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Abstract: Bacterial pathogens resistant to multiple structurally distinct antimicrobial agents are
causative agents of infectious disease, and they thus constitute a serious concern for public health. Of
the various bacterial mechanisms for antimicrobial resistance, active efflux is a well-known system
that extrudes clinically relevant antimicrobial agents, rendering specific pathogens recalcitrant to
the growth-inhibitory effects of multiple drugs. In particular, multidrug efflux pump members of
the major facilitator superfamily constitute central resistance systems in bacterial pathogens. This
review article addresses the recent efforts to modulate these antimicrobial efflux transporters from a
molecular perspective. Such investigations can potentially restore the clinical efficacy of infectious
disease chemotherapy.
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1. Bacterial Pathogens

Bacterial pathogens of concern within the context of the worldwide emergence and
spread of antimicrobial resistance (AMR) are classified under the group ESKAPEE, compris-
ing Enterococcus faecium, Staphylococcus aureus, Acinetobacter baumannii, Klebsiella pneumoniae,
Pseudomonas aeruginosa, Enterobacter species, and Escherichia coli [1]. These bacterial species
represent some of the extremely drug-resistant strains that threaten the relevance of existing
antimicrobial therapy due to their current ability to resist all available antimicrobials [2].
ESKAPEE pathogens are the major cause of healthcare-associated infections (nosocomial),
and it is estimated that more than 80% of global deaths are due to ESKAPEE pathogens [3].

The Gram-positive enteric bacterium Enterococcus faecium is the causative agent of
neonatal meningitis, endocarditis, and bacteremia and is a common agent of nosocomial
infections, second only to staphylococci [4]. The bacterium is intrinsically resistant to
many antibiotics, such as the β-lactams and the cephalosporins, due to the overproduction
of low-affinity penicillin-binding proteins (PBPs), aminoglycosides, and trimethoprim-
sulfamethoxazole. In contrast, the bacterium has acquired resistance to several others, such
as vancomycin, linezolid, tigecycline, and daptomycin, through point mutations and the
acquisition of resistance plasmids [5,6]. Hospital environments, including medical devices,
offer ideal niches for colonization by vancomycin-resistant enterococci (VRE), making these
common sources of potentially fatal nosocomial infections in susceptible populations [6,7].
Enterococci are among the high-priority pathogens owing to the rapid increase in infections
attributed to drug-resistant isolates [8].

Staphylococcus aureus is the most common human and animal pathogen responsible
for skin, soft tissue, wound infections, life-threatening pneumonia, endocarditis, and
infections associated with indwelling devices in hospital settings [9,10]. This bacterium
is of great importance due to its resistance against numerous antimicrobial agents, and
S. aureus has been involved in more than 100,000 deaths attributable to methicillin-resistant
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S. aureus (MRSA AMR in 2019 [3]. Although MRSA microorganisms were initially identified
as healthcare-associated (HA-MRSA) strains, subsequently, distinct lineages of MRSA
emerged from livestock and the community, termed livestock-associated (LA-MRSA) and
community-associated (CA-MRSA) [11]. Due to the high genetic and phenotypic variation
and their ability to adapt to various environmental conditions, staphylococci have become
resistant to the most currently used antimicrobials. MRSA strains are typically resistant
to β-lactams and cephalosporins, making it necessary to use alternate antibiotics such as
glycopeptides (vancomycin, teicoplanin), tigecycline, daptomycin, and linezolid [12,13].
With the emergence of clonal types of MRSA resistant to each of these antimicrobials, the
treatment options against this pathogen are becoming critically constricted to a minority of
individual antibiotics or combination therapies involving more than one antibiotic [14].

The Gram-negative pathogens Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, and Enterobacter spp. (Enterobacter cloacae complex, ECC) are
high-priority pathogens owing to their plethora of mechanisms to resist multiple antibi-
otics, colonize hospital environments and devices, and cause serious nosocomial infec-
tions [1]. K. pneumoniae ranked third in global deaths associated with AMR in 2019 [3].
Resistance to all β-lactam antibiotics, including cephalosporins, carbapenems, aminoglyco-
sides, and fluoroquinolones, has left clinicians with few options to treat infections by these
pathogens [4,15,16]. The carbapenem-resistant Enterobacterales (CRE) group, producing
KPC, VIM, IMP, and NDM carbapenemases, is often associated with severe infections with
a fatality rate as high as 40% [17]. Similarly, P. aeruginosa is a serious pathogen causing
various infections, from wound infections to fatal bacteremia, pneumonia, and lung in-
fections in patients with cystic fibrosis and in immunocompromised individuals. This
bacterium possesses diverse drug-resistance mechanisms, both intrinsic and acquired, and
produces antibiotic degradative enzymes such as AmpC lactamases, extended spectrum-β-
lactamases (ESBLs), and carbapenemases, and has numerous efflux pumps, all of which
synergistically make this bacterium extremely drug-resistant [18,19]. Its ability to form
strong biofilms with a robust quorum-sensing system has enabled this bacterium to resist
disinfectants and antimicrobials and successfully persist in the host environment to estab-
lish chronic infections [2,18,20]. Certain lineages of P. aeruginosa, such as ST235 and ST175,
have emerged as main agents of serious nosocomial infections [21,22].

2. Antimicrobial Resistance Mechanisms

Antimicrobial agents are purportedly meant to eliminate microorganisms, particularly
those deleterious to the health of plants, animals, and humans. Besides these, antimicrobials
are also useful in preserving foods from spoilage. Antimicrobial agents could be of chemical
or natural origin. The antibiotic penicillin is recognized as the first microbe-derived antimi-
crobial compound employed clinically to treat infectious diseases. The three-decade period
following the discovery of penicillin is termed the “golden period of antimicrobial therapy”,
as numerous antibiotics were discovered and inducted into clinical use [23]. However,
along with the discovery of antimicrobials, bacteria that survived and grew in antibiotics
were also discovered, suggesting that such bacteria can be present in the environment or
possibly evolve during antibiotic exposure. Penicillin-resistant staphylococci were isolated
from clinical samples in the early 1940s, and with the widespread use of antibiotics in the
following two decades, the emergence and spread of antibiotic-resistant strains increased
dramatically in clinical settings [24]. The development of resistance followed the discov-
ery of new antimicrobials, and this phenomenon is often aided by the development of
cross-resistance to closely related antibiotics or antibiotics belonging to the same group.

The bacterial mechanisms of antibiotic resistance are diverse and are broadly classified
into (i) enzymatic inactivation of antibiotics, (ii) modification of drug target, (iii) deceased
drug permeability, and (iv) active efflux of antibiotics [25]. The enzymatic inactivation is
achieved by hydrolysis of antibiotics by bacterial enzymes such as the β-lactamases that
degrade β-lactam antibiotics such as the penicillins, cephalosporins, and carbapenems,
macrolide esterases, and the fosfomycin-inactivating enzymes. The second mechanism of
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enzymatic inactivation of antibiotics involves the structural modification of drugs by group
transfer activities from enzymes such as acetyltransferases, phosphotransferases, glycosyl-
transferases, and nucleotidyltransferases [26,27]. The group transfer mechanism results
in the irreversible modification of the antibiotic structure, which can no longer bind to its
target. The antibiotics susceptible to this resistance mechanism include chloramphenicol,
aminoglycosides, macrolides, and fosfomycin [23].

Alternatively, the antibiotic targets may be modified to circumvent binding by the
antibiotics. This resistance may be achieved by mutations in the genes encoding the
proteins which act as antibiotic targets, such as the penicillin-binding proteins (PBPs),
the modification of which results in the inability of β-lactams to bind to PBPs resulting
in resistance development [28]. Mutations in QRDRs (quinolone resistance determinant
regions) result in the modification of ribosomal targets leading to the development of
resistance to quinolone–fluoroquinolone antibiotics [29].

The outer membrane porins often regulate the entry of antimicrobials into the bacterial
cell, the structural modification of which can result in reduced permeability of drugs
through the cellular membrane. Such porin modifications result from mutations in porin-
encoding genes under antibiotic pressure, and bacteria expressing defective porin proteins
resist the entry of antibiotics such as the aminoglycosides, chloramphenicol, tetracyclines,
β-lactams, and fluoroquinolones [30].

The efflux-mediated antimicrobial resistance mechanism involves the transmembrane
proteins, which transport structurally diverse substrates across the membrane and primarily
function to extrude toxic metabolites, Kreb’s cycle intermediates such as salts, sugars,
vitamins, fatty acids, and amino acids, among others [9,31]. Based on the source of energy
that drives this efflux process, the transporter proteins are broadly grouped into primary
active transporters, which use ATP, and secondary active transporters, which utilize the
concentration gradient established across the membrane by the primary active transport
and respiration [32,33].

3. Antimicrobial Transporter Superfamilies

Many of the transport systems used by microorganisms can fall into one of a variety
of protein superfamilies, the vast majority of which have been incorporated into a massive
transporter classification database (TCDB) [34]. These and other biological transport
systems have been systematically and taxonomically organized and are readily accessible
in the TCDB, a continually updated resource [35]. The transporter superfamilies are
established according to similarities in evolutionary origin, sequence, protein structure,
and energization modes [36,37].

Solute transporters that involve antimicrobial agents and bacterial pathogens can be
grouped into a handful of superfamilies. The drug/metabolite transporter (DMT) super-
family consists of many protein families, such as the small multidrug resistance (SMR)
family [38]. The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) superfamily
harbors [39] several distantly related protein families, one of which is the multidrug and
toxic compound extrusion transporters (MATE) family consisting of numerous cation-based
multidrug antiporters [40]. The resistance–nodulation–cell division (RND) superfamily
contains many solute transporters, many of which are found in bacterial pathogens con-
ferring resistance to multiple antimicrobial agents [41]. The proteobacterial antimicrobial
compound efflux (PACE) family encompasses members that are multidrug efflux pump
systems in bacteria [42]. One of the largest groups is the major facilitator superfamily
(MFS), consisting of secondary active transporters and passive facilitators [43]. This review
focuses primarily on the multidrug efflux pumps of the MFS as they are extensively studied,
ubiquitous across all living taxa, and involved in conferring drug resistance in clinical
pathogens, making them good targets for modulation [9,44]. The extensively studied
bacterial antimicrobial transporter superfamilies are illustrated in Figure 1.
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Figure 1. Bacterial antimicrobial transporter superfamilies. The ABC transporter superfamily consists
of primary active transport systems that use ATP hydrolysis to drive antimicrobial efflux from
bacterial cells. The antimicrobial efflux pumps belonging to the MFS, SMR, MATE, and PACE
use ion/drug antiport mechanisms to extrude antimicrobial agents from the cytoplasm. The RND
superfamily transporters are multi-component systems to efflux antimicrobial solutes to the external
milieu of the bacterium.

3.1. Major Facilitator Superfamily (MFS)

The MFS solute transporters consist of passive and secondary active transporters such
as uniporters, symporters, and antiporters [45]. The protein members of the MFS typically
have between 300 and 600 amino acids with 12 or 14 transmembrane domains composed
of α-helices [46]. For instance, the LmrS multidrug efflux pump from S. aureus is predicted
to harbor 14 membrane-spanning helices, with the N- and C-termini facing the cytoplasmic
side of the cell membrane, Figure 2.

The MFS transporters share similarities in amino acid sequences [47], including several
functional, highly conserved sequence motifs [48] and protein structures. The MFS trans-
porters have diverse, structurally distinct membrane transport substrates, such as sugars,
amino acids, metabolic intermediates, nucleic acids, ions, and antimicrobial agents [47].

MFS Antimicrobial Efflux Pump Structure and Function

The first transporter of the MFS to be characterized physiologically and at the molec-
ular level was the E. coli tetracycline efflux pump, TetA, discovered in the laboratory of
Levy [49,50]. Shortly afterward, related tetracycline transporters were found in Gram-
negative and -positive microorganisms, collectively called TetA, with sub-classes including
A-D and others [51]. Interestingly, it was discovered that these so-called single-substrate
TetA transporters were homologous to bacterial multidrug efflux pumps, such as NorA [52],
MdfA [53], and QacA [54], which are among the now most intensively studied antimicrobial
transporters of the MFS.

High-resolution protein structures have been elucidated for several multidrug efflux
pumps of the MFS. Multidrug efflux pumps of the MFS that have been crystalized and
structures determined include EmrD [55], YajR [56,57], MdfA [53,58], and SotB [59], all from
E. coli, and more recently, NorC from S. aureus [60] and LmrP from Lactococcus lactis [61].
These MFS drug transport proteins generally have two global domains, the N-terminus
and the C-terminus domains, each harboring six-helical bundles [62] related by a so-called
twofold pseudosymmetrical axis that runs perpendicular to the membrane bilayer [63].
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This structural motif, called the MFS fold, appears in many multidrug efflux pump proteins
and symporters of the superfamily [64,65]. Furthermore, these antimicrobial transporters
alternately expose their substrate binding sites on either side of the membrane to mediate
drug and ion translocation across the membrane during the transport cycle, a catalytic
mechanism known as the alternating-access model [66,67].
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Thus far, the MFS antimicrobial and multidrug efflux pumps share a highly con-
served signature sequence called motif C [68] and the antiporter motif [69,70] in the fifth
transmembrane helix. The antiporter motif C has the consensus amino acid sequence of
“G (X)8 G (X)3 G P (X)2 G G” [71] consisting largely of a highly hydrophobic region with
a proline manifested as a so-called GP dipeptide, where X is any amino acid [69,70]. The
residues of the antiporter motif appear to play major mechanistic roles during drug and
multidrug transport [48]. The first evidence to demonstrate the functional importance of the
antiporter motif was reported on TetA(C), in which the highly conserved residue Gly-147,
part of the GP dipeptide, was necessary for tetracycline resistance [70]. Since then, other
transporters have been reported to have a variety of functional roles attributable to residues
of motif C, such as mediating the direction of substrate transport [72], change in protein
conformation during transport [73], forming an ion or substrate leak barrier [74–76], protein
stabilization [77], drug binding [78], forming an accessible central cavity for binding sub-
strates [79], and constituting the interface boundary between the two helical bundles [80] of
the MFS antimicrobial efflux pumps. More recently, it was reported that motif C’s residues
form a flexible hinge structure that undergoes conformational changes during transport
and a regulator switch mechanism for that hinge’s conformation change [81]. As new
studies are needed to fully understand the mechanisms played by the antiporter motif C
structure, it has become an important target for resistance modulation [44], especially in
multidrug-resistant bacterial pathogens [82,83].

Another widely studied conserved sequence motif is referred to as motif A with the
consensus sequence “G (X)3 D R/K X G R R”, which is present in the intracellular loop
between helices two and three of the vast majority of transporters of the MFS [36,47,84].
These conserved residues are found in symporters of the MFS, reviewed elsewhere [48]. The
laboratories of Yamaguchi and Levy were the first to independently report evidence for a
functional role of motif A residues in an antimicrobial efflux pump of the MFS [85,86]. They
showed that the dipeptide Ser-Asp in the loop conferred drug transport and formed a gate
in the tetracycline pumps TetA(B) and TetA(C) [51,87]. Analyses of related MFS multidrug
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efflux pumps from a structure–function approach in many laboratories have provided
physiological evidence for residues of motif A. For example, the structures formed by the
motif A consensus sequence were shown to confer the substrate pathway through the
transporters [88,89], structural stability mediated by salt bridges [56], conformation change
regulation [88,89], an interface boundary between the N- and C-terminal bundles [56], an
electrochemical ion-gradient potential sensor [90,91], and a switch that influences binding
site orientation [91]. These studies further implicate a critical solute transport role in
virtually all protein members of the MFS. Continued analyses of the residues are anticipated
to shed new insight into the molecular mechanism of drug transport across the membrane
and the generation of mutants with altered specificities for transporting desirable substrates.
Thus, the residues of motif A and the structure and functions conferred by them continue
to be a focus in mechanistic studies of solute transport in proteins of the MFS [23,92,93].

4. Efflux Pump Inhibition

Multidrug efflux pumps of the MFS are known to confound treatment efforts toward
clinical bacterial infections [23]. Thus, understanding the modulation of antimicrobial agent
efflux by MFS drug pumps in potentially pathogenic microorganisms is of considerable in-
terest to restore the clinical efficacy of treatment of infections caused by multidrug-resistant
pathogens [44,94]. Naturally occurring plant-derived agents as resistance modulators in
such cases represent a promising avenue [31]. Our laboratory discovered that a plant-
derived extract from Allium sativum and its bioactive agent, allyl sulfide, reduced resistance
to substrates and drug transport activity of the MFS multidrug efflux pump EmrD-3 from
Vibrio cholerae [95]. In the same study, we demonstrated that A. sativum extract showed a
synergistic reduction in the antimicrobial susceptibility in host cells harboring EmrD-3,
pointing to this resistance mechanism as a suitable target for the modulation of resistance in
severe cholera infections [96]. In another study, we found extracts from the common food
spice Cuminum cyminum directly inhibited the transport activity of the LmrS multidrug
efflux pump from S. aureus. We showed that the compound cumin aldehyde restored
the susceptibility levels of antimicrobial agents that are known substrates of the LmrS
multidrug efflux pump [97]. Therefore, the MFS transporter LmrS is another desirable
target for developing putative modulatory agents against infection from MRSA [1,9,94].

The NorA multidrug efflux pump system of S. aureus has been a good target for
transport inhibition studies reviewed elsewhere [98]. In S. aureus, plant-derived chalcones
showed synergistic activity with antimicrobial agents ciprofloxacin, norfloxacin, and ethid-
ium bromide involving the MFS proteins NorA and MepA [99]. Molecular docking analysis
of these chalcones showed close interactions with NorA residues Ser-337, Met-338, Gly-339,
and Asn-340, implicating these residues as good molecular targets for transport studies
and resistance modulation [99]. The affected residues directly involve ciprofloxacin and
norfloxacin binding and transport across the membrane through NorA. Recently, it was
reported that the saponin secondary metabolite hecogenin acetate, while demonstrating
antibacterial effects on isolates of S. aureus, nevertheless failed to show an inhibitory effect
on drug efflux activities in NorA and MepA [100].

Interestingly, evaluation of the 1,8-naphthyridine sulfonamides showed that they
could inhibit both β-lactamases and the QacC and QacA/B efflux pumps in S. aureus [101].
Thus, these agents and their derivatives show promise in addressing infection by pathogens
by targeting more than one resistance mechanism, as in the case of resistances conferred
by enzymatic inactivation and active drug efflux. More recently, berberine, a naturally
occurring plant compound and known efflux pump inhibitor of Mdr1p, an MFS multidrug
efflux pump from Candida albicans [102], reduced the resistance to multiple antimicrobial
agents conferred by MdfA of E. coli [103]. Using a combination of molecular simulation
dynamics and physiological analysis of transport by MdfA across the membrane, berberine
was reported to affect the formation of salt bridges and alter the hydrophobic interactions
of MdfA with water in the membrane during the transport cycle to inhibit transport [103].
Another study showed that resistance of C. albicans to the antifungal agent fluconazole con-
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ferred by the MFS pump Mdr1 could be blocked by plant extracts from Acalypha communis
and Solanum atriplicifolium. Extracts from Argentinian native plants reverse fluconazole
resistance in Candida species [104]. Although the biochemical nature of these plant extracts
was not identified in the study, the inhibitory effects on Mdr1 are of interest, as these
extracts are considered non-toxic and potent in their activities. Table 1 shows the poten-
tial efflux pump inhibitors that hold tremendous promise in restoring the antimicrobial
susceptibility of important bacterial pathogens.

Table 1. Natural compounds as efflux pump inhibitors (EPIs) against efflux pumps of the MFS family.

Inhibitor Efflux Pump Reference

Plant-derived alkaloid compounds (reserpine,
piperines, and piperine analogs) NorA, Bmr, MdeA, LmrA, PmrA [105–107]

Flavonoids (genistein, sarothrin) NorA [108,109]
Flavones (chrysosplenol-D and chrysoplenetin) NorA [110]
Diterpenes (ferruginol) NorA [111,112]
Isolflavones NorA [113]
Coumarins NorA [114]
Kaempferol rhamnoside NorA [115]
2,6-dimethyl-4-phenyl-pyridine-3,5-dicarboxylic
acid diethyl ester NorA, MsrA [116]

Indirubin NorA [117]
Chalcones (4-phenoxy-4′-dimethylamino
ethoxy chalcone) NorA [118,119]

Oligosaccharides (orizabin) NorA [120]
Derivatives of 2-phenylquinoline NorA [121–123]
Abietane diterpenes Tet(K), Msr(A) [124]
Essential oils TetK [125]
5′-Methoxyhydnocarpin-D and Pheophorbide A NorA [126]
Cumin seed oil, cumin aldehyde LmrS [127]
Plant-derived alkaloid compounds (berberine
and palmatine) NorA, MdfA [103,128,129]

Sarothrin NorA [108]
Olympicin NorA [130]
Murucoidins NorA [131]
Clerodane diterpene 16α-
hydroxycleroda-3,13 (14)-Z-dien-15,16-olid 6 NorB, NorC [132]

Verapamil, capsaicin, boeravinone B NorA, QacA [133,134]
Cholecalciferol and alpha-tocopherol TetK, MsrA [101,135]
Carnosic acid MsrA, TetK, and NorA [136,137]
Linoleic and oleic acids MsrA [138]
Epigallocatechin gallate, Epicatechin gallate TetK [139]
Osthtol NorA, MdeA, TetK, MsrA [140]

5. Antimicrobial Resistance and Biofilms
Dynamics between Biofilm Formation and Antibiotic Resistance

Bacteria form biofilms in most scenarios where the dispersal and planktonic stages
are considered intermediate or transitional. Biofilms are reported from the sea, rivers, food
processing surfaces, medical implants, and the International Space Station [141]. Biofilms
are medically important since almost 65–80% of human chronic infections are attributed to
pathogenic biofilms [142]. The biofilm has become a menace in the food processing industry
due to its persistence on food contact surfaces [143]. Biofilms are a survival strategy for
bacteria to escape environmental stress, including predation by the bacteriophage [144].
Environmental stress triggers the transition of free-swimming planktonic forms to sessile
forms that attach to a biotic or abiotic surface [145].

There are various aspects in the relationship between antibiotic resistance and biofilm
formation. One aspect is that the biofilm acts as the antibiotic resistance gene pool, thus
facilitating the emergence of antibiotic resistance bacteria. Another is that the biofilms
enhance the survivability of drug-resistant bacteria in a harsh environment, thus helping
them to sustain in various environments for a long time. A study conducted in the Yangtze
Estuary found that antibiotic-resistant genes (ARG) were high in biofilms, followed by
sediment and water. The biofilm is an evident sink for ARG [146]. Hence, biofilm acts as a
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reservoir of antibiotic-resistant genes, thus facilitating antibiotic resistance in the bacterial
biofilm community. Ratajczak et al. [147] found a positive correlation between MDR and
biofilm formation in P. aeruginosa. Another aspect is that biofilms are a survival strategy for
bacteria with low levels of antimicrobial resistance.

A statistically negative correlation was observed between biofilm formation and MDR
in Acinetobacter baumanii. The MDR and XDR isolates formed weak biofilms compared
to non-MDR isolates producing robust biofilms [148]. Exposure to sub-inhibitory and
sub-lethal concentrations of different antimicrobials triggers biofilm formation in different
bacteria. A study conducted with P. aeruginosa found that exposure to aminoglycosides,
particularly tobramycin, had the most effect on biofilm formation. Neither polymyxin B,
a peptide antibiotic cationic like the aminoglycosides, nor carbenicillin or chlorampheni-
col had any effect on biofilm formation. Thus, P. aeruginosa forms biofilm as a specific
response to the aminoglycoside antibiotics [149]. A recent study shed a different light on
understanding antimicrobial resistance in biofilms. The zone of inhibition formed during
tobramycin disc diffusion resulted from the transition of P. aeruginosa from planktonic
to biofilm growth mode [150]. The bacterial biofilm confers protection from antibiotics
through various means. Antimicrobial resistance or tolerance can be grouped into extracel-
lular, cellular, and nuclear components, i.e., the biofilm matrix, the physiological state of
bacteria, and genetic determinants. Resistant microorganisms can grow in the presence of a
bactericidal or bacteriostatic antimicrobial agent at a concentration normally inhibitory to
growth measured as minimum inhibitory concentration (MIC).

In contrast, tolerance to an antimicrobial agent is the ability of a microorganism to
survive but neither grow nor die in the presence of a bactericidal antimicrobial agent
measured as minimum bactericidal concentration (MBC) [151]. The reduced susceptibility
of biofilm to antibiotics could be due to complex interactions, and hence a clear demarcation
as antibiotic resistance or tolerance might not be feasible in all the settings. Hence many
authors use the term recalcitrance to denote the reduced susceptibility of the biofilm
community to the antibiotics tested [152–154]. The mechanisms involved in antibiotic
recalcitrance in a biofilm are depicted in Figure 3.
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Figure 3. Mechanism of antibiotic recalcitrance in the biofilm matrix. The biofilm’s color gradient
(yellow) depicts the availability of nutrients and oxygen from high to low and darker to lighter shades.
The color differentiation in the bacterial cells depicts their physiological state, with the lighter ones
in active phases and the darker green ones in less active stationary phases. Biofilm greatly reduced
the diffusion of certain antibiotic molecules (blue triangles). 1. The exopolysaccharide. 2. eDNA.
3. Bacterial autolysis releases antibiotic-binding and degrading molecules into the matrix. 4. Persister
cells. 5. Mixed species in the biofilm. 6. Horizontal gene transfer and increased frequency of mutation.
7. Quorum sensing. 8. Biofilm-specific antibiotic resistance genes. 9. Efflux pump.
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6. Role of the Biofilm Matrix in Antibiotic Recalcitrance

The biofilm matrix comprises components such as the extracellular polymeric sub-
stance (EPS), extracellular DNA (eDNA), proteins, and lipids inside which the bacterial cells
are embedded. In most biofilms, the bacterial cells account for less than 10% of the biofilm’s
dry mass [155]. The biofilm composition differs between species and even within the
species. The MRSA biofilms are more proteinaceous compared to the polysaccharide-rich
MSSA biofilms [156].

7. MFS Transporters and Biofilms

Efflux pumps play important roles in the formation of biofilms, as well as in the
antibiotic resistance of biofilm bacteria. The overexpression of tetracycline resistance efflux
pump TetA(C) in Escherichia coli biofilm contributes to forming mature biofilms, stress
tolerance, and antimicrobial resistance [157]. The inactivation of efflux pumps abolishes
biofilm formation, suggesting that efflux pumps as essential for biofilm formation and its
persistence [158]. Pinostrobin, a plant-derived flavonoid compound, has anti-efflux and
anti-biofilm activities. This compound supposedly interacts more efficiently with MFS
efflux pumps of Gram-positive bacteria, reducing the MIC of ciprofloxacin by 128 times in
MRSA [159]. In Salmonella enterica serovar Typhimurium, efflux pump knockout mutants
lacking EmrAB or MdfA were found to be deficient in biofilm formation due to the mutants’
inability to produce curli, an essential component of biofilm matrix [160]. Boeravinone
B, a known NorA multidrug efflux pump inhibitor, also inhibited biofilm formation by
S. aureus [134].

Since biofilm formation is strongly associated with the quorum-sensing mechanism
of bacteria, efflux pumps promote biofilm formation by reducing the impact of antibacte-
rials and extrusion of quorum-sensing signaling molecules [161,162]. Efflux pump genes
are overexpressed in biofilms, and this corresponds with the overexpression of quorum-
sensing genes, suggesting a strong relationship between these two processes [163–165].
Biologically derived polyamines such as cadaverine, putrescine, spermidine, and spermine
are important in bacteria for oxidative stress tolerance, biofilm formation, and persis-
tence. These molecules are also substrates for efflux pumps, such as the AmvA protein of
Acinetobacter baumannii, suggesting that the biofilm formation and efflux pump activities
can be interrelated [166].

The efflux-pump-mediated biofilm formation is a complex process involving an in-
terplay between multiple pathways, and the net effect of these interactions might vary in
different bacterial species. For example, the inactivation of LmrB in Streptococcus mutans
resulted in increased EPS secretion and biofilm formation while upregulating other efflux
genes’ expression [167]. In many Gram-negative and -positive bacteria, efflux pumps
contribute positively to biofilm formation [168]. Efflux pump inhibitors (EPI), in many
instances, not only enhance the susceptibility of bacteria to antimicrobials but also reduce or
inhibit biofilm formation [169]. Efflux pumps purportedly contribute to biofilm formation
at various stages, such as (i) the initiation of biofilm formation in which quorum-sensing
molecules play important roles, and the overexpressed efflux pumps might participate in
extruding quorum-sensing molecules to bring about a desired effect; (ii) biofilm maturation,
during which toxic metabolites need to be expelled from the cellular environment; and
(iii) biofilm persistence, in which the biofilm bacteria are protected from an antimicrobial
and noxious substance in the surrounding environment [168,170].

The quorum-sensing system also regulates the expression of virulence genes, suggest-
ing that antibiotic resistance, biofilm formation, virulence, and persistence of pathogenic
bacteria stay interlinked and provide opportunities to identify the means of interfering
with these processes with the ultimate goal of pathogen control [171]. Apart from clinical
implications, efflux pump inhibition and the consequent quorum-sensing inhibition could
positively impact the shelf life of highly perishable products such as fish. A recent report
suggests that black pepper essential oil (BPEO) and its bioactive compounds, limonene
(LIM) and β-caryophyllene (CAR), could inhibit efflux pumps and quorum sensing in the
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fish spoilage bacterium Pseudomonas psychrophila and reduce its spoilage potential [172].
Compounds such as thioridazine and chlorpromazine significantly reduced the gene ex-
pression of efflux pumps such as norB, norC, abcA, and mepA and impaired their ability to
form biofilms [173]. Copper nanoparticles (CuNPs) have also been shown to inhibit efflux
pumps and biofilm formation in S. aureus and P. aeruginosa [174].

Similarly, toluidine blue O (TBO)-mediated photodynamic therapy (PDT) resulted
in decreased expression of the norA, norB, sepA, mepA, and mdeA efflux pump genes and
impaired biofilm formation by S. aureus strains [175]. Menadione (vitamin K3) has been
recently shown to have EPI activity on norA involving two pathways: direct interaction
with the NorA protein and indirectly affecting the expression of the norA gene [135].
Nilotinib, a tyrosine kinase inhibitor, significantly reduced S. aureus biofilm formation
when combined with ciprofloxacin, suggesting that this compound interacted with the
NorA efflux pump leading to diminished activity [176]. The antifungal ketoconazole is
an inhibitor of the NorA efflux pump and biofilm formation in S. aureus [177]. MFS efflux
pumps are important for biofilm formation in E. coli as evidenced by deficient biofilm
formation by the mutant E. coli K12 strain lacking emrD, emrE, emrK, acrD, acrE, and
mdtE efflux pump genes [178]. In Shigella flexneri, the efflux pump EmrKY contributes to
intracellular survival in macrophages, and its loss results in reduced biofilm formation and
increased susceptibility to DNA-damaging substances [179].

8. Future Directions

One new field of study involves the modulation of bacterial antimicrobial efflux pump
alteration in expression by nanoparticles [180,181]. We anticipate that this area shows
further promise toward generating new treatment strategies against potentially untreatable
infections caused by multidrug-resistant pathogens [182]. Surprisingly, although many
studies show inhibition of multidrug resistance in transporters of the MFS [9,23,92,93,183],
few, if any, of these modulatory agents have reached clinical trials, suggesting that a focus
on this area of infectious disease investigation is lacking. The reasons for this apparent
disparity are unclear.

One promising avenue can be found in the continued analysis of the MFS antimicro-
bial transporters’ conserved amino acid signature sequences, especially those transporters
expressed in pathogenic microorganisms. Conserved amino acids of the MFS solute trans-
porters represent functionally important aspects that drive multidrug efflux. Studying these
drug efflux pumps’ structure–functional natures can reveal critical physiological systems
conferring antimicrobial resistance. These molecular mechanisms of antimicrobial transport
across the membrane are good targets for developing efflux pump inhibitors [184].
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172. Tomaś, N.; Myszka, K.; Wolko, Ł.; Nuc, K.; Szwengiel, A.; Grygier, A.; Majcher, M. Effect of Black Pepper Essential Oil on Quorum
Sensing and Efflux Pump Systems in the Fish-Borne Spoiler Pseudomonas psychrophila KM02 Identified by RNA-Seq, RT-QPCR
and Molecular Docking Analyses. Food Control 2021, 130, 108284. [CrossRef]

173. Aggarwal, S.; Singh, D.V. Efflux Pumps and Biofilm Formation by Both Methicillin-Resistant and Methicillin-Sensitive Staphylo-
coccus aureus Strains. Indian. J. Exp. Biol. IJEB 2020, 58, 527–538. [CrossRef]

174. Christena, L.R.; Mangalagowri, V.; Pradheeba, P.; Ahmed, K.B.A.; Shalini, B.I.S.; Vidyalakshmi, M.; Anbazhagan, V.; Subramanian, N.S.
Copper Nanoparticles as an Efflux Pump Inhibitor to Tackle Drug Resistant Bacteria. RSC Adv. 2015, 5, 12899–12909. [CrossRef]

175. Yu, Y.; Zhao, Y.; He, Y.; Pang, J.; Yang, Z.; Zheng, M.; Yin, R. Inhibition of Efflux Pump Encoding Genes and Biofilm Formation by
Sub-Lethal Photodynamic Therapy in Methicillin Susceptible and Resistant Staphylococcus aureus. Photodiagnosis Photodyn. Ther.
2022, 39, 102900. [CrossRef] [PubMed]

176. Zimmermann, S.; Klinger-Strobel, M.; Bohnert, J.A.; Wendler, S.; Rödel, J.; Pletz, M.W.; Löffler, B.; Tuchscherr, L. Clinically
Approved Drugs Inhibit the Staphylococcus aureus Multidrug NorA Efflux Pump and Reduce Biofilm Formation. Front. Microbiol.
2019, 10, 2762. [CrossRef]

177. Abd El-Baky, R.M.; Sandle, T.; John, J.; Abuo-Rahma, G.E.-D.A.; Hetta, H.F. A Novel Mechanism of Action of Ketoconazole:
Inhibition of the NorA Efflux Pump System and Biofilm Formation in Multidrug-Resistant Staphylococcus aureus. Infect. Drug
Resist. 2019, 12, 1703–1718. [CrossRef] [PubMed]

178. Matsumura, K.; Furukawa, S.; Ogihara, H.; Morinaga, Y. Roles of Multidrug Efflux Pumps on the Biofilm Formation of Escherichia
coli K-12. Biocontrol Sci. 2011, 16, 69–72. [CrossRef] [PubMed]

179. Pasqua, M.; Grossi, M.; Scinicariello, S.; Aussel, L.; Barras, F.; Colonna, B.; Prosseda, G. The MFS Efflux Pump EmrKY Contributes
to the Survival of Shigella within Macrophages. Sci. Rep. 2019, 9, 2906. [CrossRef]

180. Pelgrift, R.Y.; Friedman, A.J. Nanotechnology as a Therapeutic Tool to Combat Microbial Resistance. Adv. Drug Deliv. Rev. 2013,
65, 1803–1815. [CrossRef]

181. Nejabatdoust, A.; Zamani, H.; Salehzadeh, A. Functionalization of ZnO Nanoparticles by Glutamic Acid and Conjugation with
Thiosemicarbazide Alters Expression of Efflux Pump Genes in Multiple Drug-Resistant Staphylococcus aureus Strains. Microb. Drug
Resist. 2019, 25, 966–974. [CrossRef]

182. Seena, S.; Rai, A. Nanoengineering Approaches to Fight Multidrug-Resistant Bacteria. In Non-Traditional Approaches to Combat.
Antimicrobial Drug Resistance; Wani, M.Y., Ahmad, A., Eds.; Springer Nature: Singapore, 2023; pp. 221–248, ISBN 978-981-19916-7-7.

183. Lekshmi, M.; Ammini, P.; Kumar, S.; Varela, M.F. The Food Production Environment and the Development of Antimicrobial
Resistance in Human Pathogens of Animal Origin. Microorganisms 2017, 5, 11. [CrossRef]

184. Lowrence, R.C.; Subramaniapillai, S.G.; Ulaganathan, V.; Nagarajan, S. Tackling Drug Resistance with Efflux Pump Inhibitors:
From Bacteria to Cancerous Cells. Crit. Rev. Microbiol. 2019, 45, 334–353. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ijbiomac.2021.08.199
https://www.ncbi.nlm.nih.gov/pubmed/34480904
https://doi.org/10.1046/j.1365-2958.2002.02773.x
https://www.ncbi.nlm.nih.gov/pubmed/11929524
https://doi.org/10.1046/j.1365-2958.2003.03432.x
https://www.ncbi.nlm.nih.gov/pubmed/12657059
https://doi.org/10.1128/JB.187.18.6571-6576.2005
https://www.ncbi.nlm.nih.gov/pubmed/16159792
https://doi.org/10.1038/s42003-021-02629-6
https://www.ncbi.nlm.nih.gov/pubmed/34552198
https://doi.org/10.1080/08927014.2017.1323206
https://www.ncbi.nlm.nih.gov/pubmed/28587519
https://doi.org/10.3390/ijms232415779
https://doi.org/10.1002/med.21591
https://doi.org/10.1093/jac/dky042
https://doi.org/10.1186/s43141-021-00242-y
https://doi.org/10.1016/j.foodcont.2021.108284
https://doi.org/10.56042/ijeb.v58i08.39406
https://doi.org/10.1039/C4RA15382K
https://doi.org/10.1016/j.pdpdt.2022.102900
https://www.ncbi.nlm.nih.gov/pubmed/35525433
https://doi.org/10.3389/fmicb.2019.02762
https://doi.org/10.2147/IDR.S201124
https://www.ncbi.nlm.nih.gov/pubmed/31354319
https://doi.org/10.4265/bio.16.69
https://www.ncbi.nlm.nih.gov/pubmed/21719992
https://doi.org/10.1038/s41598-019-39749-3
https://doi.org/10.1016/j.addr.2013.07.011
https://doi.org/10.1089/mdr.2018.0304
https://doi.org/10.3390/microorganisms5010011
https://doi.org/10.1080/1040841X.2019.1607248

	Bacterial Pathogens 
	Antimicrobial Resistance Mechanisms 
	Antimicrobial Transporter Superfamilies 
	Major Facilitator Superfamily (MFS) 

	Efflux Pump Inhibition 
	Antimicrobial Resistance and Biofilms 
	Role of the Biofilm Matrix in Antibiotic Recalcitrance 
	MFS Transporters and Biofilms 
	Future Directions 
	References

