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Abstract: Germanium is an essential microelement, and its deficiency can result in numerous diseases,
particularly oncogenic conditions. Consequently, water-soluble germanium compounds, including
inorganic and coordination compounds, have attracted significant attention due to their biological
activity. The review analyzes the primary research from the last decade related to the anticancer
activity of germanium compounds. Furthermore, the review clarifies their actual toxicity, identifies
errors and misconceptions that have contributed to the discrediting of their biological activity, and
briefly suggests a putative mechanism of germanium-mediated protection from oxidative stress. Fi-
nally, the review provides clarifications on the discovery history of water-soluble organic germanium
compounds, which was distorted and suppressed for a long time.
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1. Introduction

At present, germanium is widely recognized as a vital trace element, which is partic-
ularly essential for the normal functioning of the immune system and plays a significant
role in cancer prevention [1–7]. Germanium is ubiquitously present in mammalian organs
and tissues, with the highest concentration in the thymus. Germanium normalizes many
physiological functions, particularly blood characteristics including pH, glucose, minerals,
cholesterol, uric acid, hemoglobin and leukocytes [8,9]. Conversely, germanium deficiency
can result in numerous diseases, primarily oncogenic conditions [10]. Research has revealed
that cancer patients exhibit anomalously low concentrations of germanium in their blood
serum [7,11,12]. Additionally, germanium levels in cancerous tissues are significantly lower
than those in adjacent healthy tissues [13].

Germanium is primarily introduced into the body through the consumption of
vegetable-based foods with an average daily human dose of only 0.4–1.5 mg [14,15]. Re-
search on the determination of this element in plant raw materials unexpectedly revealed
an elevated content in plants and mushrooms that are traditionally used in ethnoscience,
particularly in China [7,16–18]. Germanium compounds in natural sources have long been
considered a therapeutic agent with anticancer, antitumor, antiviral and anti-inflammatory
effects [19]. Thus, the highest germanium concentrations are contained in ginseng, sapro-
phyte mushrooms, particularly lacquered polypore (Ganoderma lucidum) and chaga, as well
as in garlic, aloe and echinacea [20–25]. Among these, ginseng and Ganoderma lucidum are
widely used in complex therapies of oncological diseases [26–30]. Germanium compounds
have been shown to normalize the oxygen respiration (i.e., oxidative phosphorylation)
in cells, which can retard the growth of tumors [26,31–33]. Restoring cell oxygen respi-
ration is key to treating Warburg-like cancers [33]. The stimulating effect of germanium
on oxidizing enzymes such as aldehyde reductase [34] has also been established. Hence,
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germanium-containing drugs have long attracted the attention of researchers and medical
practitioners.

The antitumor activity of inorganic germanium compounds was first detected in
1928 [35]. However, the field only began to intensively develop in the 1970s, when the
first water-soluble organic germanium compounds were synthesized, gaining attention
due to their wide range of biological activities. This topic has been addressed in several
reviews [1,5,6,8,24,36–44], as well as a monograph [7].

This review specifically focuses on research conducted within the past decade, during
which inorganic and coordination compounds of germanium have been incorporated
into medical practices alongside water-soluble organic germanium compounds [3,45,46].
Moreover, the toxicity of germanium compounds has been the subject of much controversy
and confusion, and the discovery history of stable water-soluble germanium compounds
has been significantly distorted. Therefore, the initial focus of this review is to elucidate
the tangle of errors, inaccuracies, and myths associated with germanium. At the end of
this review, the authors propose a putative mechanism for germanium-mediated cancer
treatment and prevention based on the unique chemical properties of germanium.

2. Historical Digression and Toxicity of Germanium Compounds

The chemical element number 32 was predicted by D.I. Mendeleev in 1871, and later, in
1886, was discovered by C. Winkler, who named it after his homeland Germany (Figure 1).
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Germanium has had a tumultuous history since its discovery over half a century ago.
Initially, it remained an inaccessible chemical element that did not garner much scientific
attention. It was not until 1948, when the first semiconductor transistors and diodes were
created using germanium, that it gained significance in the field of microelectronics. How-
ever, the use of this element as a semiconductor was soon replaced by silicon and it was
again forgotten. In the 1970s, the biological activity of the discovered stable organic ger-
manium water-soluble compounds [36] attracted the attention of scientists, among which
bis(carboxyethylgermanium) sesquioxide (Ge-132) was most famous. However, in the late
1980s, interest in such compounds declined sharply as a result of an ongoing discussion
about the allegedly anomalously high toxicity of organic germanium compounds (similar
to organic mercury compounds). Unfortunately, the interest in such compounds declined
sharply in the late 1980s due to a typo in an article published in 1987 in an inaccessible
journal, which listed erroneous toxicity values for Ge-132 [6,32,33,47]. This mistake was not
immediately noticed and led to erroneous criticism in subsequent publications issued in
highly influential scientific journals. The correction was only published in 1988; however,
until recently, many authors quoted only secondary sources that cited the erroneous data
about the high toxicity of organic germanium compounds. The situation was further aggra-
vated by a barbaric experiment conducted in Japan to determine the lethal dose of Ge-132
for humans. The experiment involved the consumption of an astronomical dose of 328 g of
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germanium, which is not used in medical practice [32,48–50]. The result of this experiment
showed that the toxicity of Ge-132 was due to the formation and precipitation of solid
germanium dioxide (GeO2) in the renal pelvis [48–50]. The therapeutic doses of organic
germanium derivatives are thousands of times less than this lethal dose. The situation was
further exacerbated by cases of germanium poisoning in individuals suffering from severe
diseases, who took Ge-132 for a long time in huge excess of the recommended daily dose
values without the recommendation of a doctor. These individuals consumed Ge-132 in
total quantities from 15 to 300 g over a period of up to three years or more (see review [50]).

It is evident that in the instances mentioned, high doses of Ge-132 resulted in toxic
effects due to its hydrolysis in the body to form solid GeO2 [15]. However, it is now known
that such poisoning, even with extremely high doses of germanium, can be successfully
treated with combined blood-purification therapy [51]. The occurrence of these tragic
events led to various controversial political decisions concerning organic germanium.
Specifically, Ge-132 was banned in several countries, despite being universally allowed as a
dietary supplement as early as the 1980s. This resulted in the long-term neglect of research
on the biological activity of Ge-132, particularly its anticancer properties. Ultimately, this
denial of the role of germanium in wildlife was based on erroneous toxicity data, published
in influential journals. The combination of typographical errors and reliance on secondary
sources of information led to the neglect of the potential clinical use of compounds of this
unique microelement. These events have also delayed the study of biological activity of
germanium compounds, as noted in reviews [6,47]. To date, many influential journals
continue to reject work related to the physiological activity of germanium compounds. It is
now time to rectify this situation and restore justice by rehabilitating germanium and its
biochemical role.

As of now, low toxicity Ge-132 has been established [40,52–54]. In fact, the toxicity
of organic germanium compounds [55–60] is lower than that of table salt and inorganic
germanium dioxide, for which the oral toxicity for mice (LD50) is 5400 mg/kg [55]. For
example, for the best-known organic germanium sesquioxide Ge-132 oral toxicity for mice
is LD50 > 6300 mg/kg, oral for rats is >10,000 mg/kg and intravenous toxicity for rats is
>1000 mg/kg [58]. Germatranol, another common germanium derivative, is also of low
toxicity: oral toxicity (LD50) is 8400 mg/kg for mice; intravenous toxicity is 300 mg/kg [57].
Thus, both inorganic and organic compounds of germanium are perfectly safe in those
doses in which they are usually used. It should be noted that all known chemical databases,
such as PubChem, currently have correct toxicity values for these compounds.

Inorganic derivatives of germanium have also been involved in a number of inci-
dents. Dietary supplements and elixirs containing cheap both inorganic GeO2 and Ge
(IV) coordination complexes (particularly germanium citrate and citrate-lactate) have been
widely sold in Japan since the early 1970s. They were advertised primarily for cancer
treatment [51], wherein the recommended daily dose of 50–100 mg was completely safe.
However, a number of precedents of poisoning by such germanium compounds in persons
who took such elixirs for a long time have been described. In all cases, the daily dose of
germanium was arbitrarily exceeded by tens and even hundreds of times (up to 5 g GeO2
per day) for a long time (up to 18–24 months or more) [48,49,61,62]. As a result, the total
dose of germanium in these people was between 100 and 500 g! Some of the more common
symptoms of inorganic germanium poisoning include weight loss, fatigue, gastrointestinal
disorders, anemia, muscle weakness and, in all cases, kidney failure [48–50,61,62]. More-
over, several serious fatal cases were described (see also review [50]). Because of such cases,
these elixirs were banned in many countries [60]. However, in each of the above-mentioned
cases of poisoning with germanium, it is necessary to understand fully and assess not only
the harm from poisoning, but also the possible benefits. Patients in the last stages of cancer
took these drugs (both in the form of Ge-132 and in the form of GeO2 and other derivative
compounds) in such huge doses independently at their own risk. When taking germanium
medication, even in such toxic doses, oncological sufferers, who usually live no more than
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3–6 months after diagnosis, have lived 1.5–3 years or more [50,63]. Moreover, during this
time, they lived a full life, contrary to the application of classical chemotherapy.

Most of these poisoning cases occurred more than 25 years ago. However, they
worsened the already bad reputation of the germanium compounds. In natural compounds,
germanium forms very weak chemical bonds with organic molecules, primarily with
oxygen atoms. At present, there are no methods to isolate, separate and purify such
substances, so the natural germanium compounds and/or its complexes have not yet been
isolated and characterized. At present, scientists have drawn attention to the water-soluble
synthetic germanium derivatives that make them bioavailable and enable them to be used
in safe doses.

The development of water-soluble organic derivatives of germanium (i.e., containing
at least one Ge-C bond) is inextricably connected with the N.D. Zelinsky Institute of
Organic Chemistry of the Russian Academy of Sciences (ZIOC RAS) and its scientists.
Althouge germanium sesquioxides were known long ago, they were insoluble in water. The
first water-soluble derivatives were discovered in 1965 by Prof. S.P. Kolesnikov [64–66],
at that time a graduate student in the laboratory of Prof. O.M. Nefedov [67]. These
water-soluble compounds were produced by the hydrolysis of HGeCl3 adducts with
cyclohexanone or methyl methacrylate. Later, in 1967 Prof. V.F. Mironov, a former employee
of the same laboratory, similarly synthesized another stable water-soluble germanium
sesquioxide-bis(carboxyethylgermanium) sesquioxide (Ge-132, CEGS), which is now the
best known [68,69].

(O1.5GeCH2CH2COOH)n

In the 1960s, the synthesis of such compounds seemed simple only on paper and, in
reality, required highly qualified chemists and specialized equipment, which was available
only in a few laboratories in the USSR and the USA. However, there is often a misconception
in the literature that K. Asai, a well-known popularizer and author of several books about
germanium, was the first to synthesize Ge-132. In 1967, at the international scientific
conference, K. Asai learned about the discovery of water-soluble germanium compounds
from Soviet scientists, who later gave him samples for testing. K. Asai was the first to
foresee the pharmaceutical potential of the Ge-132 [24]. The history of Ge-132 is now
well-known (see e.g., [6,7,24,70,71]). It was Ge-132 that led to the active study of biological
activity of germanium compounds and their application in medical practice, especially in
complex cancer therapy [7,19,31,36,72]. There are clinically proven cases of the successful
use of these compounds in cancer treatment; for example, the complete remission of lung
cancer was achieved when taking Ge-132 [73]. The spectrum of the biological activity
of Ge-132 turned out to be very extensive, with the most pronounced being antitumor
activity [40,52–54].

Microbiological methods are another direction for the synthesis of organic germanium
compounds. Thus, the yeast fermentation method produces Bio-Germanium, a medicine
that acts as an effective immunostimulant, increasing the cytotoxicity of NK cells and
activating immunoglobulin, B-cells and the tumor necrosis factor [19]. However, such
drugs will remain outside the scope of this review.

The surge in the number of publications (Figure 2) addressing the biological activity of
germanium compounds until the beginning of this century was accompanied by a number
of indeterminate publications containing erroneous toxicity values and reported cases of
ultra-high-dose poisoning, among other issues. In the last two decades, similar peaks
in publication activity were observed following the identification of novel categories of
germanium compounds or the disclosure of alternative types of activity. The average
number of publications has steadily risen by nearly fourfold over a span of 50 years.
Thus, the discovery of novel classes of stable water-soluble germanium compounds is of
significant importance.
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Figure 2. Number (per year) of publications on physiological activity of organogermanium com-
pounds (including Ge-132) (compiled by authors of the review based on Google Academy data).

3. Organic Germanium Compounds
3.1. Germanium Sesquioxides

The most-studied organic germanium compound is bis(carboxy ethylgermanium)
sesquioxide (Ge-132). Its synthesis is carried out by the addition of trichlorogermane
(HgeCl3) to acrylic acid to produce 3-(trichlorogermyl)propanoic acid, followed by the
hydrolysis thereof. In this reaction, the trichlorogermyl group Cl3Ge regiospecifically adds
to the terminal carbon atom of the vinyl group of acrylic acids (Figure 3) [64,68,69].
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Since the first synthesis of this compound was reported 55 years ago [68] the process
of producing the original trichlorogermane has gone from a technically complex synthesis
from elemental germanium [74] to the development of a simple and convenient method
using germanium dioxide (GeO2), HCl and H3PO2 [75]. As a result, Ge-132 and other
germanium sesquioxides are now readily available.

Regarding concerns over the alleged high toxicity of Ge-132 (see Section 2), its toxi-
city [56–58] and possible carcinogenicity [76,77] have been studied many times over the
past 10 years. The results of the research once again confirmed the complete safety of
Ge-132. The comprehensive study of the various biological activities of Ge-132 [8], in-
cluding those that were previously known [36], particularly its antitumor [78–84] and
immunomodulating [43,52,54,85] activities, also continued. In addition, Ge-132 is proposed
as a treatment for a number of diseases: haemorrhagic and ischemic stroke [86,87], viral
infections [43,54,88–90] (including COVID-19 [43]), various inflammatory diseases, partic-
ularly mastitis [4]. Next, this is suggested in the treatment of diabetes mellitus to reduce
insulin resistance [91], and as an antioxidant for various disorders caused by oxidative
stress [53,54,92–94] as well as in dermatological practice to heal skin wounds and protect
the skin from reactive oxygen species [95,96]. Finally, Ge-132, together with hydroxyap-
atite, is proposed for the recovery and regeneration of mineralized tissues, particularly
bone marrow [97]. The biological activity of Ge-132 is described in detail in the recently
published monograph [71].

Structural studies of bis(carboxy ethylgermanium) sesquioxide have shown that, in solid
form, it can exist in several polymeric forms (repagermanium RGe, propagermanium PGe
and linear polymer GeSP) (Figure 4) [88]. The structure of the polymer affects the rapidity and
completeness of its solubility in water and, as a consequence, its biological activity and dosage.
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When dissolved in water, it turns into a hydrated form-3-(trihydroxygermil)propanoic acid
(THGPA). PGe possesses the best water solubility.
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As a result, there has recently been increased interest in Ge-132 in its most soluble
form, PGe. For example, it is currently used in Japan to treat virus-hepatitis B [88]. Another
direction in the study of Ge-132 biological activity is associated with the direct use of its
hydrated form, THGPA. Thus, THGPA is shown to inhibit melanoma cell proliferation
through phagocytosis [98]. Furthermore, it was revealed to have analgesic [99] and anti-
inflammatory effects [100].

THGPA contains three hydroxy groups in its molecule, which can react with OH-
groups of vital molecules. Such interactions may explain a number of physiological effects
of Ge-132. Thus, to assess the possible mechanisms of this physiological activity, the inter-
action of THGPA with biologically active compounds such as adrenaline and ATP, which
have vicinal diol functional groups, has been studied in detail. The interaction with these
diols explains the numerous physiological functions of Ge-132 at low toxicities [52,100].
It was later found that, in solution, THGPA can form complexes with nucleotides or nu-
cleosides containing cis-diol fragments [101]. At the same time, the ability of THGPA to
form complexes with nucleotides depended on the number of phosphate groups present
at the ribose residue. Interestingly, THGPA inhibits the enzymatic activity of adenosine
deaminase (ADA) when using adenosine as a substrate [101].

Given the presence of several reaction centers in the Ge-132 molecule, chemical modifi-
cation has been explored to increase biological activity and broaden its scope of application.
Several Ge-132 derivatives have been synthesized, including those substituted on the
carboxylic group, 3-alkylsubstituted, and those with substitutes on the germanium atom.

It was previously shown that the introduction of aromatic and heteroaromatic sub-
stituents (quinolin, anthraquinone and naphthalene) as an ester group in Ge-132 increased
their antitumor activity compared to Ge-132 itself [24,36]. At the same time, the introduc-
tion of an alkyl replacement in propionic acid position 2 (R1 = Alk) significantly reduced
antitumor activity (Figure 5) [24,36].
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of methacrylic acid (R1 = Me) were therefore less active than similar derivatives of acrylic 

Figure 5. Derivatives of Ge-132.

Later esters with naphthalene and phenanthrene fragments, as well as N-arylamides
with anthraquinone and dibenzofuran fragments, were synthesized (Figure 6) [102,103].
The resulting compounds had a stronger cytotoxic activity than Ge-132. The derivatives
of methacrylic acid (R1 = Me) were therefore less active than similar derivatives of acrylic
acid (R1 = H) [102,103]. These studies demonstrate possible means of Ge-132 modification
to enhance its biological activity.



Biomedicines 2023, 11, 1535 7 of 19

Biomedicines 2023, 11, 1535 7 of 20 
 

acid (R1 = H) [102,103]. These studies demonstrate possible means of Ge-132 modification 

to enhance its biological activity. 

 

Figure 6. Aromatic derivatives of Ge-132. 

In parallel with the derivatives of Ge-132, a germanium sesquioxide with resveratrol 

was synthesized (Figure 7) [104]. The antioxidant activity of the resulting compound was 

higher than that of Ge-132 and resveratrol separately, i.e., a synergistic effect was ob-

served. 

 

Figure 7. Ge-132 complex with resveratol. 

3.2. Germatranes, Germocanes 

Germatranes (1) are another interesting class of biologically active germanium com-

pounds, which are cyclic molecules stabilized by the hypervalent germanium atom (Fig-

ure 8) [105–110]. 

 

Figure 8. Germatranes. 

Several compounds were identified as having high biological activity, including a 

peculiar hybrid of Ge-132 and germatrane-3-germatranyl substituted propionic acid (2) 

and its derivatives, which showed strong activity against various tumors [111–113]. Based 

on caffeic acid 3-germatranyl-3-(4-hydroxy-3-methoxyphenyl) propionic acid (3) was syn-
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serve for the development of new antisclerotic drugs to prevent lipid metabolism disor-
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In parallel with the derivatives of Ge-132, a germanium sesquioxide with resveratrol
was synthesized (Figure 7) [104]. The antioxidant activity of the resulting compound was
higher than that of Ge-132 and resveratrol separately, i.e., a synergistic effect was observed.
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3.2. Germatranes, Germocanes

Germatranes (1) are another interesting class of biologically active germanium com-
pounds, which are cyclic molecules stabilized by the hypervalent germanium atom
(Figure 8) [105–110].
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Several compounds were identified as having high biological activity, including a
peculiar hybrid of Ge-132 and germatrane-3-germatranyl substituted propionic acid (2)
and its derivatives, which showed strong activity against various tumors [111–113]. Based
on caffeic acid 3-germatranyl-3-(4-hydroxy-3-methoxyphenyl) propionic acid (3) was syn-
thesized, which showed strong activity against cervical tumor U14 (in vitro and in vivo).
This had inhibitory activity against cervical cancer cell line U14 with an IC50 as high as
48.57 mg/L (117.32 µM), whereas the degree of inhibition of the tumor growth is 64% in the
animal experiment [114]. 2-aminoethoxy-substituted germatrane (1, R = OCH2CH2NH2)
inhibits the activity of mononuclear alkaline phospholipase A2, and may serve for the devel-
opment of new antisclerotic drugs to prevent lipid metabolism disorders [115]. In addition,
this compound has a beneficial effect on the bioenergetic characteristics of mitochondria,
increasing the efficiency of oxidative phosphorylation and increasing the oxidation rate of
NAD-dependent substrates by mitochondria [116–118]. Germatranol (1, R = OH) reveals a
similar activity; it also acts as an antioxidant and reduces the content of reactive oxygen
species (ROS) in plant cells [119]. Germatranol contains a hydroxy group, which (like the
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hydrated form of Ge-132) can interact with functional groups in vital molecules. Thus,
germatranol-hydrate interacts with simple amino acids (glycine, L-alanine, β-alanine, and
L-valine), resulting in corresponding aminocarboxygermanates [120].

In addition to germatranes, their bicyclic analogues—germocanes (quasigermatranes,
4) and monocyclic analogues-hypogermatranes (5) have been synthesized, and their bio-
logical activity was found to be similar to that of germatranes (Figure 9) [108,121–126].
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The hypogermatranes 6 [127] and 7 [128] obtained in this way are molecules in which
the ligands are coordinated to the germanium atom (Figure 10). These compounds exhibit
antimicrobial activity against various strains of fungi and bacteria. Their pesticide activity
against Corcyra Cephalonica is also established.
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Figure 10. Hypogermatranes. R = Me, Ph; X = OH, SH.

Hypogermatranes 8, in which the ligands are coordinated with Ge (IV) via azomethine
nitrogen atom and sulfur thiol/enol oxygen atom, are also known (Figure 11) [129,130].
These compounds have strong fungicidal and bactericidal properties. Furthermore, they
are antioxidants and DNA splitters, whereas the compounds 8b showed strong antifertile
activity [130].
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Figure 11. Hypogermatranes. R = Me, Ph; 8a: R1 = ferrocenyl, R2 = NH2; X = O, S; 8b: R1 = furan-2-yl,
pyridine-2-yl, R2 = Py; X = O.

Finally, the first stable water-soluble germylene (a compound of divalent germa-
nium) 9 with dipyrromethane ligand was described and its biological activity was studied
(Figure 12) [131]. Compound 9 has been shown to have a comparable antiproliferative effect
to cisplatin. These results form the basis for further biological research using germylenes,
which are highly active compounds of low-valence germanium.
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3.3. Other Germanium Compounds

Among the compounds of other classes, germanium was introduced to compounds
with known physiological activity. The obtained compounds had a synergistic effect. One of
these compounds is ascorbic acid, where germanium was introduced as a substituent. Thus,
an amide of trimethylgermylpropionic acid 10 was synthesized (Figure 13). It possesses
high antioxidant properties and is proposed for the treatment of atopic dermatitis [132,133].
Similarly, a stable lipophilic ascorbic acid 11 derivative with high antioxidant activity was
obtained (Figure 13) [92].
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A natural flavone crysine with a wide range of biological activity was also modified in
this way. The resulting germanium complex with crysine (12) exhibits a synergistic effect
as an antioxidant (Figure 14) [134].
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Complex 12 also showed high antitcancer activity. Thus, it has a significant inhibitory
effect on the proliferation and growth of human cancer cell lines MCF-7, HepG2 and
Colo205 with high selectivity between cancerous and normal cells [135,136]. An inhibitory
effect on the proliferation of these cell lines is thought to occur through the induction of
apoptosis via the ROS-dependent mitochondrial pathway [135,136].

Germanium was also introduced into dihydroartemisinin (DHA) as an analogue of
Ge-132 (product of GeHCl3 addition to crotonic acid) (Figure 15) [137]. The resulting
DHA-Ge complex 13 displays a synergistic effect of DHA and Ge-132, i.e., effectively
inhibits the proliferation of HepG2 cells and can induce their apoptosis. Complex 13 is
regarded as a promising antitumor agent [137].
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4. Inorganic and Coordination Germanium Compounds 

The inorganic and coordination germanium compounds are now well-established in 

medical practice (see reviews [3,144,145] and monograph [46]). The structure of such com-
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Steroids are another class of physiologically active compounds in which germanium
was introduced as a substituent to position 16 [138–140]. The predicted biological activity of
these and a number of other similar compounds was calculated by QSAR [141]. Antitumor,
antiseborrheic and dermatological activities are the most characteristic predicted biological
properties for these steroids.

Apart from the modification of natural compounds, GeR3 moeity is introduced to various
heterocyclic derivatives. Thus, a number of germylsubstituted hetarylbenzimidazoles (14)
was synthesized, and showed high cytotoxicity on the cell lines MG-22A, HT-1080 and NIH
3T3 (Figure 16) [142]. A similar series of germylsubstituted pyrane-3-carbonitriles (15) also
showed high cytotoxicity and the inhibition of matrix metalloproteinase (Figure 16) [143]. The
introduction of a germyl substituent in the heterocyclic position 5 (in furan or thiophene) was
demonstrated to contribute to the emergence of cytotoxicity.
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4. Inorganic and Coordination Germanium Compounds

The inorganic and coordination germanium compounds are now well-established in med-
ical practice (see reviews [3,144,145] and monograph [46]). The structure of such compounds
is discussed in detail in the review [146]. Problems with the use of GeO2 in medical practice
in the 1980s were related to its low solubility, which required a substantial increase in the dose.
It was recently shown to be possible to synthesize highly soluble forms of GeO2 [147]. This
opens up new avenues for its use, including in medicine. Among the coordination germanium
compounds, the most studied are germanium (IV) citrate and germanium (IV) citrate-lactate,
which, like GeO2, are of low toxicity but exhibit nephrotoxicity in high doses [6,47,58]. These
compounds activate the immune system and are recommended for the treatment of a wide
range of diseases, primarily oncological [3,43,46,144,145,148].

There are also known complexes of germanium (IV) with acetylacetone ligand [Ge(acac)3)]+

with different anions (16) (Figure 17) [149]. The obtained complexes exhibit high activity against
different cancer cell lines, with high selectivity in cancer cells compard to normal epithelial cells.
Furthermore, the compounds induce significant apoptosis [149].
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Figure 17. Germanium complex with acetylacetone.

A number of Ge (IV) complexes with natural polyphenols were synthesized and shown
to be promising pharmacologically active substances for cancer treatment. The quercetin–
germanium complex (17) (Figure 18) showed high cytotoxicity against four tumor cell lines
(PC-3, Hela, EC9706 and SPC-A-1) [150,151].
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Figure 18. Germanium complex with quercetin.

Among the other polyphenolic compounds that were used in the synthesis of com-
plexes with Ge (IV), we noted a natural coumarin daphnetin (18) and glucosylxanthone
mangiferin (19) (Figure 19) [152]. The resulting Ge (IV) complexes made with the above
compounds exhibit high antioxidant activity and demonstrate a strong intercalating ability
in calf thymus DNA molecules. In addition, these two complexes have a strong inhibitory
proliferative effect on cancer cells HepG2 [152].
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Last but not least, the germanium (IV) complex with hesperidin, a flavanon glycoside,
was synthesized; however the structure was not established [153]. This complex showed
high activity in hepatocellular carcinoma of rats.

5. A Possible Mechanism of Anticancer Action of Germanium Compounds

A century ago, the Nobel Prize winner Otto Warburg observed that tumors pro-
duce excess lactate in the presence of oxygen. He proposed that the cancer’s origin
lies in the replacement of oxidation phosphorylation by glucose fermentation, which
he interpreted as mitochondrial dysfunction [154–158]. This phenomenon was called
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aerobic glycolysis or the “Warburg effect”. Later, the concept of mitochondrial oxida-
tive stress was developed [159–163]. The mitochondrial oxidative stress leads to the over-
production of ROS, which, at teh cellular level, causes aerobic glycolysis, DNA damage,
autophagy/mitophagy, and protection against apoptosis [163]. During oxidative stress,
the most reactive and damaging ROS is hydroxyl radical (HO•), which is produced from
hydrogen peroxide by the Fenton reaction [164]. To protect against/prevent oxidative stress,
antioxidants should be applied. Antioxidants stoichiometrically react with ROS. They are
required in large amounts to suppress oxidative stress and can have side effects [165–168].

Germanium compounds were found to be effective against oxidative stress [43,71,96].
Old publications describe the unique properties of germanium derivatives, which led us
to suggest a putative mechanism of oxidative stress suppression/prevention. In 1930,
R. Schwarz and H. Giese studied the reaction of alkali germanates with hydrogen per-
oxide and obtained peroxyhygrates [169]. Later, in 1935, R. Schwarz and F. Heinrich
proved that these peroxyhygrates are coordination germanium compounds (not peroxides),
with H2O and H2O2 as ligands [170]: K2Ge2O5·2H2O2·2H2O, Na2Ge2O5·2H2O2·2H2O,
Na2GeO3··2H2O2·2H2O. Such complexes do not oxidize iodides and evolve oxygen. By this
means, germanium derivatives catalytically decompose hydrogen peroxide, and germanium
trace quantities can keep hydrogen peroxide at low levels, thus dramatically reducing the
formation of the HO•, the most damaging ROS, by the Fenton reaction (Figure 20).
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Therefore, germanium derivatives can dramatically reduce hydrogen peroxide levels
in cells, suppressing/preventing oxidative stress. This explains the important role of
germanium in the restoration of oxygen respiration in Warburg-like cancers.

6. Conclusions

Germanium is a vital ultra-microelement that participates in the fundamental bio-
chemical reactions of a living cell, determining the broadest range of biological activity in
its compounds. Germanium normalizes the immune system, which is essential for cancer
prevention. Germanium’s ability to restore cell oxygen respiration is particularly attrac-
tive, and can serve as the basis for the treatment of Warburg-like cancers. In addition to
organic compounds, germanium’s other classes, particularly the well-known coordination
compounds, have become the subject of studies of physiological activity in the last decade.

Based on the knowledge at present, it is anticipated that the exploration of biologically
active germanium compounds will progress in two main directions: Firstly, through
comprehensive investigations of established compounds, primarily Ge-132, aiming to
obtain a more thorough understanding of their properties. Secondly, through the synthesis
of novel derivatives of known compounds to enhance their biological activity and broaden
their range of effects. Furthermore, research in germanium chemistry holds the potential
to unveil new categories of water-soluble germanium compounds and their associated
properties. Of particular relevance is the study of the mechanism of action of germanium
compounds in living cells. It has been observed that germanium is integral to the active
centers of certain enzymes and is involved in oxidative reactions, primarily with hydrogen
peroxide, without generating detrimental reactive oxygen species, including free radicals.
Consequently, germanium compounds facilitate the restoration of oxygen respiration
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(i.e., oxidative phosphorylation) in cancer cells, thereby impeding or even halting the
growth of Warburg-like tumors. Understanding this mechanism in depth will enable the
purposeful synthesis of novel germanium compounds with a targeted biological activity,
yielding more significant and directed therapeutic outcomes.

Despite being neglected in a number of influential journals (see Section 2), research
on the biological activity of germanium compounds continues. The reliance on secondary
sources of information with erroneous data on the toxicity of organic germanium com-
pounds is the real reason for the neglect of its biological activity to date. The publication of
the review [171] has sparked further discussion on germanium, its role in wildlife, and its
associated errors and misperceptions in the scientific literature [172,173].
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