
Citation: Mogos, M.; Socaciu, C.;

Socaciu, A.I.; Vlad, A.; Gadalean, F.;

Bob, F.; Milas, O.; Cretu, O.M.;

Suteanu-Simulescu, A.; Glavan, M.;

et al. Metabolomic Investigation of

Blood and Urinary Amino Acids and

Derivatives in Patients with Type 2

Diabetes Mellitus and Early Diabetic

Kidney Disease. Biomedicines 2023, 11,

1527. https://doi.org/10.3390/

biomedicines11061527

Academic Editor: Amirata Saei

Dibavar

Received: 9 April 2023

Revised: 29 April 2023

Accepted: 17 May 2023

Published: 25 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Article

Metabolomic Investigation of Blood and Urinary Amino Acids
and Derivatives in Patients with Type 2 Diabetes Mellitus and
Early Diabetic Kidney Disease
Maria Mogos 1,2, Carmen Socaciu 2,3 , Andreea Iulia Socaciu 4, Adrian Vlad 2,5 , Florica Gadalean 1,2,*,
Flaviu Bob 1,2, Oana Milas 1,2, Octavian Marius Cretu 6, Anca Suteanu-Simulescu 1,2 , Mihaela Glavan 1,2,
Silvia Ienciu 1,2, Lavinia Balint 1,2, Dragos Catalin Jianu 2,7,8 and Ligia Petrica 1,2,8,9

1 Department of Internal Medicine II–Division of Nephrology, “Victor Babes” University of Medicine and
Pharmacy Timisoara, County Emergency Hospital Timisoara, Eftimie Murgu Sq. No. 2,
300041 Timisoara, Romania; maria.stefan2014@yahoo.com (M.M.); flaviu_bob@yahoo.com (F.B.);
oana.milas@yahoo.com (O.M.); anca.simulescu@yahoo.com (A.S.-S.); mihaelapatruica@gmail.com (M.G.);
ienciu.silviaoana@yahoo.com (S.I.); lavinia.balint@umft.ro (L.B.); ligia_petrica@yahoo.co.uk (L.P.)

2 Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine,
“Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania;
csocaciudac@gmail.com (C.S.); vlad.adrian@umft.ro (A.V.); jianu.dragos@umft.ro (D.C.J.)

3 Research Center for Applied Biotechnology and Molecular Therapy BIODIATECH, SC Proplanta,
Str. Trifoiului 12G, 400478 Cluj-Napoca, Romania

4 Department of Occupational Health, University of Medicine and Pharmacy “Iuliu Haţieganu”,
Str. Victor Babes 8, 400347 Cluj-Napoca, Romania; andreeaiso@gmail.com

5 Department of Internal Medicine II–Division of Diabetes and Metabolic Diseases, “Victor Babes” University of
Medicine and Pharmacy Timisoara, County Emergency Hospital Timisoara, Eftimie Murgu Sq. No. 2,
300041 Timisoara, Romania

6 Department of Surgery I–Division of Surgical Semiology I, “Victor Babes” University of Medicine and
Pharmacy Timisoara, Emergency Clinical Municipal Hospital Timisoara, Eftimie Murgu Sq. No. 2,
300041 Timisoara, Romania; tavicretu@yahoo.com

7 Department of Neurosciences–Division of Neurology, “Victor Babes” University of Medicine and Pharmacy
Timisoara, County Emergency Hospital Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania

8 Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine,
“Victor Babes” University of Medicine and Pharmacy, Timisoara, Eftimie Murgu Sq. No. 2,
300041 Timisoara, Romania

9 Center for Translational Research and Systems Medicine, Faculty of Medicine, “Victor Babes” University of
Medicine and Pharmacy, Eftimie, Murgu Sq. No. 2, 300041 Timisoara, Romania

* Correspondence: gadalean.florica@umft.ro

Abstract: Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease; however, few
biomarkers of its early identification are available. The aim of the study was to assess new biomarkers
in the early stages of DKD in type 2 diabetes mellitus (DM) patients. This cross-sectional pilot study
performed an integrated metabolomic profiling of blood and urine in 90 patients with type 2 DM,
classified into three subgroups according to albuminuria stage from P1 to P3 (30 normo-, 30 micro-,
and 30 macroalbuminuric) and 20 healthy controls using high-performance liquid chromatography
and mass spectrometry (UPLC-QTOF-ESI* MS). From a large cohort of separated and identified
molecules, 33 and 39 amino acids and derivatives from serum and urine, respectively, were selected
for statistical analysis using Metaboanalyst 5.0. online software. The multivariate and univariate
algorithms confirmed the relevance of some amino acids and derivatives as biomarkers that are
responsible for the discrimination between healthy controls and DKD patients. Serum molecules
such as tiglylglycine, methoxytryptophan, serotonin sulfate, 5-hydroxy lysine, taurine, kynurenic
acid, and tyrosine were found to be more significant in the discrimination between group C and
subgroups P1–P2–P3. In urine, o-phosphothreonine, aspartic acid, 5-hydroxy lysine, uric acid,
methoxytryptophan, were among the most relevant metabolites in the discrimination between group
C and DKD group, as well between subgroups P1–P2–P3. The identification of these potential
biomarkers may indicate their involvement in the early DKD and 2DM progression, reflecting kidney
injury at specific sites along the nephron, even in the early stages of DKD.
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1. Introduction

To date, diabetes mellitus has experienced a progressive increase in the number of cases
worldwide, and over 40% of them will end up in the renal function replacement program
through hemodialysis [1]. An early diagnosis of diabetic kidney disease (DKD) involves
finding some biomarkers besides eGFR and levels of urinary albumin and creatinine
ratio [2].

In recent decades, it was necessary to investigate and validate new biomarkers of
proximal tubule dysfunction, oxidative stress, and inflammation [3,4].

Metabolomics consists of the identification of low molecular weight molecules which
represent the intermediary and end products of cellular functions in a biological sample
by using different profiling techniques such as nuclear magnetic resonance and mass
spectrometry. The number of metabolites in an organism is defined as a metabolome, and
the changes in a human metabolome might be useful information in the discovery of the
disease [3].

Patients with DKD show changes in energy metabolism. Renal tissue is damaged
by metabolic disorders such as hyperglycemia and dyslipidemia [5]. Glucose and tricar-
boxylic acid (TCA) cycle metabolites are deposited in diabetic renal tissue, which might
be associated with mitochondrial dysfunction [6,7], with its activation being related to
glucose assimilation in the hyperglycemic state [8]. This process involves increased oxygen
consumption and renal hypoxia [9], which produces a large amount of reactive oxygen
species (ROS), in association with mitochondrial fragmentation [10]. Consequently, the
morphologic modification of mitochondria and energy metabolism changes are linked, and
the effect is expressed by an excess of ROS in diabetic renal tissue.

The kidneys are also exposed to pathogenic endoplasmic stress (ER) under oxida-
tive stress, glycate stress, and hypoxia [11]. A disturbance of unfolded protein response
(UPR) pathways usually occurs in glomerular and tubulointerstitial cells. The podocyte
is damaged by pathogenic ER stress [12], which is linked to the progression of glomeru-
lonephritis [13].

Previous studies have shown robust changes in the metabolites of the tricarboxylic
acid cycle, lipid metabolism, amino acid metabolism, urea cycle, and nucleotide metabolism
which were associated with DKD [14]. The involvement of amino acids and their metabo-
lites in the diagnosis and progression if DKD is still of high importance, as demonstrated
by many recent publications which applied the metabolomic approach. Using untar-
geted metabolomics for a large cohort of DKD patients and healthy controls, at stages
1–5, five metabolites were previously identified, including 5-methoxytryptophan (5-MTP),
whose levels strongly correlate with clinical markers of kidney disease [15].

Lower tryptophan levels and higher kynurenine/tryptophan ratios were significantly
associated with macroalbuminuria, which may predict angiotensin receptor blocker re-
sponsiveness in DKD patients [16]. A particular interest was given to taurine, which can
be a metabolic marker, since it provides protection against renal alteration (hypertension
and proteinuria), specific glomerular and tubular disturbance, acute and chronic renal
conditions, and diabetic nephropathy. Taurine seems to have ameliorative effects against
renal disorders due to its relationship with the renin–angiotensin–aldosterone system,
osmoregulatory properties, and signaling pathways [17,18]. Hippuric acid is known as
a gut microbial co-metabolite of benzoic acid that is subsequently conjugated with glycine
in the mitochondria and excreted in the urine. Several studies discovered that patients
with diabetes had lower levels of hippuric acid than those without diabetes [19]; moreover,
they had low levels in both human diabetic renal pathology studies and animal DKD
models [20]. For this reason, it has been recommended as an additional indicator of DKD.
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Higher symmetric (SDMA) and asymmetric dimethylarginine (ADMA) were asso-
ciated with and remarkably enhanced the risk prediction for all-cause mortality in renal
function beyond traditional risk factors [21].

The purpose of this study was to focus on amino acid metabolism and assess new
urinary and blood serum biomarkers in the early DKD of type 2 diabetes mellitus (DM)
patients. The UPLC-QTOF-ESI* MS results aimed to identify the most relevant amino acids
and derivatives, as metabolic biomarkers, with a predictive value for DKD progression.

2. Materials and Methods
2.1. Patients and Compliance with Ethical Standards

Before beginning, the protocol of the study was authorized by the Ethics Committee
for Scientific Research of “Victor Babes” University of Medicine and Pharmacy Timisoara
(no. 28/02 September 2020) and “Pius Brinzeu” County Emergency Hospital Timisoara
(no. 296/06 April 2022), including the details about samples and written consent. Ninety di-
abetic patients with a DM duration longer than 5 years were recruited from the Department
of Nephrology and the Department of Diabetes and Metabolic Diseases and “Pius Brinzeu”
County Emergency Hospital Timisoara, and 20 healthy control subjects were included in
a cross-sectional study. During blood and urine collection, all patients were prescribed
treatment with angiotensin-converting enzyme inhibitors/angiotensin 2 receptor blockers.
Exclusion criteria included poor control of diabetes (HbA1c over 10%), cancer pathology,
glomerulonephritis, active infections, and T1DM. Serum and urine were collected from
90 patients diagnosed with DKD (group P), staged using the urinary albumin/creatinine
ratio (UACR) (normo- < 30 mg/g subgroup P1, micro-30-300 mg/g subgroup P2, and
macroalbuminuria- > 300 mg/g subgroup P3, respectively) and 20 samples from healthy
controls (group C) (Table 1).

Table 1. Demographic and clinical data of the groups and subgroups of patients.

P1 P2 P3 C

Number of participants 30 30 30 20
Age (y) 68.41 ± 4.98 68.65 ± 4.91 68.84 ± 4.98 55.85 ± 7.25

DM duration (y) 9.6 ± 3.99 9.7 ± 3.99 12.78 ± 3.35 0
Serum creatinine (mg/dL) 0.82 ± 0.18 0.93 ± 0.21 1.07 ± 0.32 0.73 ± 0.08
eGFR (mL/min/1.73 m2) 90.42 ± 18.10 89.70 ± 18.19 77.85 ± 19.38 97.93 ± 11.71

UACR (mg/g) 7.38 ± 3.22 45.42 ± 57.08 319.86 ± 585.80 5 ± 0.23
HbA1c (%) 5 ± 0.23 6.42 ± 1.29 7.15 ± 1.60 4.98 ± 0.23

Body weight (kg) 79.06 ± 4.90 84.86 ± 3.9 86.06 ± 4.46 78.05 ± 5.47
Male/female (number) 17/13 16/14 20/10 12/8

DM duration—diabetes mellitus duration; eGFR—estimated glomerular filtration rate; HbA1c—hemoglobin A1c;
UACR—urinary albumin/creatinine ratio; data reported as means ± standard deviation.

2.2. Blood and Urine Collection and Processing

Sample preparation was performed following a standard protocol, as described
previously [22,23].

2.3. UHPLC-QTOF-ESI+-MS Analysis

Ultra-high-performance liquid chromatography coupled with electrospray ionization-
quadrupole-time of flight-mass spectrometry (UHPLC-QTOF-ESI+-MS) was utilized to
perform the metabolite profiling. An Acclaim C18 column with a pore size of 30 nm
separated the metabolites. The mobile phase consisted of 0.1% formic acid in water (A)
and 0.1% formic acid in acetonitrile (B). The elution time was set for 20 min. The flow rate
was set at 0.3 mL min−1 for serum samples and 0.8 mL min−1 for urine samples. Several
QC samples obtained from each group were used in parallel to calibrate the separations.
Doxorubicin hydrochloride was added in parallel to the QC samples as an internal standard.
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The applied MS parameters included ionization mode positive (ESI+), MS calibration
with Natrium formate, and a capillary voltage of 3500 V; the pressure for the nebulizing
gas was 2.8 barr, drying gas flow was 12 L/min, and the drying temperature was 300 ◦C.
The m/z values to be separated were set between 60 and 600 Daltons. The control of
the instrument and the data processing were performed using TofControl 3.2, HyStar 3.2,
Data Analysis 4.2, and Chromeleon™ 6.8 Chromatography Data System (CDS) Software,
respectively.

2.4. Statistical Analysis

The acquired data were processed by means of the Bruker software Data Analysis 4.2,
installed in the instrument. Details of the separated molecules were obtained by using
a peak dissect algorithm; afterwards, a first advanced bucket matrix was generated using
the Find Molecular Features (FMF) algorithm, which accounted for each m/z value, the
retention time, the peak area, the peak intensity, and the signal/noise (S/N) ratio. The
Total Ion Chromatograms (TICs) and base peak chromatograms (BPCs) were obtained from
the total ion chromatogram using specific algorithms. The number of separated molecules
(m/z values) ranged between 320 and 420 in serum samples and up to 550 in urine samples.
The second step consisted of the alignment of the common molecules (with the same
m/z value) in all samples using the online software from www.bioinformatica.isa.cnr.it/
NEAPOLIS (accessed on 13 September 2022), maintaining the final matrix of the molecules
that were common in more than 80% of the samples. Therefore, in the final matrices, the
number of common molecules (m/z values) obtained from serum and urine was 136 and
196, respectively.

Since we wanted to target the amino acid metabolites and derivatives, the final number
of common molecules in the blood serum and urine submitted for statistical analysis was 38.
The Excel matrix (.xlsx) was converted to a .csv file, which was introduced to the Metabo-
analyst 5.0 platform for multivariate and univariate analysis (https://www.metaboanalyst.
ca/MetaboAnalyst/ModuleView.xhtml, accessed on 13 September 2022). Statistical anal-
ysis was performed using Metaboanalyst 5.0 software, as well as partial least squares
discriminant analysis (PLSDA), variable importance in projection (VIP) scores, Random
Forest scores, and biomarker analysis (ROC curves), to identify potential biomarkers that
differentiate the DKD group and the control subjects.

3. Results

The untargeted metabolomic analysis was performed using multivariate and uni-
variate analysis and by comparing control group C (healthy subjects) with the pathologic
group P, including subgroups (P1 to P3) ranked according to their increase in urinary
albumin/creatinine ratio and decrease in eGFR.

The results were presented graphically, and the significant biomarkers of differenti-
ation were identified using Metaboanalyst 5.0 software. The identification of molecules,
based on their m/z value and the retention time, was performed in agreement with
our database and other international databases for metabolomics, such as the Human
Metabolome Database (http://www.hmdb.ca), Lipid Maps (http://www.lipidmaps.org),
and PubChem (https://pubchem.ncbi.nlm.nih.gov).

3.1. Multivariate Analysis of Blood Serum
3.1.1. PLSDA and Volcano Plot

Significant discrimination was observed between groups C (code 0) and P (code 1),
with a co-variance of 46%. The cross-validation algorithm based on PLSDA analysis showed
the highest accuracy, with high R2 values (>0.95) and a significant Q2 value (>0.93) for
the third component, confirming the good predictability of this model. According to the
volcano plot and log2(FC) values (positive and negative, which means decreases in levels
in group P vs. C, or increases, respectively), the names of the molecules which contributed

www.bioinformatica.isa.cnr.it/NEAPOLIS
www.bioinformatica.isa.cnr.it/NEAPOLIS
https://www.metaboanalyst.ca/MetaboAnalyst/ModuleView.xhtml
https://www.metaboanalyst.ca/MetaboAnalyst/ModuleView.xhtml
http://www.hmdb.ca
http://www.lipidmaps.org
https://pubchem.ncbi.nlm.nih.gov
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to a difference between the C and P groups are shown. Table 1 describes the FC values and
the log2(FC) combined with the VIP values from the PLSDA analysis (Figure 1).
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Figure 1. Presentsthe discrimination between the control group (code 0) and the pathologic group P
(code 1) groups (a) according to PLSDA analysis. The fold change (FC) values and the log2FC are
presented in (b) (volcano plot), showing the significant molecules with increased or decreased levels
when compared group C with P.

3.1.2. Fold Change Values, VIP Scores, and Random Forest Data

The FC and log2(FC) values, according to the volcano plot and the VIP scores from
PLSDA analysis ranging from 1.5 to 0.950, were considered relevant and the respective
molecules were selected (Table 2). Moreover, in the same table, the Mean Decrease Accuracy
(MDA) values obtained using Random Forest analysis are presented (Table 2).

Table 2. Fold change (FC), log 2(FC) values, VIP scores according to PLSDA analysis, and MDA
values according to Random Forest analysis. The significance (increase I or decrease D in group
P vs. C) is also mentioned in column 4. All these molecules had VIP scores over 0.9 (see Table 2).

Molecules Fold Change (FC) log2(FC) Significance
P vs. C VIP Scores MDA

Methoxytryptophan 184.460 7.527 D 1.492 0.02

N-Acetylserine 23.102 4.530 D 1.072 0.0002

Homoproline 21.654 4.437 D 1.245 0.002

Taurine 19.588 4.292 D 1.360 0.02

Serotonin sulfate 11.395 3.510 D 1.464 0.02

Cystine 4.663 2.221 D 1.453 0.03

O-Phosphothreonine 4.030 2.011 D 1.398 0.01

L-Tryptophan 3.030 1.011 D 1.114 0.001

Creatinine 2.750 1.460 D 0.955 0.002

Aspartic acid 2.294 1.198 D 0.907 5.41 × 10−5

L-Cysteine 2.018 1.013 D 1.160 0.0007

Kynurenic acid 0.675 0.87 D 1.292 0.02
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Table 2. Cont.

Molecules Fold Change (FC) log2(FC) Significance
P vs. C VIP Scores MDA

Ornitine 0.490 −1.028 I 1.212 0.001

Spermidine 0.449 −1.155 I 0.896 0.001

Ketoleucine 0.316 −1.660 I 1.129 0.002

Dimethylarginine 0.245 −2.028 I 1.126 0.003

Threonine 0.139 −2.845 I 1.040 0.0003

5-Hydroxy lysine 0.122 −3.030 I 1.439 0.01

Proline 0.086 −3.544 I 0.910 0.02

Tiglylglycine 0.066 −3.911 I 1.499 0.02

Leucine 0.054 −4.213 I 0.989 0.002

Tyrosine 0.039 −2.811 I 1.156 0.009

Valine 0.031 −4.995 I 1.242 0.04

These parameters and the sign of the log2(FC) show that 12 molecules, from methoxytryptophan to kynurenic acid,
are relevant and decrease (D) in the P group compared to the C group, while the molecules from ornithine to
valine increase (I) in the P group compared to the C group.

3.1.3. Heatmap

The heatmap plot (Figure 2) illustrates the different clustering of the subgroups 0 and 1
as well as the relationships between molecules (increase or decrease in the groups 0 and 1).
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3.1.4. Biomarker Analysis

Based on the results of the biomarker analysis, the highest AUC values for the
molecules to be considered the best biomarkers of the differentiation between groups
P and C are presented in Table 3.

Table 3. The AUC values and their significance (p < 0.0001) for the blood molecules to be considered
significant biomarkers of differentiation between the controls (code 0) and the DKD group (code 1).

Molecule AUC p-Value Molecule AUC p-Value

Proline 1 6.59 × 10−12 Ornitine 0.985 1.18 × 1025

Valine 1 1.50 × 10−24 Ketoleucine 0.978 3.71 × 10−26

Taurine 1 2.13 × 10−35 Phenylalanine 0.977 2.59 × 10−9

Tiglylglycine 1 2.22 × 10−73 Spermidine 0.964 3.77 × 10−11

Tyrosine 1 1.65 × 10−23 Lysine 0.954 5.87 × 10−10

Kynurenic acid 1 1.25 × 10−27 Dimethylarginine 0.951 3.71 × 10−18

Methoxytryptophan 1 1.61 × 10−64 Creatinine 0.938 9.96 × 10−13

Cystine 1 1.07 × 10−49 Uric acid 0.937 2.84 × 10−8

Serotonin sulfate 1 5.23 × 10−51 Aspartic acid 0.923 4.54 × 10−11

L-Tryptophan 0.993 3.72 × 10−19 Homoproline 0.918 7.90 × 10−26

5-Hydroxy lysine 0.992 9.44 × 10−49 Threonine 0.9 1.30 × 10−14

O-Phosphothreonine 0.989 4.41 × 10−43

Considering the previous findings, the biomarker analysis confirms that, out of 9 molecules with maximal
AUC scores (equal to 1), 5 molecules decrease in the P group (Taurine, Kynurenic acid, Methoxytryptophan,
Cystine, Serotonin sulfate). Meanwhile, 4 molecules (Proline, Valine, Tyrosine, Tiglylglycine) increased in group P
compared to the controls.

3.2. Univariate Analysis (One-Way ANOVA) to Evaluate the Relationship between Blood
Metabolites and DKD/2DM Progression
3.2.1. ANOVA Parameters and Fisher’s LSD, VIP Scores, and MDA Values

Table 4 represents the f-values and p-values as well the Fisher’s LSD significant
correlations between the controls (group C) and subgroups P1–P3, which are classified
according to increased UACR and decreased eGFR (see Table 2).

Table 4. The f-values and p-values, VIP scores, and MDA values the Fisher’s LSD correlations for the
molecules that are significantly different between the controls (group C) and subgroups P1–P3.

Molecule f-Value p-Value VIP Score MDA Fisher’s LSD

Tiglylglycine 486.67 8.31 × 10−62 1.605 0.04 P1–C; P2–C; P3–C; P2–P1; P3–P1

Methoxytryptophan 373.98 3.26 × 10−56 1.448 0.05 C–P1; C–P2; C–P3

Serotonin sulfate 257.95 1.51 × 10−48 1.417 0.01 C–P1; C–P2; C–P3

Cystine 229.12 3.60 × 10−46 1.416 0.01 C–P1; C–P2; C–P3

5-Hydroxy lysine 220.71 1.99 × 10−45 1.490 0.01 P1–C; P2–C; P3–C; P2–P1

O-Phosphothreonine 149.86 5.52 × 10−38 1.257 0.01 C–P1; C–P2; C–P3

Taurine 111.25 1.29 × 10−32 1.333 0.01 C–P1; C–P2; C–P3

Kynurenic acid 78.191 9.39 × 10−27 1.342 0.01 C–P1; C–P2; C–P3

Tyrosine 75.927 2.72 × 10−26 1.584 0.04 P1–C; P2–C; P3–C; P2–P1; P3–P1

Homoproline 61.627 3.85 × 10−23 1.206 0.0003 C–P1; C–P2; C–P3

Molecules such as tiglylglycine, methoxytryptophan, serotonin sulfate, cystine, 5-hydroxy lysine, taurine,
kynurenic acid, tyrosine, and valine are among the most relevant regarding the discrimination between group C
and subgroups P1–P2–P3.
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3.2.2. PLSDA and Heatmap

Significant discrimination was observed between group C and subgroups P1–P3, with
a co-variance of 47.4%. Meanwhile, acceptable discrimination between subgroups P1–P2–
P3 was observed, considering component 2. The cross-validation algorithm presented
a good accuracy in this case (0.76), with high R2 values (0.82) and a significant Q2 value
(0.75) for the fourth component, confirming the good predictability of the model. The
heatmap illustrates the good classification of sample groups, as well as the clusters of
group C vs. subgroups P1–P3 and their relative variation (increase or decrease). There
is a clear delimitation between the molecules with lower levels in group C compared
to subgroups P1–P3, as can be seen in the heatmap (from tiglylglycine to spermidine).
Moreover, compared to molecules converted from aspartic acid to acetyl serine, there are
higher levels in the group C (Figure 3).
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Figure 3. (a)showsthe discrimination between the control group (C) and the subgroups P1–P3. The
heatmap (b) illustrates the most significant molecules with increased or decreased levels when
comparing group C with subgroups P1–P3.

3.3. Multivariate Analysis of Urine
3.3.1. PLSDA and Volcano Plot

The cross-validation algorithm presented a maximal accuracy with high R2 values
(0.9) and a significant Q2 value (0.8) for the second component, confirming the good
predictability of the model. According to the volcano plot and log2(FC) values (positive
and negative, which suggests a decrease in the levels of group P vs. C, or increases,
respectively), the name of the molecules which made the difference between groups C and
P are shown. Table 5 describes the FC values and the log2(FC) combined with VIP values
from PLSDA analysis (Figure 4).
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Table 5. Fold change (FC), log 2(FC) values, VIP scores according to PLSDA analysis, and MDA
values according to random forest analysis. The significance (increase I or decrease D in group
P vs. C) is also mentioned in column 4.

Molecule Fold Change log2(FC) Significance
P vs. C VIP MDA

Histidine 2.335 1.224 D 0.849 0.0006

N1-Acetylspermidine 2.322 1.215 D 1.345 0.002

Hippuric acid 2.261 1.177 D 0.977 0.0005

Glutamine 2.230 1.157 D 1.472 0.004

Aspartic acid 2.059 1.042 D 1.011 0.0005

5-Hydroxy lysine 2.020 1.014 D 1.906 0.03

Oleoyl glycine 1.005 0.924 D 1.537 0.03

Methoxytryptophan 0.460 −1.120 I 1.613 0.008

Serotonin sulfate 0.460 −1.121 I 2.170 0.05

Threonine 0.440 −1.185 I 0.905 0.006

O-Phosphothreonine 0.405 −1.303 I 1.968 0.03

L-Tryptophan 0.360 −1.070 I 1.005 0.0003

Dimethylarginine 0.090 −3.472 I 0.464 0.001

These parameters and the sign of the log2(FC) shows that 12 molecules, from istidine to oleoyl glycine, are relevant
and decrease (D) in the P group compared to the C group, while the molecules from methoxytryptophan to
dimethylarginine increase (I) in the P group compared to the C group.
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Figure 4. Discrimination between the control group (code 0) and the pathologic group P (code 1)
groups according to PLSDA analysis (a). The fold change (FC) values and the log2FC are presented
in (b) (volcano plot), showing the significant molecules with increased or decreased levels when
comparing group C with P.
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3.3.2. Fold Change Values, VIP Scores, and Random Forest Data

The FC and log2(FC) values and the VIP scores from the PLSDA analysis ranging from
1.906 to 0.90 were considered relevant, and the respective molecules were selected (Table 5).
Moreover, in the same table, according to the results of the random forest analysis, the
Mean Decrease Accuracy (MDA) values are presented.

3.3.3. Heatmap

The heatmap plot (Figure 5) illustrates the different clustering of the subgroups 0 and
1 as well as the relationships between molecules (increase or decrease in groups 0 and 1.
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which have decreased or increased levels between groups 0 and 1.

3.3.4. Biomarker Analysis

According to the biomarker analysis results, the highest AUC values for the molecules
to be considered the best biomarkers of differentiation are presented in Table 6.

3.4. Univariate Analysis (One-Way ANOVA) to Evaluate the Relationship between Urine
Metabolites and DKD/2DM Progression (from P1 to P3)
3.4.1. Analysis of Variance (ANOVA) Parameters and Fisher’s LSD, VIP Scores and
MDA Values

Table 7 represents the f-values and p-values as well as the Fisher’s LSD significant
correlations between the controls (group C) and subgroups P1–P3.
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Table 6. The AUC values (down to 0.667) and their significance (p < 0.3) for the blood molecules to
be considered significant biomarkers of differentiation between the controls (code 0) and the DKD
group (code 1).

Name AUC p-Value Name AUC p-Value

Serotonin sulfate 0.990 2.34 × 10−20 L-Tryptophan 0.778 9.30 × 10−5

O-Phosphothreonine 0.963 1.33 × 10−15 N1-Acetylspermidine 0.756 2.92 × 10−5

Methoxytryptophan 0.933 9.15 × 10−12 Homoproline 0.739 1.49 × 10−4

Cysteine-S-sulfate 0.912 8.55 × 10−6 Hippuric acid 0.728 0.0016

Leucine 0.911 0.036 Isovalerylglycine 0.704 0.3170

Oleoyl glycine 0.889 5.31 × 10−6 L-Cysteine 0.685 3.48 × 10−5

Ketoleucine 0.859 1.31 × 10−6 N-Acetylserine 0.683 0.0238

5-Hydroxy lysine 0.839 1.04 × 10−12 Aspartic acid 0.675 0.0032

Threonine 0.780 0.0021 Dimethylarginine 0.667 0.1142

Considering the previous findings, the biomarker analysis confirms that all 5 molecules have AUC scores above
0.900, are increased in group P compared to the controls and may be considered predictive biomarkers.

Table 7. The f-values and p-values, VIP scores and MDA values, and the Fisher’s LSD correlations
for the molecules are significantly different between the controls (group C) and subgroups P1–P3.

f-Value p-Value VIP Score MDA Fisher’s LSD

Serotonin sulfate 37.141 1.74 × 10−16 2.243 0.03 P1-C; P2-C; P3-C

O-Phosphothreonine 27.236 3.88 × 10−13 2.269 0.03 P1-C; P2-C; P3-C

5-Hydroxy lysine 22.646 2.09 × 10−11 1.927 0.02 C-P1; C-P2; C-P3

Methoxytryptophan 18.767 7.75 × 10−10 0.987 0.01 P1-C; P2-C; P3-C; P1-P3; P2-P3

Oleoyl glycine 13.243 2.08 × 10−7 1.141 0.03 C-P1; C-P2; C-P3

Glutamine 10.961 2.50 × 10−6 1.767 0.002 C-P1; C-P2; C-P3

N1-Acetylspermidine 10.160 6.14 × 10−6 1.767 0.002 C-P1; C-P2; C-P3

Methionine 7.638 0.0001 1.573 0.003 C-P1; C-P2; C-P3

Uric acid 7.587 0.0001 1.403 0.003 P1-C; P1-P2; P1-P3

According to p-values, the most significant differences were noticed between group 0 (C) and subgroups P1–P3.
Molecules such as serotonin sulfate, o-phosphothreonine, 5-hydroxy lysine, cystine, taurine, kynurenic acid,
methoxytryptophan, and oleoyl glycine are among the most relevant in the discrimination between group C and
subgroups P1–P2–P3.

3.4.2. PLSDA and Heatmap

The discrimination between the control group (C) and subgroups P1–P3 is presented
in Figure 6a, according to PLSDA analysis. The heatmap presented in Figure 6b shows the
significant molecules with increased or decreased levels when comparing group C with
subgroups P1–P3.
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Figure 6. (a,b) The cross-validation algorithm presented in this case has an accuracy of 0.65 with R2
values (0.65) and a significant Q2 value (0.5) for the second component, demonstrating the acceptable
predictability of the model. Moreover, in this case, the heatmap confirms the correct classification
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3.5. Variations of Significant Serum and Urine Metabolites at Different DKD Stages

Figure 7 represents a selection of the most significant blood serum molecules that
may be used as markers of DKD progression and considers the evolution in the P1 vs. P3
subgroup of samples.
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Figure 8 represents a selection of the most significant urine molecules that may be
used as markers of DKD progression, considering the evolution in the P1 vs. P3 subgroup
of samples.
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4. Discussion

The emergence of metabolomics provides insight into the pathogenic mechanisms
involved in the initiation and progression of DKD in a noninvasive manner. Novel tar-
geted metabolomics strategies can identify plasma and urine biomarkers to elucidate the
pathogenic mechanisms of DKD and establish a clinical prediction model [24].

The purpose of the study was to identify new metabolomic biomarkers involved in
early DKD, paying special attention to amino acids metabolism. The metabolites found
in our study (tryptophan, kynurenic acid, taurine, and tiglylglycine) allowed for discrimi-
nation between healthy controls and DKD patients, as well as between all stages of DKD,
which were classified according to UACR and eGFR.

As documented by many studies, one of the dreaded complications of DM is diabetic
nephropathy. Even with an increasing number of metabolites, most studies are incon-
sistent in their findings. Of note, 44 studies described 98 metabolite profiles, of which
17 metabolites with major importance were identified using meta-analysis strategies. The
numerous metabolomic analyses confirmed the implication of several pathways in DN
pathogenesis, e.g., urea cycle, TCA cycle, glycolysis, and amino acid metabolisms. Hippuric
acid, allantoin (in urine), and glutamine (in blood) were considered putative biomarkers
for early diagnosis by performing a meta-analysis which included recent studies [25].

Novel biomarkers are needed to predict the development of the disease. However,
even though numerous studies have highlighted some potential biomarkers, the prediction
of disease prognosis and progression remains difficult. Recently, a rapid decline in kidney
function was detected in patients with DKD whose estimated glomerular filtration rate
was between 30 and 60 mL/min/1.73 m2. The decline was detected using non-targeted
metabolomics analysis on the patients’ urine and blood samples. Conventional logistic anal-
ysis suggested that one metabolite, urinary 1-methylpyridin-1-ium (NMP), was a potential
biomarker. This research suggested that the machine learning method can detect potential
biomarkers better than conventional statistics [26].

The discovery of metabolomics-based biomarkers has been centered on kidney damage
research and the role of amino acid metabolism. In a recent study, it was shown that
28 metabolites correlated strongly with CKD and eGFR, including 12 amino acids and
4 biogenic amines, and excluding 4 acylcarnitines. The most relevant were citrulline,
kynurenine, and phenylalanine, including the kynurenine:tryptophan ratio, even eight
years after the initial metabolite assessment [27].

Current diagnostic methods are not sensitive enough to detect the initial stages of
the diabetic nephropathy of type 2 DM. Metabolomics is a promising tool with which to
reveal the metabolic changes and the underlying mechanism involved in the pathogenesis
of diabetic complications, including nephropathy [28,29]. Sixty-one serum metabolites
and forty-six urine metabolites were identified as potential biomarkers related to diabetic
nephropathy involved in nine serum pathways and twelve urine pathways, with significant
differences in serum and urine metabolism, respectively [30].

Using the online software MetaboAnalyst 5.0, the metabolic pathways related to these
metabolites were reported [31], and potential metabolites were identified for the monitoring
of diabetic nephropathy, e.g., serum citrate, creatinine, arginine and its derivatives, plasma
histidine, methionine and arginine, and urine oxide-3-hydroxyisovalerate, citrate, and
hydroxypropionate derivatives, respectively.

Based on MDA analysis, we report significantly decreased levels of serum TRP in
subgroup P1 vs. healthy controls and a slightly increased level in subgroup P1 vs. subgroup
P3. MDA analysis identified a higher level of urine TRP in subgroup P1 vs. the level in the
control group and subgroups P2 and P3, respectively. The latter observation was associated
with the decline in eGFR across all subgroups studied.

Furthermore, KYN acid (a metabolite of TRP) had the same behavior as TRP. KYN acid
had a decreased level in serum in subgroup P1 vs. control and a high value in subgroup P1
vs. P2 and P3 and a higher level in urine in P1 vs. controls, as well as a high level in P1 vs.
subgroups P2–P3, respectively.
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A recent review summarized the three major tryptophan metabolic pathways (kynure-
nine, serotonin, and indole pathways) and the connection of tryptophan metabolites with
the pathogenic mechanism of patients with DKD versus non-diabetic CKD [32].

In a cross-sectional study, damaged amino acid metabolism was the principal cause of
the development of diabetes. N-acetylaspartic acid, l-valine, isoleucine, asparagine, betaine,
and l-methionine could make a difference between patients with DKD and those with
T2DM. Moreover, l-valine and isoleucine were associated with a decline in eGFR [33].

Cysteine and methionine, as well as the taurine–hypotaurine metabolism pathways, were
also involved in DKD compared to diabetes controls without kidney disease. Specific
circulating peptides (Asn-Met-Cys-Ser and Asn-Cys-Pro-Pro) were implicated in DKD with
different stages of proteinuria, in parallel with the progression of DKD proteinuria [34].
Plasma levels of histidine and valine were also identified as the main amino acids that can
distinguish patients with DKD [35].

The interactions between phenylalanine and tyrosine and their secondary interaction
with renal dysfunction was investigated; moreover, their low levels worked synergistically
to increase the risk of T2D, and the renal dysfunction further amplified the risk [36].

In another study, blood and urine metabolites were found to be specific for DKD and
included tiglylglycine and 3-hydroxy isovaleric acid, homovanillic acid 3-methyl crotonyl
glycine [14,20].

According to Van Der et al. [37], the best discriminating urine metabolites in DM
patients mainly included acylcarnitines, acylglycines, and metabolites related to tryptophan
(TRP) metabolism. In other studies, a higher kynurenine/tryptophan ratio in patients with
macroalbuminuria was compared to normoalbuminuric patients with type 2 DM [38].
Chou et al. discovered that a lower level of TRP was related to a rapid decline in eGFR [39].

Methoxytryptophan was found to be an important biomarker according to our data,
which agrees with the findings published by Chen et al. [15].

Taurine is an important endogenous metabolite that has been reported to be signif-
icantly affected in patients with CKD [40,41]. For example, a large study highlighted
alterations in the taurine level in patients with early-stage CKD [42,43].

Another study identified taurine deficiency as an important biomarker that can distin-
guish patients without diabetes and CKD from patients with stage 1 to stage 4 CKD [44]. In
type 2 DM, a decreased level of plasma taurine was found in patients with DKD compared
with healthy subjects [45].

The findings of our study revealed a decreased level of taurine in plasma in normoal-
buminuric type 2 DM patients compared with healthy controls but a higher level of taurine
in the P1 subgroup compared to the P3 subgroup, the results of which are consistent with
the data from the literature.

Since taurine deficiency is associated with dysfunction in various tissues [46,47],
a decrease in taurine levels in diabetic patients may be involved in diabetic complications,
including DKD.

Tiglylglycine is an amino acid derivative that is less studied in the literature. Several
findings have shown a higher tiglylglycine clearance among patients suspected of having
DKD compared with those with vascular diseases [48].

Sharma et al. highlighted that some metabolites, including tiglylglycine, may have
significant variations in CKD and DKD [20].

We highlight the presence of this metabolite in our samples by increasing serum
concentrations in subgroups P1 to P3.

Impact of the Metabolites Studied at Glomerular and Tubular Level in Early DKD of Type 2
DM Patients

Several key biomarkers have been identified in the urine, which reflect kidney injury at
specific sites along the nephron, including glomerular injury and tubular damage, oxidative
stress, inflammation, and the activation of the intrarenal renin–angiotensin system [49].
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In the literature, we found data about the relationship between the significant metabo-
lites discovered in our study and biomarkers of inflammation, tubular dysfunction, and
endothelial and podocyte damage. TRP and kynurenic acid have an impact on the endothe-
lium and an important role in inflammation.

Many studies highlighted the correlation between TRP and kynurenic acid and
biomarkers of inflammation, such as tumoral necrosis factor (TNF) and Interleukin 6
(IL-6) [38], as well as of endothelial dysfunction, such as inter-cellular adhesion molecule-1
(ICAM) and vascular cell adhesion molecule-1 (VCAM) [50]. Regarding acetyl carnitine,
a correlation with tubular damage markers such as KIM-1 has been reported [51]. Moreover,
Ito T. et al. found that taurine suppressed the expression of VCAM-1 and ICAM-1 [45], and
the literature is lacking data concerning tiglylglycine and its impact on different segments
of the nephron in DKD.

Our study has several limitations. First, this is a cross-sectional study which does not
allow for the establishment of a relation of causality between the metabolites found and
their impact on renal structures and function. Second, hyperglycemia-induced metabolic
variations could interfere with the interpretation of data. Third, residual confounders
related to the dietary noncompliance of the patients might introduce a bias to the statistical
analysis. Forth, it would be interesting to study the association between visceral fat mass
and urinary amino acids because visceral fat and muscle mass loss could have a significant
impact on the development of nephropathy [52].

However, our study has several strengths. We found the most significant metabolites
and the classes they belong to, such as taurine (free amino acids), tiglylglycine (amino
acid metabolites), tryptophan and kynurenic acid, and methoxytryptophan. Moreover, as
a novelty, the study allowed for the identification of metabolites which expressed specific
variations in normoalbuminuric type 2 DM patients, thus increasing the accuracy of the
diagnosis of early DKD.

5. Conclusions

This study performed an integrated metabolomic profiling of blood and urine in pa-
tients with T2DM, classified in three subgroups according to albuminuria (normo-, micro-,
and macroalbuminuria) and healthy controls through UPLC-MS. The multivariate and
univariate algorithms confirmed the relevance of some amino acids and derivatives as
biomarkers responsible for the discrimination between healthy controls and DKD patients.
Serum molecules such as tiglylglycine, methoxytryptophan, serotonin sulfate, 5-hydroxy
lysine, taurine, kynurenic acid, and tyrosine were found to be more significant in discrimi-
nating between group C and subgroups P1–P2–P3. In urine, o-phosphothreonine, aspartic
acid, 5-hydroxy lysine, uric acid, and methoxytryptophan were among the most relevant
metabolites for discriminating between group C and the DKD group, as well as between
subgroups P1–P2–P3. The identification of these potential biomarkers may indicate their
involvement in early DKD and 2DM progression, reflecting kidney injury at specific sites
along the nephron, even in the early stages of DKD. Moreover, this study provides a par-
ticular metabolomic profile related to metabolites which could impact both the glomeruli
and the tubules, even in the early stages of DKD. Further longitudinal studies of targeted
metabolomics are required to validate the findings of our research and the diagnostic value
of the metabolites studied in the detection of early renal involvement in the course of type
2 DM, with a special focus on the specific metabolic pathways of amino acids which may
impact renal structures along all segments of the nephron.

Author Contributions: Conceptualization, M.M., F.G. and L.P.; methodology, M.M., F.G., L.P. and
A.V.; software, O.M. and A.S.-S.; validation, C.S., A.I.S., M.G., S.I. and L.B.; formal analysis, C.S.
and A.I.S.; investigation, M.M., C.S., L.P., F.G. and A.V.; resources, C.S. and L.P.; data curation, L.P.
and C.S.; writing—original draft preparation, L.B.; writing—review and editing, C.S., L.P., F.G. and
C.S.; visualization, M.M., F.G., L.P., F.B., O.M.C. and D.C.J.; supervision, M.M., F.G. and L.P.; project
administration, M.M., C.S., F.G. and L.P. All authors have read and agreed to the published version
of the manuscript.



Biomedicines 2023, 11, 1527 17 of 19

Funding: This research was funded by “Victor Babes” University of Medicine and Pharmacy,
Timisoara, Romania, through a doctoral grant GD 2020 to M.M.

Institutional Review Board Statement: The protocol of the study was approved by the Ethics
Committee for the Scientific Research of “Victor Babes” University of Medicine and Pharmacy
Timisoara number 28/02.09.2020 and “Pius Brinzeu” County Emergency Hospital Timisoara number
296/06.04.2022.

Informed Consent Statement: Informed consent was obtained from all subjects involved in this study.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. International Diabetes Federation. IDF Diabetes Atlas, 7th ed.; International Diabetes Federation: Brussels, Belgium, 2015.
2. American Diabetes Association. 9. Microvascular Complications and Foot Care.Diabetes Care 2016, 39 (Suppl. S1), S72–S80.
3. Lin, C.H.; Chang, Y.C.; Chuang, L.M. Early detection of diabetic kidney disease: Present limitations and future perspectives.

World J. Diabetes 2016, 7, 290–301. [CrossRef]
4. Vlad, A.; Vlad, M.; Petrica, L.; Ursoniu, S.; Gadalean, F.; Popescu, R.; Vlad, D.; Dumitrascu, V.; Gluhovschi, G.; Gluhovschi, C.; et al.

Therapy with atorvastatin versus rosuvastatin reduces urinary podocytes, podocyte-associated molecules, and proximal tubule
dysfunction biomarkers in patients with type 2 diabetes mellitus: A pilot study. Ren. Fail. 2017, 39, 112–119. [CrossRef] [PubMed]

5. Hasegawa, S.; Jao, T.M.; Inagi, R. Dietary Metabolites and Chronic Kidney Disease. Nutrients 2017, 9, 358. [CrossRef] [PubMed]
6. Sas, K.M.; Kayampilly, P.; Byun, J.; Nair, V.; Hinder, L.M.; Hur, J.; Zhang, H.; Lin, C.; Qi, N.R.; Michailidis, G.; et al. Tissue-specific

metabolic reprogramming drives nutrient flux in diabetic complications. JCI Insight 2016, 1, e86976. [CrossRef] [PubMed]
7. You, Y.H.; Quach, T.; Saito, R.; Pham, J.; Sharma, K. Metabolomics Reveals a Key Role for Fumarate in Mediating the Effects of

NADPH Oxidase 4 in Diabetic Kidney Disease. J. Am. Soc. Nephrol. 2016, 27, 466–481. [CrossRef]
8. Hasegawa, S.; Tanaka, T.; Saito, T.; Fukui, K.; Wakashima, T.; Susaki, E.A.; Ueda, H.R.; Nangaku, M. The oral hypoxia-inducible

factor prolyl hydroxylase inhibitor enarodustat counteracts alterations in renal energy metabolism in the early stages of diabetic
kidney disease. Kidney Int. 2020, 97, 934–950. [CrossRef]

9. Rosenberger, C.; Khamaisi, M.; Abassi, Z.; Shilo, V.; Weksler-Zangen, S.; Goldfarb, M.; Shina, A.; Zibertrest, F.; Eckardt, K.U.;
Rosen, S.; et al. Adaptation to hypoxia in the diabetic rat kidney. Kidney Int. 2008, 73, 34–42. [CrossRef]

10. Yu, T.; Robotham, J.L.; Yoon, Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic
change of mitochondrial morphology. Proc. Natl. Acad. Sci. USA 2006, 103, 2653–2658. [CrossRef]

11. Inagi, R.; Ishimoto, Y.; Nangaku, M. Proteostasis in endoplasmic reticulum—New mechanisms in kidney disease.
Nat. Rev. Nephrol. 2014, 10, 369–378. [CrossRef]

12. Inagi, R.; Nangaku, M.; Onogi, H.; Ueyama, H.; Kitao, Y.; Nakazato, K.; Ogawa, S.; Kurokawa, K.; Couser, W.G.; Miyata, T.
Involvement of endoplasmic reticulum (ER) stress in podocyte injury induced by excessive protein accumulation. Kidney Int.
2005, 68, 2639–2650. [CrossRef] [PubMed]

13. Inagi, R.; Kumagai, T.; Nishi, H.; Kawakami, T.; Miyata, T.; Fujita, T.; Nangaku, M. Preconditioning with Endoplasmic Reticulum
Stress Ameliorates Mesangioproliferative Glomerulonephritis. J. Am. Soc. Nephrol. 2008, 19, 915–922. [CrossRef] [PubMed]

14. Darshi, M.; Van Espen, B.; Sharma, K. Metabolomics in Diabetic Kidney Disease: Unraveling the Biochemistry of a Silent Killer.
Am. J. Nephrol. 2016, 44, 92–103. [CrossRef] [PubMed]

15. Chen, D.Q.; Cao, G.; Chen, H.; Argyopoulos, C.P.; Yu, H.; Su, W.; Chen, L.; Samuels, D.C.; Zhuang, S.; Bayliss, G.P.; et al. Identifi-
cation of serum metabolites associating with chronic kidney disease progression and anti-fibrotic effect of 5-methoxytryptophan.
Nat. Commun. 2019, 10, 1476. [CrossRef]

16. Wu, M.H.; Lin, C.N.; Chiu, D.T.; Chen, S.T. Kynurenine/Tryptophan Ratio Predicts Angiotensin Receptor Blocker Responsiveness
in Patients with Diabetic Kidney Disease. Diagnostics 2020, 10, 207. [CrossRef]

17. Chesney, R.W.; Han, X.; Patters, A.B. Taurine and the renal system. J. Biomed. Sci. 2010, 17 (Suppl. S1), S4. [CrossRef]
18. Baliou, S.; Adamaki, M.; Ioannou, P.; Pappa, A.; Panayiotidis, M.I.; Christodoulou, I.; Spandidos, D.A.; Kyriakopoulos, A.M.;

Zoumpourlis, V. Ameliorative effect of taurine against diabetes and renal-associated disorders (Review). Med. Int. 2021, 1, 3.
[CrossRef]

19. Fang, Q.; Liu, N.; Zheng, B.; Guo, F.; Zeng, X.; Huang, X.; Ouyang, D. Roles of Gut Microbial Metabolites in Diabetic Kidney
Disease. Front. Endocrinol. 2021, 12, 636175. [CrossRef]

20. Sharma, K.; Karl, B.; Mathew, A.; Gangoiti, J.; Wassel, C.; Saito, R.; Pu, M.; Sharma, S.; You, Y.H.; Wang, L.; et al. Metabolomics
reveals signature of mitochondrial dysfunction in diabetic kidney disease. J. Am. Soc. Nephrol. 2013, 24, 1901–1912. [CrossRef]

21. Zobel, E.H.; von Scholten, B.J.; Reinhard, H.; Persson, F.; Teerlink, T.; Hansen, T.W.; Parving, H.H.; Jacobsen, P.K.; Rossing, P.
Symmetric and asymmetric dimethylarginine as risk markers of cardiovascular disease, all-cause mortality and deterioration in
kidney function in persons with type 2 diabetes and microalbuminuria. Cardiovasc. Diabetol. 2017, 16, 88. [CrossRef]

https://doi.org/10.4239/wjd.v7.i14.290
https://doi.org/10.1080/0886022X.2016.1254657
https://www.ncbi.nlm.nih.gov/pubmed/27841047
https://doi.org/10.3390/nu9040358
https://www.ncbi.nlm.nih.gov/pubmed/28375181
https://doi.org/10.1172/jci.insight.86976
https://www.ncbi.nlm.nih.gov/pubmed/27699244
https://doi.org/10.1681/ASN.2015030302
https://doi.org/10.1016/j.kint.2019.12.007
https://doi.org/10.1038/sj.ki.5002567
https://doi.org/10.1073/pnas.0511154103
https://doi.org/10.1038/nrneph.2014.67
https://doi.org/10.1111/j.1523-1755.2005.00736.x
https://www.ncbi.nlm.nih.gov/pubmed/16316340
https://doi.org/10.1681/ASN.2007070745
https://www.ncbi.nlm.nih.gov/pubmed/18256359
https://doi.org/10.1159/000447954
https://www.ncbi.nlm.nih.gov/pubmed/27410520
https://doi.org/10.1038/s41467-019-09329-0
https://doi.org/10.3390/diagnostics10040207
https://doi.org/10.1186/1423-0127-17-S1-S4
https://doi.org/10.3892/mi.2021.3
https://doi.org/10.3389/fendo.2021.636175
https://doi.org/10.1681/ASN.2013020126
https://doi.org/10.1186/s12933-017-0569-8


Biomedicines 2023, 11, 1527 18 of 19

22. Balint, L.; Socaciu, C.; Socaciu, I.A.; Vlad, A.; Gadalean, F.; Bob, F.; Milas, O.; Cretu, O.M.; Simulescu-Suteanu, A.; Glavan, M.; et al.
Metabolite Profiling of the Gut–Renal–Cerebral Axis Reveals a Particular Pattern in Early Diabetic Kidney Disease in T2DM
Patients. IJMS 2023, 24, 6212. [CrossRef] [PubMed]

23. Glavan, M.; Socaciu, C.; Socaciu, I.A.; Vlad, A.; Gadalean, F.; Cretu, O.M.; Vlad, A.; Muntean, D.M.; Bob, F.; Milas, O.; et al. Untar-
geted Metabolomics by Ultra-High-Performance Liquid Chromatography Coupled with Electrospray Ionization-Quadrupole-
Time of Flight-Mass Spectrometry Analysis Identifies a Specific Metabolomic Profile in Patients with Early Chronic Kidney
Disease. Biomedicines 2023, 11, 1057. [CrossRef] [PubMed]

24. Mu, X.; Yang, M.; Ling, P.; Wu, A.; Zhou, H.; Jiang, J. Acylcarnitines: Can They Be Biomarkers of Diabetic Nephropathy?
Diabetes Metab. Syndr. Obes. 2022, 15, 247–256. [CrossRef]

25. Roointan, A.; Gheisari, Y.; Hudkins, K.L.; Gholaminejad, A. Non-invasive metabolic biomarkers for early diagnosis of diabetic
nephropathy: Meta-analysis of profiling metabolomics studies. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2253–2272. [CrossRef]
[PubMed]

26. Hirakawa, Y.; Yoshioka, K.; Kojima, K.; Yamashita, Y.; Shibahara, T.; Wada, T.; Nangaku, M.; Inagi, R. Potential progression
biomarkers of diabetic kidney disease determined using comprehensive machine learning analysis of non-targeted metabolomics.
Sci. Rep. 2022, 12, 16287. [CrossRef] [PubMed]

27. Lee, H.; Jang, B.H.; Yoo, M.G.; Park, S.I.; Lee, H.J. Amino Acid Metabolites Associated with Chronic Kidney Disease:
An Eight-Year Follow-Up Korean Epidemiology Study. Biomedicines 2020, 8, 222. [CrossRef]

28. Wu, T.; Qiao, S.; Shi, C.; Wang, S.; Ji, G. Metabolomics window into diabetic Complications. J. Diabetes Investig. 2018, 9, 244–255.
[CrossRef]

29. Jin, Q.; Ma, R.C.W. Metabolomics in Diabetes and Diabetic Complications: Insights from Epidemiological Studies. Cells 2021,
10, 2832. [CrossRef]

30. Shao, M.; Lu, H.; Yang, M.; Liu, Y.; Yin, P.; Li, G.; Wang, Y.; Chen, L.; Chen, Q.; Zhao, C.; et al. Serum and urine metabolomics
reveal potential biomarkers of T2DM patients with nephropathy. Ann. Transl. Med. 2020, 8, 199. [CrossRef]

31. Cordero-Pérez, P.; Sánchez-Martínez, C.; García-Hernández, P.A.; Saucedo, A.L. Metabolomics of the diabetic nephropathy:
Behind the fingerprint of development and progression indicators. Nefrología 2020, 40, 585–596. [CrossRef]

32. Hsu, C.N.; Tain, Y.L. Developmental Programming and Reprogramming of Hypertension and Kidney Disease: Impact of
Tryptophan Metabolism. Int. J. Mol. Sci. 2020, 21, 8705. [CrossRef]

33. Zhu, H.; Bai, M.; Xie, X.; Wang, J.; Weng, C.; Dai, H.; Chen, J.; Han, F.; Lin, W. Impaired Amino Acid Metabolism and Its
Correlation with Diabetic Kidney Disease Progression in Type 2 Diabetes Mellitus. Nutrients 2022, 14, 3345. [CrossRef] [PubMed]

34. Peng, X.; Wang, X.; Shao, X.; Wang, Y.; Feng, S.; Wang, C.; Ye, C.; Chen, J.; Jiang, H. Serum Metabolomics Benefits Discrimination
Kidney Disease Development in Type 2 Diabetes Patients. Front. Med. 2022, 9, 819311. [CrossRef] [PubMed]

35. Zhou, C.; Zhang, Q.; Lu, L.; Wang, J.; Liu, D.; Liu, Z. Metabolomic Profiling of Amino Acids in Human Plasma Distinguishes
Diabetic Kidney Disease from Type 2 Diabetes Mellitus. Front. Med. 2021, 8, 765873. [CrossRef]

36. Luo, H.-H.; Li, J.; Feng, X.-F.; Sun, X.Y.; Li, J.; Yang, X.; Fang, Z.Z. Plasma phenylalanine and tyrosine and their interactions with
diabetic nephropathy for risk of diabetic retinopathy in type 2 diabetes. BMJ Open Diabetes Res. Care 2020, 8, e000877. [CrossRef]
[PubMed]

37. Van der Kloet, F.M.; Tempels, F.W.A.; Ismail, N.; Van der Heijden, R.; Kasper, P.T.; Rojas-Cherto, M.; Van Doorn, R.; Spijksma,
G.; Koek, M.; Van Der Greef, J. Discovery of early-stage biomarkers for diabetic kidney disease using ms-based metabolomics
(FinnDiane study). Metabolomic 2012, 8, 109–119. [CrossRef]

38. Debnath, S.; Velagapudi, C.; Redus, L.; Thameem, F.; Kasinath, B.; Hura, C.E.; Lorenzo, C.; Abboud, H.E.; O’Connor, J.C.
Tryptophan Metabolism in Patients with Chronic Kidney Disease Secondary to Type 2 Diabetes: Relationship to Inflammatory
Markers. Int. J. Tryptophan Res. 2017, 10, 1178646917694600. [CrossRef]

39. Chou, C.A.; Lin, C.N.; Tsun-Yee Chiu, D.; Chen, I.W.; Chen, S.T. Tryptophan as a surrogate prognostic marker for diabetic
nephropathy. J. Diabetes Investig. 2018, 9, 366–374. [CrossRef]

40. Berg, A.H.; Drechsler, C.; Wenger, J.; Buccafusca, R.; Hod, T.; Kalim, S.; Ramma, W.; Parikh, S.M.; Steen, H.; Friedman, D.J.; et al.
C arbamylation of serum albumin as a risk factor for mortality in patients with kidney failure. Sci. Transl. Med. 2013, 5, 175ra29.
[CrossRef]

41. Posada-Ayala, M.; Zubiri, I.; Martin-Lorenzo, M.; Sanz-Maroto, A.; Molero, D.; Gonzalez-Calero, L.; Fernandez-Fernandez, B.;
de la Cuesta, F.; Laborde, C.M.; Barderas, M.G.; et al. Identification of a urine metabolomic signature in patients with advanced-
stage chronic kidney disease. Kidney Int. 2014, 85, 103–111. [CrossRef]

42. Goek, O.N.; Prehn, C.; Sekula, P.; Römisch-Margl, W.; Döring, A.; Gieger, C.; Heier, M.; Koenig, W.; Wang-Sattler, R.;
Illig, T.; et al. Metabolites associate with kidney function decline and incidentchronic kidney disease in the general popula-
tion. Nephrol. Dial. Transplant. 2013, 28, 2131–2138. [CrossRef] [PubMed]

43. Rhee, E.P.; Clish, C.B.; Ghorbani, A.; Larson, M.G.; Elmariah, S.; McCabe, E.; Yang, Q.; Cheng, S.; Pierce, K.; Deik, A.; et al.
A Combined Epidemiologic and Metabolomic Approach Improves CKD Prediction. J. Am. Soc. Nephrol. 2013, 24, 1330–1338.
[CrossRef] [PubMed]

44. Qi, S.; Ouyang, X.; Wang, L.; Peng, W.; Wen, J.; Dai, Y. A pilot metabolic profiling study in serum of patients with chronic kidney
disease based on (1) H-NMR-spectroscopy. Clin. Transl. Sci. 2012, 5, 379–385. [CrossRef] [PubMed]

https://doi.org/10.3390/ijms24076212
https://www.ncbi.nlm.nih.gov/pubmed/37047187
https://doi.org/10.3390/biomedicines11041057
https://www.ncbi.nlm.nih.gov/pubmed/37189675
https://doi.org/10.2147/DMSO.S350233
https://doi.org/10.1016/j.numecd.2021.04.021
https://www.ncbi.nlm.nih.gov/pubmed/34059383
https://doi.org/10.1038/s41598-022-20638-1
https://www.ncbi.nlm.nih.gov/pubmed/36175470
https://doi.org/10.3390/biomedicines8070222
https://doi.org/10.1111/jdi.12723
https://doi.org/10.3390/cells10112832
https://doi.org/10.21037/atm.2020.01.42
https://doi.org/10.1016/j.nefro.2020.07.002
https://doi.org/10.3390/ijms21228705
https://doi.org/10.3390/nu14163345
https://www.ncbi.nlm.nih.gov/pubmed/36014850
https://doi.org/10.3389/fmed.2022.819311
https://www.ncbi.nlm.nih.gov/pubmed/35615098
https://doi.org/10.3389/fmed.2021.765873
https://doi.org/10.1136/bmjdrc-2019-000877
https://www.ncbi.nlm.nih.gov/pubmed/32883686
https://doi.org/10.1007/s11306-011-0291-6
https://doi.org/10.1177/1178646917694600
https://doi.org/10.1111/jdi.12707
https://doi.org/10.1126/scitranslmed.3005218
https://doi.org/10.1038/ki.2013.328
https://doi.org/10.1093/ndt/gft217
https://www.ncbi.nlm.nih.gov/pubmed/23739151
https://doi.org/10.1681/ASN.2012101006
https://www.ncbi.nlm.nih.gov/pubmed/23687356
https://doi.org/10.1111/j.1752-8062.2012.00437.x
https://www.ncbi.nlm.nih.gov/pubmed/23067349


Biomedicines 2023, 11, 1527 19 of 19

45. Takashi, I.; Schaffer, S.W.; Azuma, J. The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids
2012, 42, 1529–1539. [CrossRef]

46. Hayes, K.C.; Crey, R.E.; Schmidt, S.Y. Retinal degeneration associated with taurine deficiency in the cat. Science 1975, 188, 949–951.
[CrossRef]

47. Pion, P.D.; Kittleson, M.D.; Rogers, Q.R.; Morris, J.G. Myocardial failure in cats associated with low plasma taurine: A reversible
cardiomyopathy. Science 1987, 237, 764–768. [CrossRef]

48. Wang-Sattler, R.; Yu, Z.; Herder, C.; Messias, A.C.; Floegel, A.; He, Y.; Heim, K.; Campillos, M.; Holzapfel, C.; Thorand, B.; et al.
Novel biomarkers for pre-diabetes identified by metabolomics. Mol. Syst. Biol. 2012, 8, 615. [CrossRef]

49. Lee, S.Y.; Choi, M.E. Urinary biomarkers for early diabetic nephropathy: Beyond albuminuria. Pediatr. Nephrol. 2015, 30,
1063–1075. [CrossRef]

50. Mor, A.; Kalaska, B.; Pawlak, D. Kynurenine Pathway in Chronic Kidney Disease: What’s Old, What’s New, and What’s Next?
Int. J. Tryptophan Res. 2020, 13, 1178646920954882. [CrossRef]

51. Oshima, M.; Shimizu, M.; Yamanouchi, M.; Toyama, T.; Hara, A.; Furuichi, K.; Wada, T. Trajectories of kidney function in diabetes:
A clinicopathological update. Nat. Rev. Nephrol. 2021, 17, 740–750. [CrossRef]

52. Fukuda, T.; Bouchi, R.; Asakawa, M.; Takeuchi, T.; Shiba, K.; Tsujimoto, K.; Komiya, C.; Yoshimoto, T.; Ogawa, Y.; Yamada, T.
Sarcopenic obesity is associated with a faster decline in renal function in people with type 2 diabetes. Diabet. Med. 2020, 37,
105–113. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s00726-011-0883-5
https://doi.org/10.1126/science.1138364
https://doi.org/10.1126/science.3616607
https://doi.org/10.1038/msb.2012.43
https://doi.org/10.1007/s00467-014-2888-2
https://doi.org/10.1177/1178646920954882
https://doi.org/10.1038/s41581-021-00462-y
https://doi.org/10.1111/dme.14153
https://www.ncbi.nlm.nih.gov/pubmed/31621107

	Introduction 
	Materials and Methods 
	Patients and Compliance with Ethical Standards 
	Blood and Urine Collection and Processing 
	UHPLC-QTOF-ESI+-MS Analysis 
	Statistical Analysis 

	Results 
	Multivariate Analysis of Blood Serum 
	PLSDA and Volcano Plot 
	Fold Change Values, VIP Scores, and Random Forest Data 
	Heatmap 
	Biomarker Analysis 

	Univariate Analysis (One-Way ANOVA) to Evaluate the Relationship between Blood Metabolites and DKD/2DM Progression 
	ANOVA Parameters and Fisher’s LSD, VIP Scores, and MDA Values 
	PLSDA and Heatmap 

	Multivariate Analysis of Urine 
	PLSDA and Volcano Plot 
	Fold Change Values, VIP Scores, and Random Forest Data 
	Heatmap 
	Biomarker Analysis 

	Univariate Analysis (One-Way ANOVA) to Evaluate the Relationship between Urine Metabolites and DKD/2DM Progression (from P1 to P3) 
	Analysis of Variance (ANOVA) Parameters and Fisher’s LSD, VIP Scores and MDA Values 
	PLSDA and Heatmap 

	Variations of Significant Serum and Urine Metabolites at Different DKD Stages 

	Discussion 
	Conclusions 
	References

