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Abstract: Infections are important factors contributing to the morbidity and mortality among elderly
patients. High rates of consumption of antimicrobial agents by the elderly may result in increased
risk of toxic reactions, deteriorating functions of various organs and systems and leading to the
prolongation of hospital stay, admission to the intensive care unit, disability, and lethal outcome. Both
safety and efficacy of antibiotics are determined by the values of their plasma concentrations, widely
affected by physiologic and pathologic age-related changes specific for the elderly population. Drug
absorption, distribution, metabolism, and excretion are altered in different extents depending on
functional and morphological changes in the cardiovascular system, gastrointestinal tract, liver, and
kidneys. Water and fat content, skeletal muscle mass, nutritional status, use of concomitant drugs
are other determinants of pharmacokinetics changes observed in the elderly. The choice of a proper
dosing regimen is essential to provide effective and safe antibiotic therapy in terms of attainment of
certain pharmacodynamic targets. The objective of this review is to perform a structure of evidence
on the age-related changes contributing to the alteration of pharmacokinetic parameters in the elderly.
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1. Introduction

The global population aging in the 21st century is unprecedented. In the Western
world persons over 65 years are the fastest growing cohort [1], which outnumbers the
population of children below five years old and attracts the attention of researchers all over
the world [2]. It is predicted that by 2100 in Europe people over 65 will make up 31% of the
total population, and people over 80 will reach about 15% [3].

Age-related physiological and pathological changes, poor functional status, poor nutri-
tion, and comorbidities predispose older adults to infections and their complications [4,5].
The incidence and severity of infections increase with advancing age [6,7]. Compared
to younger age groups, elderly patients are more prone to pneumonia, skin and soft tis-
sue infections, urinary tract infections and septicemia [1,4]. An additional problem is a
substantial risk of antibiotic (AB) resistance; its typical risk factors in the elderly include
frequent contact with the healthcare system, frequent AB exposure, depressed immune
system, frailty, and comorbidity [4]. Elderly patients are considered the high-risk group for
the development of healthcare-associated infections caused by multidrug-resistant (MDR)
bacteria [8–10]. The elderly population has longer hospital stays compared to younger
adults and a significantly higher mortality rate (25%) compared to the general population
(10%) [6,11,12]. Infections aggravate the course of concomitant chronic diseases, includ-
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ing cardiovascular and cognitive disorders, and contribute to the emergence of a new
comorbidity [13].

High infectious morbidity leads to high consumption of antimicrobial agents by the
elderly. ABs are among the most frequently prescribed medicines to seniors [14–16] and
their use is accompanied by a significant rate of side effects and clinically relevant drug-
drug interactions compared to younger counterparts [14]. Adverse drug reactions (ADRs)
are an important cause of morbidity and mortality in the elderly [17–19] and their risk is
significantly increased in the presence of comorbidity and polypharmacy [19–22].

The choice of optimal antimicrobial agent for the elderly is challenging [23]. Finding
the right balance between efficacy, safety and tolerability of antibiotics is difficult for
several reasons including significant changes in body tissue composition, a progressive
physiological decline of organ functions, frailty, comorbidity, and polypharmacy [24]. All
these factors can cause significant alterations in antimicrobials pharmacokinetics (PK) and
pharmacodynamics (PD) leading to altered efficacy, safety, and tolerance. The problem is
compounded by the fact that elderly patients represent a heterogeneous group that should
be treated individually [25,26].

This review includes an analysis of the available data on the PK of antibacterial
agents in the elderly and a consideration of the critical issues of AB use in this vulnerable
heterogenous population. We used the PubMed database to retrieve relevant articles
dedicated to the pharmacokinetic studies of antibacterial agents in the elderly published
during the period 980–2023 years.

2. Factors Influencing AB Prescribing in the Elderly

Infections in the elderly may be caused by a more diverse group of pathogens com-
pared to the younger population [6,27,28]. For example, there is a higher prevalence of
Gram-negative bacilli in pneumonia and a lower prevalence of E. coli in urinary tract
infections [6].

Common infections do not manifest with classic symptoms in the elderly. Aged pa-
tients may have neither fever nor leukocytosis [29]. An absence of fever and a lack of
respiratory symptoms has been described in 40–60% of elderly patients with community-
acquired pneumonia [30]. The only clinical presentation of pneumonia in up to 20–50% of
the elderly may be an altered mental status including delirium and confusion, a sudden de-
cline in functional capacity, and worsening of underlying diseases [28]. The high prevalence
of unusual and/or multidrug-resistant pathogens in the elderly makes AB susceptibility
testing highly desirable, though in the real clinical practice, antibiotics may be prescribed
empirically as even subtle clinical manifestations may herald the onset of life-threatening
infectious disease and delayed therapy can worsen treatment outcomes [28].

Appropriate AB dosing requires knowledge of the pharmacokinetic and pharmaco-
dynamic properties of AB which are often altered due to aging processes, including age-
or disease-related decline of kidney and liver functions. To select an optimal AB for the
concrete patient, it is necessary to identify all comorbidities, concomitant drugs, and dietary
supplements, and collect the patient’s allergic history. Consideration should be given to
the factors associated with poor treatment compliance such as poor vision and/or hear-
ing, physical dexterity, cognitive impairment, or mental illness [21,31–33]. These patients
require treatment supervision by relatives or caregivers.

Elderly patients are at high risk of potential harm associated both with missed treat-
ment and excessive AB therapy [31,34]. In long-term care facilities 50–75% of residents
receive at least one course of AB each year with 30–50% of AB prescriptions being un-
necessary or inappropriate in terms of drug choice, dosing regimen and/or duration of
treatment [35]. Inappropriate drug selection and use may lead to medication-related prob-
lems, including ADRs, therapy failure and withdrawal events alongside the spread of AB
resistance [34,36].

Compared to younger counterparts, older patients are more vulnerable to AB side
effects and clinically relevant consequences of drug interactions [14]. The risk of ADR
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development is especially high in patients with comorbidity and polypharmacy [19–22].
ADRs are an important cause of morbidity and mortality in elderly patients [17–19].

Increased risk of AB-induced toxicity, ADRs, and negative outcomes in elderly patients
with infectious diseases may be mediated by the changed PK of AB resulting in the changed
PD.

3. General Considerations on AB Pharmacokinetics in the Elderly

The development of knowledge of the antimicrobial PK/PD relationship is essential
to provide maximization of the efficacy, minimization of the toxicity, and preservation of
the lifespan of currently available antibiotics [37].

PK characterizes the concentration time course of antibiotics based on absorption,
distribution, metabolism, and elimination [38]. The value of plasma concentration being
the result of PK processes is the main determinant of PD. PD characterizes parameters of
antibacterial activity and describes the effect of AB on the target pathogens, relying on the
minimum inhibitory concentration (MIC) [38–40].

The quantitative relationship between PK parameters and PD parameters is described
by pharmacokinetic/pharmacodynamic (PK/PD) indices [41]. These indices should be
used in patients with critical illness, central nervous system infections, severe burns,
severe impairment of renal function, severe hypoalbuminemia, morbid obesity, and other
medically complicated conditions. AB efficacy is described by the next PK/PD indices: the
ratio of the area under the concentration-time curve (AUC) from zero to 24 h (AUC0–24) to
the MIC, the ratio of the maximum plasma concentration (Cmax) to the MIC and % of the
time during which the free plasma concentration exceeds the MIC (% fT > MIC) [42].

Based on PK/PD indices antibacterials can be divided into 3 groups [38]:

• time-dependent (β-lactams, natural macrolides, lincosamides, oxazolidinones),
• concentration-dependent (aminoglycosides, fluoroquinolones, nitroimidazoles, dapto-

mycin, quinupristin/dalfopristin),
• concentration-dependent with time-dependence (tetracyclines, glycylcyclines, gly-

copeptides, semisynthetic macrolides).

The efficacy of time-dependent antibiotics is mainly related to %fT > MIC. A significant
increase in concentration does not enhance the antibacterial effect of these antibiotics, hence
dosing regimens maintaining stable drug concentrations above the MIC are preferred [43].

The efficacy of concentration-dependent antibiotics is defined by Cmax/MIC ratio.
Antibacterial activity of this group increases with increasing concentration of AB; therefore,
treatment success is determined by a larger dose of AB with less frequency of administra-
tion [43].

The efficacy of concentration-dependent drugs with time-dependence is determined
mainly by the ratio AUC0-24/MIC [44]. The aim of treatment with this type of antibiotic is
to maximize the patient’s overall exposure to the drug [44].

The PK of antibiotics in the elderly may significantly differ from that in younger adults.
Age-associated PK changes strongly depend on the patient’s individual characteristics,
including individual rate of senescence of organs and tissues, comorbidity profile, presence,
and rate of progression of geriatric syndromes (frailty is one of the most important), and
severity of the main disease. The main contributors to altered pharmacokinetics in the
elderly are age-related changes in organ mass and blood circulation alongside changes in
body composition, and disease-associated changes in the organs and systems functioning.

3.1. Absorption

Drug absorption is an essential process of drug transport from the site of adminis-
tration to the systemic blood flow. Depending on the route of administration, the rate
of absorption may vary, resulting in a certain value of bioavailability—the fraction of
unmetabolized drug that reaches systemic circulation. The main PK parameters describing
absorption are AUC and Cmax. Decreased absorption leads to the decreased concentration
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of AB, and thus, to the decrease of treatment efficacy. On the contrary, increased absorption
may result in increased concentrations and, thus, increased risks of toxic effects.

The most convenient route of drug administration is oral. In the elderly, there are
both structural and functional changes of the gastrointestinal tract (GIT) which may affect
absorption, and, thus, bioavailability of AB. Senescence results in the decrease of salivary
glands secretion and changed the quality of saliva, atrophic changes in the GIT mucosa,
damage of enteric neurons, gastric secretion, and GIT motility [45]. Elderly patients are
characterized by delayed gastric emptying, reduced GIT blood flow, and alterations in pH,
typically hypochlorhydria [8]. Since elderly patients are characterized by the presence of
different chronic diseases and a high burden of polypharmacy, these factors should also be
considered together with the physiological changes. Age-associated GIT alterations may be
worsened in the presence of some comorbidities, drug interactions and ADRs. Senescence-
related changes and drug-induced changes of GIT contributing to the PK changes are
demonstrated in Table 1.

Table 1. Senescence-related changes of GIT, drug-induced changes of GIT and their effects on PK.

Part of GIT Age-Associated Changes Drug-Induced Changes PK Changes References

Oral cavity Xerostomia, dysgeusia and ageusia,
oropharyngeal dysphagia

Xerostomia may be induced by
cholinolytics, histamine H1
antagonists, α1 adrenergic

antagonists, tricyclic antidepressants

Decreased absorption from the oral
cavity [45–47]

Esophagus

Esophageal dysphagia,
odynophagia, increased risk of
gastroesophageal reflux disease,

Barrett’s columnar-lined esophagus,
DIE

DIE may be induced by antibiotics
(tetracycline, doxycycline,

clindamycin), bisphosphonates
(alendronate), calcium channel

blockers (amlodipine),
anti-coagulants (dabigatran,

apixaban), Chemotherapeutic agents
(sunitinib, doxorubicin,

methotrexate, nivolumab,
ipilimumab), ferrous sulfate,

NSAIDs

Decreased absorption of weak acids
and weak bases, high risk of drug
interactions resulting in further PK

changes

[45,48–56]

Stomach

Chronic atrophic gastritis, increased
risks of hypochlorhydria and of

hyperchlorhydria with peptic ulcer,
decreased gastric motility.

Proton pump inhibitors (PPIs)
contribute to the development of
hypochlorhydria and may induce

enterochromaffin-like cells
hyperplasia, gastric polyp formation,

and hypergastrinemia,
PPI could increase the risk of

community-acquired pneumonia,
autoimmune diseases,

cardiovascular diseases, onset of
dementia and depression, fragility

fractures, mainly hip fractures

Hypochlorhydria may result in the
impaired drug dissolution and

changed systemic exposure of poorly
water-soluble drugs

[8,45,57–63]

Intestine

Malnutrition, chronic constipation,
high risk of colorectal cancer,

increased gut permeability, increased
chronic and systemic mild

inflammatory responses with risks
for inflammatory bowel disease,

dysbiosis (50% of microbiome in the
elderly—Bacteroides, Alistipes, and
Parabacteroides, versus 8–27% in a
younger cohort), decreased small

bowel surface area, increased rates of
Clostridium difficile colitis, and

diverticular disease

Drug-induced colitis may be caused
by diuretics, dihydropyridines,
glycosides, platelet aggregation
inhibitors, NSAIDs, statins and

fibrates, as well, as immune
checkpoint inhibitors (ipilimumab

and nivolumab), idelalisib,
mycophenolate mofetil.

PPIs are associated with the risk of
developing Clostridium difficile

infections

Decreased absorption mainly
because of the decreased intestinal

blood flow and decreased absorption
area

[64–69]

Pancreas

Decreased pancreatic secretion
(decreased lipase, chymotrypsin,

amylase levels), pancreatic atrophy,
lobulation, and fatty degeneration

The highest number of drug-induced
pancreatitis cases were associated

with the use of valproic acid,
L-asparaginase, and 5-aminosalicylic

acid

Fat malabsorption may alter
absorption of lipophilic drugs [70–73]

Liver

Liver volume decreases by 20–40%
with aging, blood flow decrease by
35% compared with persons < 40

years old. Increased rates of
oxidative stress and inflammatory
response, high prevalence of liver

fibrosis, NAFLD

Drug induced liver injury is
commonly caused by antibacterials

(amoxicillin-clavulanate,
flucloxacillin, nitrofurantoin), statins
(atorvastatin), immune checkpoints
inhibitors (nivolumab, ipilimumab,

infliximab)

Decreased first-pass metabolism
with consequent increase of

absorption and bioavailability of
high-clearance drugs, decreased

rates of formation of active drugs
from prodrugs with consequent

decrease of their plasma
concentrations and possible failure

of treatment

[74–76]

DIE—drug-induced esophagitis, PPI—proton pump inhibitors, NAFLD—nonalcoholic fatty liver disease,
NSAIDs—non-steroidal anti-inflammatory drugs.



Biomedicines 2023, 11, 1633 5 of 45

Age-associated and PPI-induced hypochlorhydria may result in the decreased ab-
sorption, and, thus, bioavailability of such antibacterials, as azithromycin, erythromycin,
cefaclor, ceftibuten, sulfonamides [8], decreased intestinal motility and blood flow may
lead to the decreased bioavailability of cefpodoxime proxetil [8]. The reduced first-pass
metabolism in the elderly may lead to some decrease in active moiety formation from the
prodrug form. Among antibacterials, there are several prodrugs. Ampicillin prodrugs
include pivampicillin, talampicillin bacampicillin, and hetacillin (all are esters), another
is sultamicillin (ampicillin linked to sulbactam by a methylene group) [77]. Examples of
prodrugs among cephalosporines include ceftaroline fosamil and a combined form, novel
cephalosporin-fluoroquinolone prodrug, including ciprofloxacin linked to the cephem core
via the carboxylic acid [78]. An old antibacterial agent in the prodrug form is metronidazole,
which is activated through reduction with redox active form production. The effect of the
changed intestinal permeability on the absorption of antibacterials may be well illustrated
with an example of inflammatory bowel disease, which incidence is rising in the elderly [79].
For patients with inflammatory bowel disease, a decrease of metronidazole exposure after
oral intake was demonstrated as well as alterations of bioavailability of many other drugs
administered orally [80].

Absorption is also affected by the number and function of transport proteins in the
GIT. One of the most important transport proteins, P-glycoprotein (P-gp) revealed nearly
no change in the elderly compared with younger adults, though intestinal P-gp activity
was significantly reduced in the elderly with renal failure [81]. The same change was
demonstrated for the organic anion transporter polypeptides 1B1 (OATP1B1), those activity
was reduced in the elderly with chronic kidney disease (CKD) compared to healthy young
participants and healthy elderly patients [81]. The activity of another intestinal efflux
transporter, breast cancer resistant protein (BCRP), revealed a marked decrease both in
the healthy elderly and those with CKD [81]. Estimation of BCRP expression in the liver
demonstrated the same decline with age, being the lowest in the elderly compared with
adults and children [82]. Aging also may also affect the expression of peptide transporters
1 and 2 (PepT1 and 2), which are involved in the uptake of di- or tripeptide substrates
in such locations, as the intestine, kidneys, bile duct epithelium (PepT1), brain, lung,
and mammary gland (PepT2) [83,84]. PepT1 and Pept2 expression may be altered in the
presence of age-related diseases including diabetes mellitus (downregulation of PepT1)
and obesity (leptin-dependent activation of PepT1 activity and expression) [83].

Some age-associated changes of transport proteins may contribute to the altered PK of
AB, though genetic polymorphism is considered to be a more important factor resulting
in these changes [85]. The only transport protein whose expression was found to be age-
dependent was revealed with a quantitative review of age- vs. genotype-related differences,
including P-gp [85]. Different results were demonstrated with liquid chromatography tan-
dem mass spectroscopy transport proteins quantification: no age correlation was estimated
for the hepatic protein expression of OATP1B1, OATP1B3, OATP2B1, or P-gp (p < 0.05) [86].
In general, there are limited studies aimed at the estimation of age-associated transport
protein changes in humans. Animal studies declare a decline of gene expression and
mRNA expression of most OATPs with aging (OATP1A1 OATP1A2, OATP1A4, OATP1A5
and OATP1B2), as well as of P-gp and multidrug-resistance like proteins 1 and 2 (MRP1,
MRP2) [87–89].

The summary of age-associated changes of the main transport proteins involved in
AB transport along with data on antibiotic-substrates is given in Table 2.
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Table 2. Age-associated changes of transport proteins and data on their antibiotic-substrates.

Transport Protein Age-Dependent Change of Expression Transported Antibiotics References

BCRP

Decreased protein expression in the human
intestine and liver in the elderly.

Gene expression is significantly decreased in
animal models.

No marked changes in human with aging

Fluoroquinolones (delafloxacin,
ciprofloxacin, enrofloxacin,

norfloxacin, ofloxacin), nitrofurantoin

[81,82,85,89–
91]

P-gp
No marked changes in human with aging.

Significant reduction of activity in the elderly
with renal failure.

Erythromycin, tetracycline
Azithromycin

Levofloxacin, sparfloxacin
Dicloxacillin

[81,92–97]

MRP2 No data available in human Ampicillin, azithromycin, ceftriaxone,
cefodizime, ceftriaxone [98]

OATP1A2 No data available in human

Most of fluoroquinolones
(ciprofloxacin, enoxacin, gatifloxacin,

levofloxacin, lomefloxacin,
norfloxacin), erythromycin,

tebipenem

[93,99–101]

OATP1B1

No marked changes in human aging.
A weak correlation was noted between OATP1B1

abundance and age of human donors.
Significant reduction of activity in the elderly

with renal failure

Benzylpenicillin, rifampicin, rifampin,
rifampicin, cefazolin, cefditoren,

cefoperazone, nafcillin

[81,85,86,93,
102,103]

OATP1B3 No marked changes in human aging

Rifampicin, rifampin, cefadroxil,
cefazolin, cefditoren, cefmetazole,

cefoperazone, cephalexin, nafcillin,
erythromycin

[86,93,100,103]

OATP2B1
No marked changes in human aging.

Gene expression is significantly decreased in
animal models

Benzylpenicillin, tebipenem pivoxil [86,88,104,105]

PEPT1
In diabetes mellitus—downregulation of PepT1.

In obesity—leptin-dependent activation of
PepT1 activity and expression

Penicillins (penicillin G, cyclacillin),
cephalosporines (cefadroxil,

ceftibuten, cefixime, cephradine,
cephalexin, cefroxadine, loracarbef)

[83,103]

PEPT2
Age-dependent changes were observed for

different locations (heart, brain, nervous tissue,
kidney) with increase of expression with aging

Colistin [84,106,107]

Absorption of orally administered antibiotics may be affected by food intake. For
highly lipophilic drugs absorption is increased in the fed state. Food also changes acidity
values in different departments of GIT, affecting the absorption of weak acids and bases.
Passive diffusion and thus a high rate of absorption is specific for the unionized forms, and
their formation depends upon the dissociation constant of the drug in the physiological pH
range [108]. Fed state results in the increase of acidity in the stomach and, in less extent,
in the colon. On the opposite, in the duodenum, jejunum and ileum fed state lead to the
decrease of acidity. With pH greater than 5 ionization rate of weak bases is dramatically
decreased, while for weak acids it is significantly increased [109]. Depending on the
drug, taking on an empty stomach (preprandial) or with a meal (postprandial) may be
recommended. In the elderly, for whom cognitive disorders are specific, as well as multiple
comorbidities and polypharmacy, the risk of not meeting these recommendations is high,
resulting in the decreased efficacy of treatment or increased risks of toxic reactions [109].
Age-associated changes also may aggravate fast-fed variabilities. Choosing antibiotics
with high absorption regardless of food is strongly recommended for the elderly. Table 3
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contains information about food effects on antibiotics absorption and related PK parameters
along with recommendations on the proper administration.

Table 3. Food effects on PK parameters of antibiotics.

Drug
(Oral Administration) Food Effect on PK Parameters References

Ampicillin Plasma concentration is decreased in fed state.
Should not be taken with food to allow optimal absorption [110]

Amoxicillin
Cmax decreased, Tmax prolonged under fed condition, but with no change of

the AUC, thus use both under fasted and fed state is effective, since it is
time-dependent AB

[111]

Amoxicillin-clavulanate Decreased bioavailability of clavulanic acid after meal (extended-release
tablets), so administration before meal is preferrable [112]

Flucloxacillin

Reduced AUC, Cmax, and prolonged Tmax of both free and total
concentrations compared with the fasting state. Achievement of free

concentration targets associated with efficacy was in most circumstances
equivalent, suggesting no negative association with the fed state

[113]

Cefaclor
Cmax decreased, Tmax delayed, but no AUC changes were reported for cefaclor

granule and cefaclor suspension under fed state supposing effective use
regardless of meal

[114]

Cefuroxime axetil Positive food effect on absorption with AUC in fed state greater than in the
fasted state, suggesting postprandial administration be more effective [109]

Cefpodoxime proxetil

Achievement of proper Cmax and MIC values was reported in non-fasting
patients.

In the elderly patients, the absorption is approximately 30% lower compared
to younger patients

[115–117]

Azithromycin

Capsules have delayed disintegration under fed state, resulting in the
extended gastric residence and gastric degradation of azithromycin, thus

capsules should be taken only in the fasted state. Tablets can be used
regardless of meal

[118]

Clindamycin The extent to systemic exposure was affected by the delay in absorption in the
fed state, suggesting optimal dosing is in the fasted state [119]

Linezolid A slight decrease in Cmax, and delay in Tmax were observed in fed state, with
no effect on AUC, suggesting effective use regardless of meal [120]

Ofloxacin Cmax and AUC were greater in the fasted state, significant decrease of
absorption was observed with aluminum co-administration [121]

Ciprofloxacin

Cmax and AUC were greater in the fasted state, significant decrease of
absorption was observed with aluminum co-administration.

Meal should be held for 1 h before and 2 h after fluoroquinolone
administration

[121,122]

Levofloxacin
Slight delay of absorption with no alteration of the overall bioavailability after

high fat meal.
Food or drinks enriched with calcium may decrease Cmax and delay Tmax

[123,124]

Moxifloxacin Considerable decrease of plasma concentrations in the fed state in comparison
with the fasted state, so preprandial use is recommended [125]

Doxycycline Decrease of the Cmax and AUC in the fed state compared with the fasted state [126]

Drug absorption in non-oral routes of administration (injection, inhalation) may also
be affected by age-associated changes. Considering intramuscular drug administration
skeletal muscle mass decrease and hypoperfusion are the main factor altering absorption.
For intranasal administration and for inhalation the decreased blood flow is also a key
determinant resulting in the reduced absorption. Table 4 includes data on the age-associated
changes of absorption for non-oral routes of drug administration in the elderly.
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Table 4. Age-associated changes of absorption for non-oral routes of drugs administration in the
elderly.

Route of Administration Age-Associated Change Absorption Change References

Intramuscular

Sarcopenia (the loss of muscle mass and
function), fibrosis, infiltration of fat into skeletal

muscle, increased inflammatory response

Some increase for depot
preparations [127]

Hypoperfusion of skeletal muscles May decrease [76,128]

Percutaneous
Decreased hydration and changed lipid structure

result in an increased barrier function of the
stratum corneum

Some decrease for hydrophilic
drugs [129]

Inhalation

Lung function decline:
increase in alveolar size and alveolar-capillary

surface area, reduction of the elastic recoil of the
lungs, increase in end-expiratory lung volume,

increase of the functional residual capacity,
reduction of the expiratory airflow, decline in
forced expiratory volume by approximately

30 mL/year and forced vital capacity by
approximately 20 mL/year, decrease of the

blood flow rates

Variable effect on absorption,
leading to increase, decrease, or
no changes of AUC and Cmax
compared to younger patients

[130,131]

3.2. Distribution

Drug distribution through different body fluids, organs, and systems is markedly
affected by the aging process resulting in the change of such PK parameters, as the vol-
ume of distribution (Vd). The main contributors to Vd alterations are changes in the
cardiovascular system specifically for the elderly population. Cardiovascular senescence
includes the cascade of physiological changes which may precipitate the formation of
cardiovascular diseases. Advanced age results in the thickening of the walls of arteries
with a decrease in vessel compliance and an increase in pulse wave velocity resulting
in systolic blood pressure increase. These changes lead to the left ventricular afterload
contributing to myocardial remodeling and congestive heart failure (HF) as well as to
ischemic heart disease [132]. HF mediates hypoperfusion first in the peripheral tissues, but
with HF progression blood flow will be reduced in the GIT, liver and kidneys resulting
in significant PK changes [128]. Oedema secondary to HF, ascites secondary to cirrhosis,
and chronic liver disease—all can worsen a fluid accumulation in the site of infection and
adjacent tissues. This leads to the dilution of AB concentrations at the infection site and
predisposes to a treatment failure [133]. Systemic inflammation in the elderly can promote
endothelial dysfunction, leading to increased capillary permeability and plasma leakage
into the interstitial space, which in critically ill patients can be further aggravated by fluid
administration. Consequently, Vd especially of hydrophilic antibiotics (e.g., beta-lactams)
can increase and a loading dose may be required [134].

Another concern is a change in the body’s water and fat composition. In the elderly,
there is an increase in the body’s total fat mass, fat redistribution (increase in the abdom-
inal fat and reduction in subcutaneous fat), and fat infiltration of various organs (liver,
pancreas) [135]. Total body water content is decreased in the elderly and obese patients,
and intracellular water is also reduced reflecting skeletal muscle loss [136]. An increase in
fat mass may affect drug distribution, since the presence of obesity mediates changes in
the tissue blood flow and perfusion. Considering the distribution of ABs, tissue penetra-
tion may be altered, as shown in the studies with cefuroxime and ciprofloxacin in obese
patients [137].

Physicochemical drug characteristics are other determinants affecting Vd. Lipophilic
agents can easily cross cellular membranes and blood-tissue barriers distributing to the
various organs and tissues and resulting in the high values of Vd, while hydrophilic drugs
are mainly concentrated in the body fluids and are typically characterized by the low values
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of Vd. Lipophilic antibacterial agents include fluoroquinolones, macrolides, tetracyclines
and glycylcyclines, oxazolidinones, rifampicin, and chloramphenicol. Hydrophilic antibi-
otics are β-lactams, aminoglycosides, and glycopeptides. With increased fat content Vd
for highly lipophilic drugs increases. Advanced age is associated with the decrease of
total body water resulting in Vd contraction of hydrophilic drugs (e.g., aminoglycosides,
β-lactams, and glycopeptides), though in critically ill patients Vd of hydrophilic agents
may be increased with hemodynamic insufficiency development, excessive permeability
of capillaries, and ongoing infusion therapy [138]. The ability of both lipophilic and hy-
drophilic antibiotics to cross blood-tissue barriers may be increased in the presence of
some diseases. The most important barrier is the blood-brain barrier, and its breakdown
may result in an increased risk of drug-induced neurotoxicity. The elderly population is
characterized by a high prevalence of pathological states resulting in increased permeability
of the blood-brain barrier, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s
disease, amyotrophic lateral sclerosis, multiple sclerosis, and ischemic stroke [139]. AB ther-
apy in patients with listed diseases may be accompanied by the rise of various neurotoxic
reactions. The highest risk of encephalopathy was reported for penicillins, cephalosporines,
carbapenems, oxazolidinones, fluoroquinolones, polymyxins, sulfonamides, metronidazole.
Tetracyclines can induce cranial nerve toxicity and intracranial hypertension [140].

Another factor affecting drug distribution is plasma protein binding rate (PPB). Serum
albumin, lipoproteins and alpha-1 acid glycoprotein are the main plasma proteins seques-
tering drugs in plasma [141]. A bound fraction of a drug is pharmacologically inactive and
stays in the intravascular space, while an unbound fraction penetrates the extravascular
space, reaches corresponding molecular targets, and causes a pharmacological response.
Changes in the quantity and quality of plasma proteins may result in a disbalance between
the bound and unbound fractions leading to altered pharmacological effects. Age is one
of many factors that can influence drug protein binding, but the clinical significance of
age-related hypoalbuminemia seems to be minimal. In healthy noninstitutionalized indi-
viduals, a gradual small decrease in serum albumin level (approximately 4% per decade)
was found [142]. It is not noticeable until people reach 70 years of age [142], when the level
of serum albumins decreases by 20% [143].

Hypoalbuminemia is more specific for elderly hospitalized patients. Serum albu-
mins decrease below 3.5 mg/dL was observed with aging, and among cases of marked
hypoalbuminemia at hospital discharge (<2.5 mg/dL) 74.2% were reported in persons
over 65 years of age [144]. Serum globulins are also affected by aging, in 47.6% of patients
aged between 60 and 85 years an increased gamma gap was observed (>3.1 g/dL) [145].
More pronounced alterations of serum proteins may be caused by acute or chronic disease,
proteinuria, and malnutrition [142].

Hypoalbuminemia may play an important role in critically ill patients treated with
intravenous highly protein-bound antimicrobials such as cefazolin, ceftriaxone, ertapenem,
sulfonamides, clindamycin and daptomycin [146]. Decreased PPB may result in a significant
increase in free serum concentrations of these antibiotics [146,147] which may require direct
measurement of free drug levels [147]. In general, hypoalbuminemia may lead to the in-
crease of Vd of highly albumin-bound antibiotics and hydrophilic drugs (e.g., streptomycin)
and to the decrease of Vd of the α1-acid glycoprotein-bound drugs (e.g., rifabutin) [43]. In a
retrospective observational study, older patients with methicillin-resistant Staphylococcus
aureus hospital-acquired pneumonia and severe hypoalbuminemia had significantly longer
vancomycin half-life (T1/2), high values of AUC, more frequent nephrotoxicity episodes,
and greater risk of 28-day mortality compared with patients with mild hypoalbumine-
mia [148]. The authors recommended individual vancomycin dose adjustment to senior
patients with low body weight and severe hypoalbuminemia. In the presence of hypoal-
buminemia highly protein-bound ertapenem (normal PPB is 85–95%) showed a higher
incidence of 30-day mortality in patients with carbapenems-susceptible Enterobacteriaceae
compared to less protein-bound imipenem or meropenem [149].
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Other studies demonstrated a decreased probability of target attainment with ceftriax-
one in critically ill patients with severe hypoalbuminemia [150], and an increased risk of
clinical failure with this AB [151].

Older individuals have increased plasma levels of α1-acid glycoprotein that are as-
sociated with a reduced unbound fraction of basic antibiotics, e.g., macrolides [8]. The
synthesis of α1-acid glycoprotein may be augmented by infections and malnutrition [43]
and an increase of its levels from 2 to 6-fold is seen in severe inflammation and cancer [141],
which can affect Vd of antibiotics binding mainly to alpha-1-acid glycoprotein, such as
clindamycin [152].

Nutritional status has a significant impact on antibiotics distribution and to a lesser
extent on other PK parameters. Both obesity and malnutrition (undernutrition) are highly
prevalent among older adults [153]. Rates of obesity vary in different age groups and are the
highest among the young-old individuals (65–74 years) [154]. Obesity (BMI > 30 kg/m2)
and particularly morbid obesity (BMI > 40 kg/m2) influence various physiological pro-
cesses including gut permeability, gastric emptying, cardiac output, liver and renal function,
and is associated with the different physiological compositions of muscle and fat compared
to non-obese patients [137,155]. An increase of both body fat tissue and lean body mass
in patients with obesity leads to an increase of Vd particularly of lipophilic drugs. The
elimination of highly lipophilic agents, such as fluoroquinolones, macrolides, oxazolidi-
nones, tetracyclines and rifampin can decrease. Morbid obesity (BMI > 40 kg/m2) can
profoundly affect both antibiotics distribution and clearance [156]. PK changes in obese
patients can potentially reduce the efficacy of standard AB doses used for the treatment of
non-obese individuals [157]. In general, the dosing of lipophilic antibiotics in obese patients
is recommended to be based on actual body weight, and that of hydrophilic antibiotics—on
ideal body weight [158], but optimal dosing in obese elderly patients needs further study.

Malnutrition is another important concern in the elderly [159]. In malnourished
individuals, there is a decrease in adipose tissue content and lean body mass with an
increase in total body water. Malnutrition is associated with other pathophysiological
changes which can impact PK such as hypochlorhydria, delayed gastrointestinal emptying
time, increased, or decreased intestinal transit time, gastric and mucosal atrophy and
dysfunction, gastrointestinal inflammation, and pancreatic insufficiency [43]. P-gp activity
in the enterocytes of malnourished patients is decreased and tight junctions are enlarged,
influencing the uptake of food and drugs [43]. A common feature of malnutrition especially
in elderly patients with infections is pronounced hypoalbuminemia [7,43], those effects on
Vd were discussed above.

The list of factors affecting Vd and clearance in the elderly with severe infections and
their interrelationships are shown in Figure 1.

3.3. Metabolism

Age is associated with significant changes in drug metabolism. In healthy aging the
mass of the liver reduces by 20–40% resulting in a reduction of drug clearance [31]. A
decrease in liver mass and liver function is mainly related to the significant hepatic blood
flow decline (40 to 60%) in the elderly [24]. Both decreased hepatic function and reduced
hepatic blood flow contribute to increased T1/2 of hepatically metabolized antibiotics in the
elderly [8]. The age-related loss of surfaced endoplasmic reticulum causes a strong negative
correlation between age and hepatic microsomal phase I drug metabolizing activity [160]. In
people aged ≥70 years activity of the cytochrome P450 (CYP450) oxidases may decrease by
30% [161] resulting in the decline of clearance of CYP substrates. CYP3A activity decrease
was reported in the elderly compared with healthy adults, resulting in the midazolam and
atorvastatin Cmax nearly twice increase [81]. In the elderly 30 to 50% clearance reduction
was reported for the CYP3A4 metabolized drugs [24] and 20% reduction for CYP2D6
substrates [23].
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Figure 1. The list of the main factors affecting Vd and clearance in the elderly with severe infections
and their interrelationships. Severe infections may worsen heart failure and hepatic congestion,
contribute to sarcopenia progression and fat redistribution. Exacerbation of heart failure leads to
the decreased renal function, while septic changes may result in the augmented renal clearance. In
critically ill patients Vd of hydrophilic agents may be increased with hemodynamic insufficiency
development, excessive permeability of capillaries, and infusion therapy, while Vd of lipophilic agents
may be decreased due to the decrease of fat tissue mass. These changes are different from those
observed in a healthy elderly patient (typically decreased Vd of hydrophilic agents and increased Vd
of lipophilic agents).

Changes in the body composition specific to the elderly may affect the functions of
drug metabolizing enzymes. Kaburaki S et al. (2022) observed associations between the
skeletal muscle mass index (SMI), handgrip strength (HGS), hepatic steatosis index, and
activity of CYP2C19 and CYP3A4. In male patients ≥65 years of age a reduction in SMI
and HGS below the sarcopenia diagnostic criteria correlated with a decline in CYP2C19
and CYP3A4 activity. In elderly female patients, a decline in CYP2C19 metabolic activity
was associated with fatty liver disease presence [162].

Liver pathology being highly prevalent in the elderly population is the most obvious
factor altering CYP450 expression and activity. In this respect, it is interesting to consider the
results of the estimation of the protein abundance and gene expression of various CYPs in
the liver samples of patients with hepatitis C, alcoholic liver disease, autoimmune hepatitis,
primary biliary cholangitis and primary sclerosing cholangitis. CYP2E1 was defined as the
most vulnerable enzyme in which protein levels were significantly reduced in Child–Pugh
class A cirrhosis. The most prominent downregulation of metabolizing enzymes was
associated with alcoholic liver disease (CYP1A2, CYP2C8, CYP2D6, CYP2E1, CYP3A4,
UGT2B7) and primary biliary cholangitis (CYP1A1, CYP2B6, CYP2C8, CYP2E1, CYP3A4).
The protein abundance most of UDP-glucuronosyltransferases (UGT) was unaffected by
liver pathology (UGT1A1, UGT1A3, UGT2B15) [163].

Decreased function of CYP450 enzymes may lead to the reduction of the first-pass
metabolism of orally taken macrolides, fluoroquinolones (except levofloxacin), clindamycin,
tetracyclines, sulfamethoxazole/trimethoprim, and rifampin, resulting in the increase of
bioavailability and serum concentrations of these agents [8]. Though these changes in
enzymes metabolizing activity vary significantly from drug to drug and from person to
person they might be an important cause of ADRs [160].

The activity of the phase II enzymes, such as sulfotransferases, UDP-glucuronosyltrans
ferases (UGTs), and glutathione s-transferases (GSTs) is usually less affected by age and
therefore, the clearance of moderately lipophilic antibiotics, such as fluoroquinolones or
linezolid is similar to that among young adults [24]. There is some evidence that phase II
metabolism might be affected by frailty [24].

Malnutrition can cause a decrease in the content of hepatic cytochromes, which was
proved by the observed reduction of drug metabolism in patients with cachexia [164].

Substrates, inhibitors, and inducers of CYP450 isoenzymes among antibacterial agents
and CYP450 aging changes are indicated in Table 5.
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Table 5. Substrates, inhibitors, and inducers of CYP450 isoenzymes among antibacterial agents and CYP450 aging changes.

CYP450 Isoenzyme Antibiotic-Substrate Antibiotic-Inducer or
Antibiotic-Inhibitor Age-Related Changes References

CYP1A1 Linezolid Inhibitor-Norfloxacin

Certain change is unknown. CYP1A1 polymorphism is
supposed to be related to the development of multiple
age-associated diseases (cancers, chronic obstructive

pulmonary disease, coronary artery diseases)

[165–167]

CYP1A2 Grepafloxacin, Lomefloxacin
Inhibitors—quinolones and

fluoroquinolones
Inducers—Rifampicin, Nafcillin

Certain change is unknown. CYP1A2 polymorphism is
supposed to be related to the development of multiple
age-associated diseases (cancers, hypertension, chronic

obstructive pulmonary disease, coronary artery
diseases)

[167–170]

CYP2A6 Metronidazole Inhibitors—Isoniazid, Ethambutol
Inducers—Rifampicin

Weak positive association of the age and CYP2A6
protein levels and enzyme activity (nicotine and

coumarin metabolism studies)
[171–174]

CYP1B1 Linezolid NA

Age-related changes are supposed. High frequency
expression along with polymorphism is specific for a

variety of cancers, obesity, glucose intolerance.
CYP1B1 is involved in hypertension development and

progression

[165–175]

CYP2B6 NA
Inhibitors—Rifamycin

Inducers—Rifampicin, Rifabutin,
Rifamycin, Rifapentine

Age modified the effect of CYP2B6 genotype on loss to
care in older HIV positive Africans: older slow

metabolizers were at over four-fold higher risk when
compared to older intermediate metabolizers (OR: 4.06

95% CI: 1.38, 11.89)

[176–178]

CYP2C8 Linezolid, Trimethoprim

Inhibitors—Trimethoprim, Metronidazole,
Isoniazid, Rifampicin, Rifamycin,

Amoxicillin
Inducers—Rifampicin, Rifabutin,

Rifamycin, Rifapentine, Rifaximin

Some decrease is supposed. CYP2C8 provides
anti-inflammatory and anti-oxidative effects in the

vessels, its induction leads to the suppression of
TNF-α induced inflammatory cytokines

[165,178–182]

CYP2C9 Sulfamethoxazole, Trimethoprim

Inhibitors—Metronidazole,
Sulfamethoxazole, Isoniazid, Sulfadiazine,
Sulfisoxazole, Sulfamethizole, Rifamycin,

Oritavancin
Inducers—Rifampicin, Rifapentine,

Rifabutin, Rifamycin

Systemic celecoxib exposure suggests that for the
elderly extensive metabolizers enzyme activity may
exceed that of younger ones. For intermediate and

poor elderly metabolizers activity is reduced compared
to the young ones. Systemic warfarin exposure was

higher in all types of elderly metabolizers compared to
young ones

[85,183,184]
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Table 5. Cont.

CYP450 Isoenzyme Antibiotic-Substrate Antibiotic-Inducer or
Antibiotic-Inhibitor Age-Related Changes References

CYP2C19 NA

Inhibitors—Chloramphenicol, Oritavancin,
Isoniazid, Sulfanilamide, Rifamycin,

Ethambutol
Inducers—Rifampicin, Rifamycin,
Rifapentine, Rifabutin, Rifaximin

A decline in CYP2C19 metabolic activity was
associated with sarcopenia and fatty liver disease in

the elderly
[162,185,186]

CYP2D6 Linezolid,
Fusidic acid

Inhibitors—Isoniazid, Fusidic acid,
Rifamycin, Oritavancin, Ethambutol

Decrease is supposed due to 20% reduction for
CYP2D6 substrates.

Less activity of CYP2D6 was in poor metabolizers
>65 years compared with those <40 years (p < 0.001)

[23,165,187–189]

CYP2E1 Isoniazid
Inhibitors—Isoniazid

Inducers—Delafloxacin, Isoniazid,
Rifampicin

Significant reduction of the protein levels was
observed in liver pathology [163,190–192]

CYP3A4

Erythromycin, Linezolid, Clindamycin,
Telithromycin, Clarithromycin,

Azithromycin, Rifabutin, Rifapentine,
Rifaximin, Grepafloxacin,

Roxithromycin, Cethromycin,
Clindamycin, Tetracycline,
Trimethoprim, Cephalexin,

Sulfadiazine, Fusidic acid, Eravacycline,
Flucloxacillin

Inhibitors—Macrolides, Isoniazid,
Dalfopristin, Quinupristin,

Chloramphenicol, Metronidazole, Fusidic
acid, Clindamycin, Ciprofloxacin,

Norfloxacin, Tetracycline, Doxycycline,
Sulfamethoxazole, Sulfanilamide,

Rifamycin, Oritavancin
Inducers—Rifabutin, Rifampicin,

Rifapentine, Rifaximin, Rifamycin,
Nafcillin, Oritavancin, Flucloxacillin,
Dicloxacillin, Cefradine, Delafloxacin

Decrease is supposed due to 30 to 50% clearance
reduction for the CYP3A4 substrates

Decline of CYP3A4 activity was associated with
sarcopenia in the elderly

[24,162,165,193–197]

CYP3A5

Linezolid, Clindamycin,
Clarithromycin, Telithromycin,

Cethromycin, Erythromycin,
Metronidazole, Clindamycin

Inhibitors—Ciprofloxacin, Erythromycin,
Clarithromycin, Telithromycin,

Chloramphenicol,
Inducers—Rifampicin

Excessive systemic substrate exposure suggests decline
of activity in the elderly [85,165,198–201]

CYP3A7 Clarithromycin, Erythromycin,
Telithromycin, Metronidazole

Inhibitors—Erythromycin, Ciprofloxacin,
Norfloxacin, Chloramphenicol

Inducers—Rifampicin

Primarily expressed in the fetus
and newborn, with relative decline with aging [202–206]
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3.4. Excretion

Elderly patients have a high risk of decreased antibiotics clearance from the body
due to declining functions of the lung, bladder, liver, GIT and circulatory system, but
deterioration of the kidney function is the most important [207]. The kidneys are the major
route of elimination for many classes of antibiotics including beta-lactams, aminoglycosides,
glycopeptides, fluoroquinolones (except moxifloxacin), lipoglycopeptides, lipopeptides
(daptomycin), trimethoprim/sulfamethoxazole [8].

A gradual decrease in the kidney size and weight, renal blood flow, estimated glomeru-
lar filtration rate (eGFR), altered renal tubular secretion and age-related anatomic abnor-
malities (e.g., glomerulosclerosis, arteriosclerosis, arteriolar hyalinosis, medial hypertrophy,
tubular atrophy) leads to a progressive decline of the renal function in the elderly [208].
Renal mass reaches about 400 g in the fourth decade of life and declines gradually to about
300 g [209].

Both age-related physiological changes and pathological changes (due to hypertension,
diabetes mellitus, and heart failure) lead to the amplification of the cellular signaling path-
ways involved in renal cell senescence resulting in the imbalance between the proliferation
and apoptosis with the intensification of the last one [210]. Renal aging results in increased
susceptibility to acute kidney injury (AKI) and increased risk of formation of chronic kidney
disease (CKD). In the age group 40 to 49 years CKD stage 3–5 was reported only in 1.4%, in
the group 50 to 59 years—in 5.4%, while for the group 70 to 79 years—in 35.4%, and in the
group 80 to 89 years—in 30.9% [211]. By the eighth decade of life approximately 30–40% of
all glomeruli become sclerotic and by the ninth decade kidney size and the total number of
glomeruli may be about 70% of that of the third decade [212]. Patients ≥80 years have a
40–50% decline in renal function compared to adults of middle age [1,213]. The decline in
renal function is accelerated in patients with frailty [214].

Another factor contributing to the altered renal function and AKI is the use of nephro-
toxic drugs. Antibiotics may result in nephrotoxic reactions with various mechanisms,
including acute tubular necrosis and acute interstitial nephritis (Table 6). In the elderly de-
creased renal clearance mediates the amplification of nephrotoxicity, since for the majority
of associated antibiotics it has a concentration-dependent character.

Table 6. Antibacterial agents associated with AKI development and mechanisms of their nephrotoxic
effects.

Antibacterial Agents Mechanism of AKI References

Amoxicillin,
Flucloxacillin,

Piperacillin−tazobactam,
Cloxacillin,

Nafcillin

AIN with a proposed role of allergic inflammation [215–220]

Cefazolin, Ceftriaxone, Cefepime AIN with a proposed role of allergic inflammation [221,222]

Vancomycin

Dose-dependent induction of oxidative stress, complement
activation, and mitochondrial damage resulting in the acute
tubular injury/necrosis or acute tubulointerstitial nephritis.
New mechanism—drug-induced obstructive tubular cast

formation.
Acute tubulointerstitial nephritis with significant eosinophil

infiltration, suggesting allergic mechanism

[216,221,223–225]

Linezolid AIN [223]

Gentamicin, amikacin

Apical transport results in the accumulation of aminoglycosides
within tubular cells leading to the cell injury and death
(proximal tubulopathy) due to lysosomal accumulation,

inhibition of lysosomal enzymes and formation of myelin
bodies. direct proximal and distal tubule cytotoxicity

[221,226]
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Table 6. Cont.

Antibacterial Agents Mechanism of AKI References

Clarithromycin

Cell-mediated hypersensitivity reaction resulting in acute
kidney injury and nephrotic syndrome.

Drug interaction: macrolides are CYP3A4 inhibitors, their
concomitant use with calcium blockers may result in excessive

hypotension leading to the ischemic acute kidney injury

[215,227,228]

Ciprofloxacin
Levofloxacin

Crystal-induced acute kidney injury, damage of the collecting
duct. Urine pH more than 6.0 mediates crystal precipitation

within tubular lumens
[224,229–231]

Sulfamethoxazole and trimethoprim Intrinsic renal impairment, sulfamethoxazole urine crystal
formation [215,232–234]

Colistin Accumulation of colistin in the proximal tubule cells, direct
targeting the mitochondria [215,235,236]

AKI risk in patients using antibiotics is increased with increasing age: odds ratio
(OR) was 4.38 (p = 0.002) for those older than 75 years [219]. High rates of AKI devel-
opment are associated with the use of penicillins (piperacillin tazobactam, cloxacillin,
flucloxacillin) and vancomycin. A combination of piperacillin tazobactam with vancomycin
was associated with a significantly higher incidence of AKI compared with piperacillin
tazobactam plus meropenem combination (16.5% vs 3.6%; p = 0.009). Finally, piperacillin
tazobactam with vancomycin was associated with a 6.8-fold increased risk of developing
AKI (OR: 6.8, 95% confidence interval [CI] 1.5–30.9), and the higher plasma concentration
of vancomycin was also a determinant of AKI risk [217]. A systematic review and meta-
analysis of observational studies (12 studies included, 14,511 patients) revealed significantly
higher odds of AKI development in patients treated with a combination of vancomycin
plus piperacillin tazobactam compared with vancomycin plus meropenem combination
(OR = 2.31; 95%CI 1.69–3.15) [237,238]. Similar results were demonstrated in another study
(retrospective cohort study, period 20134—2019 years), where AKI incidence was reported
to be 33.3% in patients receiving vancomycin with piperacillin tazobactam compared with
9.1% for those who received vancomycin with meropenem or doripenem [238]. Estimating
AKI risks for meropenem, it is worth noting that the comparison of vancomycin plus
meropenem versus vancomycin plus cefepime revealed a nearly 2-fold increase in AKI
incidence for the first combination (38% versus 19.1%; p = 0.049) [239].

The highest AKI odds associated with piperacillin tazobactam were demonstrated
in another study, with OR = 1.89 (95% CI: 1.73–2.06) [240]. Considering vancomycin
monotherapy, overall incidence of AKI was 9.3 (95% CI 0.78–1.22) per 100 person-years,
and the adjusted hazard ratio versus all other comparator antibiotics was 0.74 (95% CI:
0.45–1.21) [241]. Comparison of nephrotoxicity induced by glycopeptides revealed less
AKI risks for teicoplanin compared with vancomycin (relative risk, RR = 0.66; 95% CI:
0.48–0.90; I2 = 10%) as it was established in the Cochrane systematic review [242], suggest-
ing possible benefits of its inclusion in the combined AB schemes instead of vancomycin.
This benefit was proved by the recent study, which revealed that piperacillin tazobactam
with vancomycin combination compared with piperacillin tazobactam plus teicoplanin or
vancomycin plus meropenem was associated with 3.96 times (95% CI, 1.48–10.63, p = 0.006)
and 3.11 times (95% CI, 1.12–8.62; p = 0.028) increased risk of AKI, respectively [243].

The incidence rate of linezolid-induced AKI is considered to be lower than that of
vancomycin, though there are results of a small study (63 patients with vancomycin and
38 with linezolid) indicating no difference in risk of AKI between these groups (p = 0.773).
AKI occurred in 19 (30.2%) patients from the vancomycin group and in 14 (36.8%) patients
from linezolid groups (p = 0.448) [223].

Considering imipenem, it is important to note the protective effect of cilastatin, and
favorable outcomes for a combination of imipenem/cilastatin with relebactam compared
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with colistin adding. For the first antibiotics combination, AKI incidence was zero, for the
second—31.3% [244].

Aminoglycosides are a common reason for nephrotoxicity. Amikacin-induced AKI
in mechanically ventilated critically ill patients with sepsis was 26.7%, and among factors
independently associated with an increased risk of amikacin-induced AKI were concurrent
use of colistin (OR = 25.51, 95%CI: 6.99–93.05, p < 0.001), presence of septic shock (OR = 4.22,
95%CI: 1.76–10.11, p = 0.001), and Charlson Comorbidity Index (OR = 1.14, 95%CI: 1.02–1.28,
p = 0.025) [226].

Analysis of the Food and Drug Administration Adverse Event Reporting System
(FAERS) database from 2000 to 2021 year revealed antibacterial agents associated with AKI
in older adults. The highest reporting odds ratios (ROR) were determined for the next
ones: vancomycin (5.73 (95% CI: 5.30–6.21)), sulfamethoxazole (5.30 (95% CI: 4.80–5.85)),
trimethoprim (5.25 (95% CI: 4.27–6.45), colistin (5.11 (95% CI: 3.17–8.22)), amoxicillin (2.75
(95% CI: 2.50–3.04)), ciprofloxacin (2.66 (95% CI: 2.45–2.89)), clarithromycin (2.75 (95% CI:
2.46–3.07)) [215]. AKI occurred in 68.5% of 412 enrolled patients with an incidence rate of
10.6 per 100 patients-days and a median time was 6 (3–13) days. Stages I–III of AKI were
38.3, 24.5, and 37.2%.

Estimation of patients with COVID-19 treated with antibiotics revealed a signifi-
cantly higher incidence of AKI in those who received linezolid (p < 0.0001), vancomycin
(p < 0.0001), carbapenem (p < 0.0001), cephalosporin (p < 0.0001), and piperacillin/tazobacta-
m (p = 0.028). AKI was associated with prolonged hospitalization (OR = 3.37; 95% CI:
1.76–6.45) [245].

Antibiotic-induced AKI is also associated with increased mortality, especially in the
elderly, as was demonstrated for patients who used intravenous colistin (hazard ratio,
HR = 1.74, 95% CI: 1.06–2.86, p = 0.028). Colistin-induced AKI incidence rate was estimated
as 10.6 per 100 patients-days, stage 1 was seen in 38.3%, stage 2 in 24.5%, and stage 3 in
37.2% [235].

Patients with severe malnutrition accompanied by dehydration are at increased risk
of diminished glomerular filtration rate (GFR), renal blood flow decline, and impaired
tubular excretion and reabsorption [43]. The existing evidence suggests that elimination of
streptomycin may decrease and that of rifampicin increases in malnourished adults [43].

Hepatic impairment may directly or indirectly decrease protein binding, metabolism,
and renal elimination of antibiotics [133]. Dose adjustment is needed for drugs that undergo
hepatobiliary clearance, especially those that undergo phase I metabolism, have high
protein binding, or are associated with high hepatotoxicity [133]. Liver cirrhosis has
a significant impact on antibiotics disposition due to numerous pathological changes
including liver cell necrosis, portosystemic shunt, reduction in the concentration of drug-
binding proteins, atypical Vd, altered metabolism and elimination, altered PD, drug-drug
interactions, and frequent association with renal failure) [246]. The percentage of antibiotics
bound by albumin may be altered in cirrhotic patients [133]. Elimination of tigecycline
which is lipophilic and highly protein bound (71–89%) demonstrated a reduction in patients
with hepatic failure, accompanied by a 43% increase in elimination half-life in severe
hepatic impairment [247]. In patients with severe liver disease, it is recommended to half
the standard maintenance dose of tigecycline but no changes in its usual loading dose are
needed [247].

Decompensated hepatic failure causes renal vasoconstriction and subsequent renal
failure, leading to the reduction of renally eliminated antibiotics excretion and an increase
of their serum concentrations [248]. Diminished renal elimination in liver cirrhosis was
shown for ofloxacin, ampicillin, aminoglycosides, and vancomycin [246].

Aging and age-related diseases may affect the levels of circulating proteins modifying
their renal excretion. The work by Lind L et al. (2019) revealed inverse relation of the
change in eGFR to the change in most of the evaluated plasma proteins (74%), among
which the most significant inverse relationships were reported for cystatin-B (CSTB), tumor
necrosis factor receptor 1 (TNF-R1), CD40L receptor (CD40), tumor necrosis factor receptor 2
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(TNF-R2), TNF-related apoptosis-inducing ligand receptor 2 (TRAIL-R2); study population
included persons aged 70 at baseline, the study period was 10 years. A positive relationship
was revealed between the change in eGFR and the change in hemoglobin (beta 0.10,
SE 0.03, Pearson’s correlation coefficient 0.11, p-value = 7.9 × 10−4) [249].

Reduction of renal clearance mediated by different reasons leads to the increase in
the half-life period of various drugs and indicates the need to decrease the daily dose
of some antibiotics [213]. This is of paramount importance for antibiotics with narrow
therapeutic index (NTI) including glycopeptides, aminoglycosides, and chloramphenicol
succinate [213,250]. The risk of toxicity of NTI antibiotics is extremely increased in the
elderly, especially in those with frailty [251], suggesting the actual need for therapeutic
drug monitoring (TDM) [252].

Age-related changes in AB PK may be illustrated with data derived from linezolid
TDM. Comparison of TDM samples from adult patients (<50 years) and from the elderly
(>90 years) revealed a highly significant, progressive increment in the linezolid trough
concentrations (5.8 ± 5.6 mg/L versus 16.6 ± 10.0 mg/L), an overall increment was 30%
per decade of age. Increased trough concentrations contribute to the increased overdose
and toxicity risks; they were found to exceed therapeutic levels in 30%, 50%, and 65% of
patients aged <65 years, 65–80 years, and >80 years, respectively [253].

Investigation of the efficacy and safety of vancomycin in patients ≥ 80 years revealed
a failure of treatment in 34.4%. The increased trough concentrations of vancomycin (VTC)
were associated with increased 30-day mortality rates: for VTC at <10 µg/mL mortality rate
was 2.8%, at 10 to 15 µg/mL—15.0%, at 15 to 20 µg/mL—15.3%, at ≥20 µg/mL—37.8%.
The multivariate analysis determined blood urea nitrogen ≥ 11 g/dL and heart failure
as independent factors associated with treatment failure (p = 0.004, 0.016, respectively).
Nephrotoxicity was observed in 12.0% of patients treated with vancomycin. Indepen-
dent factors associated with increased nephrotoxicity were VTC ≥ 15 µg/mL; treatment
duration ≥ 15 d; and concomitant aminoglycosides administration (p = 0.024, 0.035, 0.029,
respectively) [254]. Comparison of the VTC and AUC/MIC in the patients with the mean
age (+standard deviation) 50.9 ± 12.4 versus 76.9 ± 8 years revealed their significant
increase in the elderly. Rapid achievement of VTC ≥ 15 mg/L (within 4 days) was sig-
nificantly more specific for the elderly compared with younger patients (54.1% vs. 36.5%,
p = 0.004) as did 30-day mortality (40.9% vs. 12.5%, p < 0.001) [255]. In the work by Hatti
M et al. (2018) a considerable variation of trough AB concentrations in older adults was
demonstrated for cefotaxime, meropenem, and piperacillin-tazobactam, which was mainly
related to the low eGFR. Increased trough concentrations of cefotaxime were significantly
associated with older age, diabetes with end organ damage, moderate/severe kidney
disease, and higher sepsis severity [256].

For beta-lactams renal function is an important factor affecting PK parameters and
creatinine clearance was reported to be the most significant covariate altering beta-lactams
PK in late elderly patients. Population PK methods revealed decreased levels of clearance
for both piperacillin and tazobactam compared with younger population [257]. Doripenem
in the elderly with nosocomial pneumonia was characterized by increased AUC and
prolonged T1/2, reflecting a decrease in the renal clearance related to aging [258]. The same
tendency was demonstrated for meropenem in the elderly: clearance was significantly
lower than in younger patients due to the decline of renal function [259].

Aminoglycosides are also among antibiotics whose PK is dramatically affected by renal
function decrease. Elimination of amikacin was delayed with increasing age, reflecting
glomerular filtration rate decline [260].

Population pharmacokinetic modeling for levofloxacin in patients with a mean age of
81.2 years and impaired renal function demonstrated decreased mean clearance compared
to healthy volunteers [261].

Another concern regarding renal function effects on PK is augmented renal clearance
(ARC), defined as a creatinine clearance of more than 130 mL/min/1.73 m2 [262]. ARC is
mediated by the changes in kidney function arising in a critically ill state. The meta-analysis
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of 70 studies revealed a pooled prevalence of ARC of 39% (95% CI: 34.9–43.3) and its risk
factors in populations with apparently normal renal function including young age, male
sex, and trauma [263]. In critically ill patients with cancer ARC development on the first day
of intensive care unit (ICU) admission demonstrated a significant association with younger
age (OR 1.028, 95% CI: 1.005–1.051) [264]. Despite the association with young age stated
above a retrospective study of 2592 critically ill patients admitted to the ICU revealed that
the median age of patients with ARC was 70 (55–79) years, with a prevalence of 33.4% [265],
pointing out the importance of the ARC for the elderly population. This state can lead to
decreased AB exposure and thus to treatment failure with beta-lactams, aminoglycosides,
glycopeptides, and other, mainly hydrophilic agents [262]. Vancomycin use in ARC patients
demonstrated achievement of the trough concentration in only 19.23% [266], and the
same trend was revealed in the vancomycin population pharmacokinetic model, affirming
that ARC was significantly associated with subtherapeutic serum concentrations [267].
Renal function is a significant predictor of proper meropenem exposure. In critically ill
septic patients with ARC (median age 63 years, interquartile range, 55 to 68 years) poor
PK/PD target attainment was demonstrated [268]. Linezolid clearance demonstrated
a significant increase in ARC patients, resulting in sub-therapeutic concentrations after
standard doses [269].

Age-related changes in the main PK parameters of antibacterial agents compared to
the younger population are given in Tables 7–13.
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Table 7. Comparative data on PK parameters of β-lactam antibiotics in the elderly and adults.

Drug
Volume of Distribution, Vd Plasma Protein Binding Rate,

PPB Rate Clearance, CL Half-Life Period, T1/2 References

Elderly Patients Adults Elderly Patients Adults Elderly Patients Adults Elderly Patients Adults

Penicillins

Amoxicillin
21 ± 9 L

(mean age
82 ± 6 years)

20 L NA 20%
109 ± 72 mL/min

(mean age
82 ± 6 years)

230–280 mL/min

2.4 ± 0.6 h (i.v.),
2.0 ± 0.41 h

(capsule),
1.9 ± 0.55 h

(solutab)
(mean age

82 ± 6 years)

1 h [270,271]

Ampicillin
/Sulbactam

Ampicillin

26.33 ± 8.75 L
(mean age

73.9 ± 5.1 years)
19.3 ± 0.2 L
(mean age

85.7 ± 7.9 years)

31.4 ± 13.12 L
(mean age

30 ± 6.5 years)
31.29 + 8.72 L

(mean age
51 ± 7.3 years)

NA

18–28%

198.02 ± 55.60 mL/min
(mean age

73.9 ± 5.1 years)
6.5 ± 4.0 L/h

(mean age
85.7 ± 7.9 years)

289.15 ± 50.52 mL/min
(mean age

30 ± 6.5 years)
281.29 ± 33.64 mL/min

(mean age
51 ± 7.3 years)

1.35 ± 0.29 h
(mean age

73.9 ± 5.1 years)
2.7 ± 1.6 h,
(mean age

85.7 ± 7.9 years)

0.86 ± 0.15 h
(mean age

30 ± 6.5 years)
1.09 ± 0.18 h

(mean age
51 ± 7.3 years)

[272,273]

Sulbactam

23.54 ± 7.71 L
(mean age

73.9 ± 5.1 years)
18.6 ± 6.8 L
(mean age

85.7 ± 7.9 years)

24.98 ± 4.66 L;
(mean age

30 ± 6.5 years)
29.76 + 10.01 L

(mean age
51 ± 7.3 years)

38%

162.69 ± 46.21
mL/min

(mean age
73.9 ± 5.1 years)

5.6 ± 3.3 L/h
(mean age

85.7 ± 7.9 years)

254.96 ± 53.04 mL/min
(mean age

30 ± 6.5 years)
236.16 ± 26.98 mL/min

(mean age
51 ± 7.3 years)

1.58 ± 0.29 h
(mean age

73.9 ± 5.1 years)
3.3 ± 3.3 h
(mean age

85.7 ± 7.9 years)

0.93 ± 0.15 h
(mean age

30 ± 6.5 years)
1.19 + 0.17 h
(mean age

51 ± 7.3 years)

Cephalosporins

Ceftaroline

Vss
17.9 ± 3.0 L
(mean age
72.2 years)

Vss
15.8 ± 2.7 L

(age range 18 to
45 years)

NA 20%
95.7 ± 13.4 mL/min

(mean age
72.2 years)

127.3 ± 15.0 L
mL/min

(age: 18 to 45 years)

3.1 ± 0.4 h
(mean age
72.2 years)

2.2 h
(age: 18 to
45 years)

[274]

Cefepime

Vss
0.23 ± 0.03 L/kg

(mean age
67 ± 2 years, (men))

Vss
0.24 ± 0.03 L/kg

(mean age
69 ± 5 years, (women))

Vss
0.21 ± 0.02 L/kg

(mean age
30 ± 6 years, men)

Vss
0.21 ± 0.02 L/kg

(mean age
33 ± 5 years,

women)

NA 20%

1.11 ± 0.12 mL/min/kg
(mean age

67 ± 2 years, men)
1.22 ± 0.19 mL/min/kg

(mean age
69 ± 5 years, women)

1.54 ± 0.22 mL/min/kg
(mean age

30 ± 6 years, men)
1.56 ± 0.22 mL/min/kg

(mean age
33 ± 5 years, women)

3.05 ± 0.50 h
(mean age

67 ± 2 years, men)
2.92 ± 0.38 h

(mean age
69 ± 5 years,

women)

2.26 ± 0.51 h
(mean age

30 ± 6 years, men)
2.15 ± 0.33 h

(mean age
33 ± 5 years,

women)

[275,276]

Ceftriaxone
0.144 ± 0.018 L/ kg

(mean age
69.6 ± 5.1 years)

8.5 ± 1.3 L
(age range 19 to

40 years)
NA 83–96%

1.17 ± 0.29 L/h
(mean age

69.6 ± 5.1 years)

0.68 ± 0.11 L/h (age 19 to
40 years)

6.9 ± 1.7 h
(mean age

69.6 ± 5.1 years)

8.1 ± 0.3 h
age 19 to 40 years: [277–279]

Carbapenems

Doripenem
median value 28.4
(IQR: 15.7–37.0) L

(age >60 years)
16.8 L NA 8.1%

median value 19.2
(IQR: 12.8–23.9) L/h

(age > 60 years)
16.0 L/h 1.89 h

(age >60 years) 1 h [258,280,281]
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Table 7. Cont.

Drug
Volume of Distribution, Vd Plasma Protein Binding Rate,

PPB Rate Clearance, CL Half-Life Period, T1/2 References

Elderly Patients Adults Elderly Patients Adults Elderly Patients Adults Elderly Patients Adults

Imipenem
cilastatin

Imipenem 0.33 ± 0.09 L/kg
(age 68 to 83 years)

Vc
0.16 ± 0.05 L/kg

(age 19 to 34 years)
NA 20%

159.20 ± 48.38 mL/min/kg
(age 68 to 83 years)

12.1 ± 0.06 L/h 1.73 m2

(age 19 to 34 years)
1.6 ± 0.72 h

(age 68 to 83 years)
0.93 ± 0.09 h

(age 19 to 34 years)
[282–284]

Cilastatin 0.26 ± 0.07 L/kg
(age 68 to 83 years)

Vc
0.14 ± 0.03 L/kg

(age 19 to 34 years)

138.96 ± 81.6 mL/min/kg
(age 68 to 83 years)

12.4 ± 1.1 L/h 1.73 m2

(age 19 to 34 years)
2.1 ± 2.14 h

(age 68 to 83 years)
0.84 ± 0.11 h

(age 19 to 34 years)

Meropenem

Vc
17.2 ± 14 L

Vp
10.6 ± 13 L (median
age 75 (65–94) years)
13.2 ± 1.4 L/1.73 m2

(mean age
73 ± 4.6 years)

11.7 ± 1.2 L/1.73
m2

(mean age
28 ± 5.2 years)

NA 2%

5.27 L/h
(median age

75 (65–94) years)
139 ± 20.0 mL/min 1.73 m2

(mean age
73 ± 4.6 years)

15.2 L/h

1.27 h
(age 65 to 80 years)

1.27 h
(mean age

73 ± 4.6 years)

0.81 h
(mean age

28 ± 5.2 years)
[259,279,285,286]

Biapenem

4.19 ± 1.58 L
(mean age

78.5 ± 5.3 years)
Vss (dose 300 mg)

15.2 ± 4.1 L
Vss (dose 600 mg)

15.1 ± 2.7 L (mean age
71.6 ± 2.7 years)

Vss (dose 300 mg)
13.7 ± 2.7 L

Vss (dose 600 mg)
13.4 ± 3.1 L
(mean age

77.8 ± 1.9 years)

Vss
16.4 ± 2.64 L

(dose 1250 mg)
15.3 ± 4.69 L

(dose 1000 mg)
22.4 ± 8.55 L
(dose 250 mg)

(mean age
37.9 years)

NA 7%

6.22 ± 1.87 L/h
(mean age

78.5 ± 5.3 years)
8.8 ± 1.1 L/h (dose 300 mg),
8.9 ± 1.9 L/h (dose 600 mg),

(mean age
71.6 ± 2.7 years)

6.8 ± 0.9 L/h (dose 300 mg),
6.7 ± 1.2 L/h (dose 600 mg)

(mean age
77.8 ± 1.9 years)

8.73 ± 1.99 L/h (dose
1000 mg),

14.2 ± 1.22 L/h (dose
250 mg),

(average age 37.9 years)

1.82 ± 1.14 h (dose
300 mg),

1.45 ± 0.36 h (dose
600 mg),

(mean age
71.6 ± 2.7 years)

1.75 ± 0.23 h (dose
300 mg),

1.59 ± 0.18
h (dose 600 mg),

(mean age
77.8 ± 1.9 years)

1.03 ± 0.03 h (dose
750 mg),

1.31 ± 0.31 h (dose
1250 mg),

(average age
37.9 years)

[287–289]

Vc—volume of the central compartment, Vss—volume in steady state, NA—not available.

Table 8. Comparative data on PK parameters of glycopeptides, lipopeptides, and lipoglycopeptides in the elderly and adults.

Drug
Volume of Distribution, Vd Plasma Protein Binding Rate,

PPB Rate Clearance, CL Half-Life Period, T1/2 References

Elderly Patients Adults Elderly
Patients Adults Elderly Patients Adults Elderly Patients Adults

Vancomycin

154 L
(mean age

78.3 ± 6.96 years)
74.2 ± 32.3 L

(age ≥ 60 years)

54.20 L
(median age 37
(26–49.3) years)

NA 50%

2.45 L/h
(mean age

78.3 ± 6.96 years)
0.71 ± 0.41 mL/min/kg

(age ≥ 60 years)

7.29 L/h
median age

37 (26–49.3) years:

17.8 ± 11.8 h
(age ≥ 60 years) 4–6 h [290–294]
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Table 8. Cont.

Drug
Volume of Distribution, Vd Plasma Protein Binding Rate,

PPB Rate Clearance, CL Half-Life Period, T1/2 References

Elderly Patients Adults Elderly
Patients Adults Elderly Patients Adults Elderly Patients Adults

Teicoplanin

Vc 78.1 (18.2) L
(mean age

77.1 ± 11.4 years, men)
80.1 ± 7.0 years,

women)

Vss
1.21 ± 0.56 L/kg

(age range 19 to 31
years)

NA 90–95%

0.51 ± 3.9 L/h
(mean age

77.1 ± 11.4 years, men
80.1 ± 7.0 years, women)

0.21 ± 0.018 mL/min/kg
(age range 19 to 31 years)

106.1 h
(mean age

77.1 ± 11.4 years,
men

80.1 ± 7.0 years,
women)

157 ± 92.8 h
(age range 19 to

31)
[295–297]

Daptomycin
Vss

0.15 L/kg
(age >75 years)

Vss
0.14 L/kg NA 87–92% 9.86 mL/h/kg

(age >75 years) 15.09 mL/h/kg 11.85 h
(age >75 years) 6.79 h [298]

Telavancin

Vss
156 ± 12 mL/kg

(mean age
70.7 ± 5.6 years)

157 ± 19 mL/kg NA 93%
12.2 ± 1.4 mL/min/kg

(mean age
70.7 ± 5.6 years)

12 ± 2 mL/h/kg
9.3 ± 1.3 h
(mean age

70.7 ± 5.6 years)
9.6 ± 2.9 h [299,300]

Vc—volume of the central compartment, Vss—volume in steady state, NA—not available.

Table 9. Comparative data on PK parameters of oxazolidinones in the elderly and adults.

Drug
Volume of Distribution, Vd Plasma Protein Binding Rate,

PPB Rate Clearance, CL Half-Life Period, T1/2
References

Elderly Patients Adults Elderly
Patients Adults Elderly Patients Adults Elderly Patients Adults

Linezolid

0.61 ± 0.08 L/kg,
(mean age

70.1 ± 3.4 years, men)
0.54 ± 0.13 L/kg,

(mean age
69.9 ± 3.4 years,

women)

0.77 ± 0.25 L/kg,
(mean age

29.6 ± 7.1 years,
men)

0.54 ± 0.17 L/kg,
(mean age

29.5 ± 6.0 years,
women)

NA 31%

CLPO
1.63 ± 0.44 mL/min/kg

CLR
0.31 ± 0.06 mL/min/kg

CLNR
1.31 ± 0.42 mL/min/kg,

(mean age
70.1 ± 3.4 years, men)

CLPO
1.30 ± 0.42 mL/min/kg

CLR
0.36 ± 0.10 mL/min/kg

CLNR
0.94 ± 0.47 mL/min/kg,

(mean age
69.9 ± 3.4 years, women)

CLPO
1.67 ± 0.27 mL/min/kg

CLR
0.44 ± 0.07 mL/min/kg

CLNR
1.23 ± 0.25 mL/min/kg,

(mean age
29.6 ± 7.1 years, men)

CLPO
1.34 ± 0.33 mL/min/kg

CLR
0.43 ± 0.09 mL/min/kg

CLNR
0.91 ± 0.26 mL/min/kg,

(mean age
29.5 ± 6.0 years, women)

4.6 ± 1.3 h,
(mean age

70.1 ± 3.4 years,
men)

5.3 ± 2.2 h
(mean age

69.9 ± 3.4 years,
women)

5.3 ± 1.7 h,
(mean age

29.6 ± 7.1 years,
men)

4.8 ± 1.5 h,
(mean age

29.5 ± 6.0 years,
women)

[301,302]
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Table 9. Cont.

Drug
Volume of Distribution, Vd Plasma Protein Binding Rate,

PPB Rate Clearance, CL Half-Life Period, T1/2
References

Elderly Patients Adults Elderly
Patients Adults Elderly Patients Adults Elderly Patients Adults

Tedizolid
mean age

71.9 ± 5.08 years:
91.6 ± 28.2 L

age 18 to 48 years:
95.7 ± 23.5 L NA 70–90%

mean age
71.9 ± 5.08 years:

5.2 ± 1.6 L/h

age 18 to 48 years:
6.08 ± 1.08 L/h

mean age
71.9 ± 5.08 years:

12.3 ± 1.3 h

age 18 to 48 years:
11 h [303,304]

CLPO—oral clearance, CLR—renal clearance, CLNR—non-renal clearance, NA—not available.

Table 10. Comparative data on PK parameters of tigecycline in the elderly and adults.

Drug
Volume of Distribution, Vd Plasma Protein Binding Rate,

PPB Rate Clearance, CL Half-Life Period, T1/2
References

Elderly Patients Adults Elderly
Patients Adults Elderly Patients Adults Elderly Patients Adults

Tigecycline

mean Vss
367 ± 96 L

(mean age 65–75 years,
women)

mean Vss
499 ± 78 L

(mean age 65–75 years,
men)

mean Vss
377 ± 123 L

(mean age > 75 years,
women)

401 ± 58 L
(mean age > 75 years,

men)

Vss
355 ± 95 L (mean

age < 50 years,
women)

554 ± 158 L (mean
age < 50 years, men)

NA 71–89%

20.4 ± 4.7 L/h (mean
age 65–75 years,

women)
23.8 ± 4.3 L/h (mean

age 65–75 years,
women)

19.6 ± 3.6 L/h (mean
age > 75 years,

women)
18.7 ± 3.0 L/h (mean
age 65–75 years, men)

<50 years:
20.6 ± 4.8 L/h

(women)
28.5 ± 11.8 L/h

(men)

16.5 ± 4.1 h (mean age
65–75 years, women)

19.5 ± 3.1 h (mean age
65–75 years, men)

21.2 ± 12.5 h (mean
age > 75 years,

women)
19.0 ± 5.0 h (mean

age > 75 years (men)

17.1 ± 8.4 h (mean age
< 50 years, women)
22.3 ± 15.3 h (mean
age < 50 years, men)

[305,306]

Vss—volume in steady state.

Table 11. Comparative data on PK parameters of fluoroquinolones in the elderly and adults.

Drug
Volume of Distribution, Vd Plasma Protein Binding Rate, PPB Rate Clearance, CL Half-Life Period, T1/2 References

Elderly Patients Adults Elderly Patients Adults Elderly Patients Adults Elderly Patients Adults

Levofloxacin

Vc
52.95 ± 21.57 L

(mean age
81.2 ± 5.08 years)

Vc
106 ± 12 L NA 24–38%

2.53 ± 1.46 L/h
(mean age

81.2 ± 5.08 years)
186 ± 5 mL/min

1.47 ± 0.65 h
(mean age

81.2 ± 5.08 years)
6.91 ± 0.83 h [261,307,308]
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Table 11. Cont.

Drug
Volume of Distribution, Vd Plasma Protein Binding Rate, PPB Rate Clearance, CL Half-Life Period, T1/2 References

Elderly Patients Adults Elderly Patients Adults Elderly Patients Adults Elderly Patients Adults

Moxifloxacin

2.24 L/kg
(age range 69 to
81 years, men)

2.12 L/kg
(age range 68 to

80 years, women)

2.60 L/kg
(age range 22 to

44 years)
NA 40–50%

10.38 L/h
(age range 69 to
81 years, men)

8.05 L/h
(age range 68 to

80 years, women)

10.61 L/h
(age range 22 to

44 years)

12.42 h
(age range 69 to
81 years, men)

11.47 h
(age range 68 to

80 years, women)

13.16 h
(age range 22 to

44 years)
[309]

Ciprofloxacin

mean Vc 49.8 L
mean Vp 63.3 L

(mean age
70 ± 9 years)

2.00–3.04 L/kg 20–40%
mean CL 17.8 L/h

(mean age
70 ± 9 years)

9.62 mL/min/kg

mean half-life
6.7 ± 4.1 h
(mean age

70 ± 9 years)

4 h [310,311]

Vc—volume of the central compartment, Vp—volume of the peripheral compartment, Vss—volume in steady state, NA—not available.

Table 12. Comparative data on PK parameters of aminoglycosides in the elderly and adults.

Drug
Volume of Distribution, Vd Plasma Protein Binding Rate,

PPB Rate Clearance, CL Half-Life Period, T1/2 References

Elderly Patients Adults Elderly
Patients Adults Elderly Patients Adults Elderly Patients Adults

Amikacin

18.0 ± 3.4 L (mean age
80.6 ± 7.3 years)
0.47 ± 0.14 L/kg

(mean age
73.6 ± 9.1 years)

0.27 ± 0.06 L/kg NA ≤10%

2.25 ± 0.78 L/h
(mean age 80.6 ± 7.3 years)

[309]
64.7 ± 42.7 mL/min

(mean age 73.6 ± 9.1 years)

1.32 ± 0.55 mL/min/kg
5.8 ± 2.5 h
(mean age

73.6 ± 9.1 years)
2.3 ± 0.44 h [312–315]

Gentamicin

14.8 ± 1.4 L
(mean age

80.4 ± 6.4 years, frail
patients)

15.2 ± 2.2 L
(mean age

80.4 ± 6.4 years,
non-frail)
0.37 L/kg

(age 70 to 96 years)

0.35 L/kg NA <20%

46.6 ± 10.7 mL/min
(mean age 80.4 ± 6.4 years frail

patients)
58.2 ± 12.4 mL/min

(mean age 80.4 ± 6.4 years,
non-frail)

1.0 mL/min/kg
(age 70 to 96 years)

1.67 mL/min/kg 4.1 h
(age 70 to 96 years) 2.5 h [316,317]

NA—not available.
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Table 13. Comparative data on PK parameters of polymyxin B in the elderly and adults.

Drug
Volume of Distribution, Vd Plasma Protein Binding Rate, PPB

Rate Clearance, CL Half-Life Period, T1/2 References

Elderly Patients Adults Elderly Patients Adults Elderly Patients Adults Elderly Patients Adults

Polymyxin
B

Vc
8.17 ± 0.67 L

Vp
21.21 ± 8.28 L

(age > 65 years)
0.490 ± 0.142 L/kg
(age 63 to 73 years)

Vc
0.0929 L/kg

Vp
0.330 L/kg

NA 92–99%

1.98 ± 0.67 L/h
(age > 65 years)

0.028 ± 0.007 L/kg/h
(age 63 to 73 years)

2.5 L/h 12.5 ± 3.11 h
(age 63 to 73 years) 9–11.5 h [318–321]

Vc—volume of the central compartment, Vp—volume of the peripheral compartment, NA—not available.
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4. AB Dosing Regimens in the Elderly

The main aim of AB therapy in elderly patients is to provide a proper balance between
efficacy (PK/PD target attainment) and safety. Changed PK parameters may lead both to
decreased or increased AB exposure contributing to negative treatment outcomes. Dose
adjustment is a typical approach in the management of the elderly with infections. De-
creased metabolizing capacity and declined renal clearance result in the need to decrease
the standard adult dose of AB, while ARC specific for critically ill patients may dictate the
necessity to use a higher dose.

Tables 14–18 include information about the proposed regimens of AB dosing depend-
ing on age, renal function, and hepatic function along with data on concentrations reported
to cause toxic reactions.
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Table 14. Beta-lactam AB dosing depending on age, renal function, and hepatic impairment.

Drug Regimen for Patients with
Different Renal Function

PK/PD Target
in the Elderly

Regimen for Patients with
Hepatic Impairment Safety References

Penicillin group

Ampicillin/Sulbactam

mean age > 65 years:
2 g of ampicillin/

1 g of sulbactam every 8 h
(normal renal function)

75–100% T > MIC
(MIC90 = 1 mg/L) NA

Transient low-level elevations of ALT or
AST in serum indicating transient liver

damage
[322,323]

mean age > 75 years:
1 g of ampicillin/

0.5 g of sulbactam every 6 h
(10 ≤ CLCR < 50 mL/min)

40% T > MIC
(MIC = 8 µg/mL)

Piperacillin/Tazobactam

mean age 85 (82–87) years:
4.5 g every 24 h

(CLCR 0–19 mL/min/1.73 m2)

fCss/MIC ≥ 1
MIC ≤ 8 mg/L

4.5 g every 4–6 h
(loading dose)
4.5 g every 6 h

(maintenance dose)

Plasma concentration ≥
157.2 µg/mL—risk of neurotoxicity

[324–326]

mean age 85 (82–87) years:
9 g every 24 h

(CLCR 20–39 mL/min/1.73 m2)

mean age 85 (82–87) years:
11.25 g every 24 h

(CLCR 40–59 mL/min/1.73 m2)

mean age 85 (82–87) years:
13.5 g every 24 h

(CLCR 60–79 mL/min/1.73 m2)

Cephalosporins

Cefepime

frail patients:
1 g every 12 h

(CLCR = 30 mL/min)
fT > 50% MIC

(susceptible strains)
1–2 g every 8–12 h (loading dose)
1–2 g every 8–12 h (maintenance

dose)

Plasma concentration ≥ 38.1 mg/L—risk
of neurotoxicity

[325,327,328]
frail patients:
1 g every 8 h

(CLCR 30–60 mL/min)

frail patients:
2 g every 8 h

(normal renal function)

fT > 80% MIC
(susceptible strains)

Ceftriaxone

mean age > 65 years:
1 g every 48 h

(eGFRcys 10 mL/min/1.73 m2) [326]
unbound fraction of ceftriaxone >MIC

(MIC = 0.5–1 mg/L) [326]

1–2 g every 12 h
(loading dose)

1–2 g every 12 h
(maintenance dose)

[322]

Plasma concentration ≥ 22 mg/L—risk of
neurotoxicity and ceftriaxone-induced

encephalopathy
[327]

[329,330]mean age > 65 years:
2 g every 48 h

(eGFRCR-cys 40 mL/min/1.73 m2)
[326]



Biomedicines 2023, 11, 1633 27 of 45

Table 14. Cont.

Drug Regimen for Patients with
Different Renal Function

PK/PD Target
in the Elderly

Regimen for Patients with
Hepatic Impairment Safety References

Ceftazidime/avibactam

age 66 years
(clinical case):

0.94 g every 12 h
(CLCR 30–40 mL/min)

100% fT > 4 × MIC for ceftazidime
99% fT > 4 mg/L for avibactam

(MIC = 1.5/4 mg/L)

2.5 g every 8 h
(loading dose)
2.5 g every 8 h

(maintenance dose)

Concentration in cerebrospinal fluid ≥ 9.4
mg/L—risk of neurotoxicity [325,331,332]

Ceftobiprole

CLCR < 50 mL/min:
0.5 g as a 2-h intravenous infusion

every 12 h 30–40% T > MIC
MIC = 2 mg/L

NA NA [333]
CLCR < 30 mL/min:

0.25 g as a 2-h intravenous infusion
every 12 h

Carbapenems

Doripenem
mean age > 60 years, mean

CLCR = 53.0 mL/min:
0.5 g every 8 h [258]

40% fT > MIC
(MIC = 2 µg/mL)

[258]
NA NA [258]

Ertapenem

mean age
73.1 ± 4.8 years:
1 g every 24 h

(normal renal function)

AUC0-24 746.1 ± 79.4 µg·h/mL at 1 day
AUC0-24

681.9 ± 47.0 µg·h/mL at 7 day

1 g every 12 h
(loading dose)
1 g every 12 h

(maintenance dose)

Plasma concentration > 79.2 µg/mL—risk
of neurotoxicity [325,334,335]

Meropenem

mean age > 65 years,
CLCR ≤ 50 mL/min:

1 g every 8 h;

40% fT> MIC
(MIC≤ 2–8 mg/L) 2 g every 8 h

(loading dose)
1 g every 8 h

(maintenance dose)

Plasma
concentration ≥ 64.2 µg/mL—risk of

neurotoxicity
Cmin ≥ 44.45 µg/mL—risk of

nephrotoxicity

[259,336]
mean age > 65 years,
CLCR > 100 mL/min:

2 g every 8 h

40% T > MIC
(MIC > 8 mg/L)

Biapenem mean age > 65 years:
0.3 g every 8 h

40% T > MIC
(MIC = 2 µg/mL) NA NA [337]

ALT—Alanine transaminase; AST—Aspartate transaminase; AUC0-24—Area under the plasma concentration-time curve over the last 24-h dosing interval; CLCR—Creatinine clearance;
Cmin—Minimum concentration; eGFRcys—Glomerular filtration rate estimated from cystatin C; MIC—Minimum inhibitory concentration; %T > MIC—Percent of time for total drug
concentration remains above the minimum inhibitory concentration; fT > MIC—Percent of time for free drug concentration remains above the minimum inhibitory concentration;
AUC—Area under curve; fCss > MIC—Free plasma steady-state concentration above the MIC.
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Table 15. Aminoglycosides dosing depending on age, renal function, and hepatic impairment.

Drug Regimen for Patients with
Different Renal Function

PK/PD Target
in the Elderly

Regimen for Patients with
Hepatic Impairment Safety References

Amikacin

mean age > 70 years:
1.8 g every 72 h

(CLCR = 40–50 mL/min)
1.8 g every 48 h

(CLCR = 60–90 mL/min)

Cmax > MIC
(MIC ≤ 8 mg/L) NA Cmin > 4 µg/mL—risk of

nephrotoxicity [312]

Gentamicin
Geriatric population,
CLCR > 60 mL/min:
3 mg/kg every 24 h

Cmax > MIC
(MIC = 1 µg/mL) NA Cmin > 2 µg/mL—risk of

nephrotoxicity [338]

CLCR—Creatinine clearance; Cmin—Minimum concentration; Cmax—Maximum concentration; MIC—Minimum inhibitory concentration.

Table 16. Glycopeptides and Lipopeptides dosing depending on age, renal function, and hepatic impairment.

Drug Regimen for Patients with
Different Renal Function

PK/PD Target
in the Elderly

Regimen for Patients with
Hepatic Impairment Safety References

Glycopeptides

Vancomycin
mean age ≥ 65 years:

1.0 g every 8 (CLCR > 50 mL/min)
1.0 g every 12 h (CLCR ≤ 50 mL/min)

Cmin, ss > MIC NA Cmin > 20 mg/L—risk of
nephrotoxicity [290]
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Table 16. Cont.

Drug Regimen for Patients with
Different Renal Function

PK/PD Target
in the Elderly

Regimen for Patients with
Hepatic Impairment Safety References

Lipopeptides

Daptomycin

eGFRcys = 20 mL/min:
age 65 years:

600 mg (loading dose)
350 mg (maintenance dose)

every 24 h
age 75 years:

550 mg (loading dose)
300 mg (maintenance dose)

every 24 h
age 85 years:

500 mg (loading dose)
250 mg (maintenance dose)

every 24 h
age 95 years:

450 mg (loading dose)
200 mg (maintenance dose)

every 24 h

(fAUCss)/MIC ≥ 66.6 NA
Risk of toxic reactions at

Cmin > 24 mg/L and
Cmax > 60 mg/L

[339,340]

CLCR—Creatinine clearance; Cmin—Minimum concentration; Cmin, ss—Minimum plasma concentration at up to 24 h after administration; Cmax—Maximum concentration; eGFRcys—
Glomerular filtration rate estimated from cystatin C; MIC—Minimum inhibitory concentration; (fAUCss)/MIC—Ratio of the area under the unbound concentration from 0 to 24 h at
steady state time curve to the MIC.
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Table 17. Fluoroquinolones dosing depending on age, renal function, and hepatic impairment.

Drug Regimen for Patients with
Different Renal Function

PK/PD Target
in the Elderly

Regimen for Patients with
Hepatic Impairment Safety References

Levofloxacin

mean age 81 years:
CLCR 0–19 mL/min:

125 mg every 48 h (MIC = 0.125 mg/L)
250 mg every 48 h (MIC = 0.25 mg/L)
500 mg every 48 h (MIC = 0.5 mg/L)

CLCR 20–39 mL/min:
500 mg every 48 h (MIC = 0.125 mg/L)
500 mg every 48 h (MIC = 0.25 mg/L)
750 mg every 48 h (MIC = 0.5 mg/L)

CLCR 40–59 mL/min:
500 mg every 48 h (MIC = 0.125 mg/L)
500 mg every 48 h (MIC = 0.25 mg/L)
500 mg every 24 h (MIC = 0.5 mg/L)

CLCR 60–79 mL/min:
500 mg every 48 h (MIC = 0.125 mg/L)
750 mg every 48 h (MIC = 0.25 mg/L)
750 mg every 24 h (MIC = 0.5 mg/L)

CLCR > 80 mL/min:
750 mg every 48 h (MIC = 0.125 mg/L)
750 mg every 24 h (MIC = 0.25 mg/L)
500 mg every 12 h (MIC = 0.5 mg/L)

AUC0-24/MIC ratio (≥95.7) NA NA [261]

Moxifloxacin No age adjustment
400 mg every 24 h per os

AUC0-24ss
46.67 µg·h/mL NA NA [341]

CLCR—Creatinine clearance; MIC—Minimum inhibitory concentration; AUC0-24/MIC—Ratio of area under the concentration-time curve during a 24-h period to minimum inhibitory
concentration; AUC0-24ss—Area under the baseline-corrected plasma concentration versus time curve from time 0 to 24 h at steady state.
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Table 18. Linezolid and polymyxin B dosing depending on age, renal function, and hepatic impairment.

Drug Regimen for Patients with
Different Renal Function

PK/PD Target
in the Elderly

Regimen for Patients with
Hepatic Impairment Safety References

Tedizolid No age adjustment
200 mg every 24 h

fAUC/MIC
(MIC ≤0.5 µg/mL) NA NA [303]

Polymyxin B

Median age 68 years (IQR: 63–73),
median CRCL 89 (IQR: 68–106) mL/min,

bloodstream infection caused by
carbapenem-resistant Klebsiella

pneumoniae:
1.25 mg/kg every 12 h

AUC0-24ss/MIC ≥ 54.4 NA

Risks of nephrotoxicity
(manifesations may vary
from proteinuria to acute

kidney injury) and
neurotoxicity

[319,342]

fAUC/MIC—The ratio of the area under the bound (unbound) concentration time curve to the MIC; MIC—Minimum inhibitory concentration; AUC0-24ss/MIC—Area under the
baseline-corrected plasma concentration versus time curve from time 0 to 24 h at steady state.
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5. Conclusions

Optimization of the management of elderly patients with infectious diseases is a
complex process, and successful performance demands knowledge of the main age-related
and pathology-related changes in the patient’s organism. Altered PK parameters may
contribute to the decreased efficacy of the treatments with suboptimal antibiotic exposure
or to the increased risks of toxic reactions ameliorating further response to drugs with over-
exposure. Individualization of the pharmacotherapy based on the unique characteristics of
the elderly patients may ensure the attainment of an optimal PK/PD target and treatment
success. The existing level of evidence on PK changes in the elderly clearly indicates a
significant difference in most PK parameters compared to younger adults. The last decade
is characterized by a tendency to increase the participation of the elderly in clinical trials.
However, the number of such trials is still insufficient to cover all the classes of ABs and
to provide full evidence-based background to choose proper dosing regimens in all the
pathologic states specific to the elderly and senile patients. Global aging indicates an urgent
need to extend inclusion of the elderly and senile patients with various comorbidity profiles
and geriatric syndromes in clinical trials and PK studies.
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