal the potential for useful CKD progression prediction.

Risk prediction based on right-censored survival data by using suitable ML methods
has significant implications for CKD patient management. Based on the present results,
the proposed method could be used for the risk prediction of CKD progression that allows
healthcare professionals to identify individuals who may benefit from early intervention,
such as timely referral for transplantation or initiation of dialysis. Additionally, risk
prediction models can assist in optimizing healthcare resource allocation by targeting
high-risk CKD patients for specific interventions, potentially improving patient clinical
outcomes and healthcare efficiency.

5. Conclusions

It is crucial to consider the trajectories of pathological indicators in the pathological
progression. In this study, being superior to the conventional Cox hazard model, the RSF
model was successfully developed using characterized time-dependent covariates, and the
results showed good performance for CKD patients at stages 4 and 5 who progress within
3 years. The approach is suitable for personalized prediction of trajectories, even with a
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relatively small dataset. Creatinine, age, eGFR, and PCR were identified as useful factors
for predicting the progression of CKD patients in the RSF model, as indicated by their
VIMP values. On the other hand, Cox PHM showed slightly higher prediction performance
than RSF for patients with stage 3 or younger ages, among those who eventually required
dialysis. The present method could be utilized by physicians and care workers to assess,
intervene, and treat CKD progression in a timely manner. However, this study also had
several limitations. It was a retrospective cohort study with a relatively small sample
size, making it challenging to increase the number of neural network layers for model
training. Further studies that analyze clinical pathological records from different hospitals
are necessary to ensure unbiased results, thereby increasing the amount of training data to
enhance the performance of ANN for predicting progression from early- and advanced-
stage CKD. Moreover, the mean age of CKD patients in the study was 80 years, with the
maximum age reaching 103 years, which may limit the generalizability of the results to
younger patients. Further studies should be verified in CKD patients under the age of 80 to
ensure unbiased results and improve the generalization of the model for a wider population.
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