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Abstract: The repurposing of drugs is one of the most competent strategies for discovering new
antimicrobial agents. Vildagliptin is a dipeptidyl peptidase-4 inhibitor (DPI-4) that is used effectively
in combination with metformin to control blood glucose levels in diabetic patients. This study
was designed to evaluate the anti-virulence activities of this combination against one of the most
clinically important pathogens, Pseudomonas aeruginosa. The current findings show a significant
ability of the vildagliptin–metformin combination to diminish biofilm formation, bacterial motility,
and the production of virulent extracellular enzymes and pyocyanin pigment. Furthermore, this drug
combination significantly increased the susceptibility of P. aeruginosa to oxidative stress, indicating
immunity enhancement in the eradication of bacterial cells. In compliance with the in vitro findings,
the histopathological photomicrographs of mice showed a considerable protective effect of the
metformin–vildagliptin combination against P. aeruginosa, revealing relief of inflammation due to
P. aeruginosa-induced pathogenesis. P. aeruginosa mainly employs quorum sensing (QS) systems
to control the production of its huge arsenal of virulence factors. The anti-virulence activities
of the metformin–vildagliptin combination can be interrupted by the anti-QS activities of both
metformin and vildagliptin, as both exhibited a considerable affinity to QS receptors. Additionally,
the metformin–vildagliptin combination significantly downregulated the expression of the main
three QS-encoding genes in P. aeruginosa. These findings show the significant anti-virulence activities
of metformin–vildagliptin at very low concentrations (10, 1.25 mg/mL, respectively) compared to the
concentrations (850, 50 mg/mL, respectively) used to control diabetes.

Keywords: anti-virulence agents; quorum sensing; Pseudomonas aeruginosa; healthcare; vildagliptin;
metformin

1. Introduction

Pseudomonas aeruginosa is an aggressive pathogen responsible for severe infections
in different body systems, including the urinary and respiratory tracts and the vascular
and central nervous systems [1–3]. P. aeruginosa has been recently listed as a high-priority
pathogen by the World Health Organization (WHO) [4–6], and it is considered as one of
the most frequent etiologies of nosocomial infections and is associated with poor prog-
nosis [7–9]. Naturally, P. aeruginosa has an intrinsic resistance to several antibiotics due
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to low outer membrane permeability [10,11]. Additionally, prolonged and recurrent ex-
posure to bactericidal antibiotics in opportunistic pathogens leads to the emergence of
antibiotic-resistant strains [9,12,13]. The establishment of bacterial infections has been re-
lated to biofilms, rugose small colony variants (RSCVs), hetero-resistance, and conventional
antibiotic resistance [14,15]. Notably, P. aeruginosa had a wide range of antibiotic-tolerant
and -resistant phenotypes at single-cell as well as population levels [16]. To overcome
this encountered bacterial resistance, novel treatment tactics have to be introduced into
treatment regimens [13,17]. Targeting bacterial virulence could be a possible option that
disarms P. aeruginosa without exerting any selective pressure.

In order to cause infection, P. aeruginosa possesses a variety of virulence factors, which
contribute to successful colonization, dissemination, and infection [18,19]. Pyocyanin
is one of the most unique and important P. aeruginosa virulence factors that have a pro-
tective effect against harsh environmental conditions and an antimicrobial effect against
competitors [20,21]. The redox-active molecule pyocyanin also contributes to biofilm for-
mation, host tissue damage, and impaired organ function [5,22]. P. aeruginosa produces
diverse extracellular enzymes including proteases, hemolysin, elastase, and lipase to es-
tablish its infection in the host tissues [8,11]. Additionally, P. aeruginosa exhibits many
forms of motility, which have a crucial role in host colonization, dissemination, and host
immune evasion [23,24]. Swarming motility in P. aeruginosa is a multicellular adaptation
used for surface translocation that has been correlated with bacterial virulence and adaptive
resistance to antibiotics [25,26].

Owing to the capacity of P. aeruginosa to form biofilm, it can successfully establish
infections, including cystic fibrosis, chronic otitis media, chronic wound infection, and im-
planted medical device-associated infection, within susceptible hosts [27]. The sophisticated
biofilm structure provides bacterial persistence against harsh environmental conditions,
host defenses, and antimicrobial therapy [28,29]. The formation of biofilms is under the
regulation of numerous mechanisms including quorum sensing (QS). Interestingly, QS
systems in P. aeruginosa comprise four QS signaling mechanisms; two are Lux-type LasR/I,
RhlR/I, and the orphan Lux-type analog IqsR which responds to diverse inducers, besides
the particular pseudomonal non-Lux type PqsR which senses its own cognate produced
by pqsA-D encoding genes [3,30,31]. That reflects the magnificent controlling QS systems
orchestrating P. aeruginosa pathogenesis in different conditions by sensing diverse autoin-
ducers, and in turn controlling a variety of genes implicated in bacterial virulence that ease
the infection establishment and developing of antibiotic resistance [8,32–36]. In this context,
there is a persistent demand to develop new approaches to control P. aeruginosa virulence
and conquer its ability to develop resistance to antibiotics.

In this direction, it is essential to find new antibiotics; however, the quick emergence
of resistance within a short period could result in great economic, time, and effort loss.
Alternatively, it was suggested to develop or even repurpose known drugs to serve as
anti-virulence agents that could offer an efficient way to overcome bacterial resistance and
financial hurdles [37–41]. Drug repurposing refers to the identification of new indications
for existing drugs or the application of newly discovered mechanisms of action for known
drugs [42,43]. The repurposing of old drugs for the treatment of antimicrobial-resistant
pathogens has been explored as an alternative strategy in the field of antimicrobial drug
discovery [44,45]. In the context of repurposing drugs for antimicrobial activity, there have
been increasing reports of approved drugs being identified for this purpose [30,46–49].
Repositioning of non-antibiotic drugs as an alternative to antibiotics has become an attrac-
tive option due to the global spread of microbial resistance and the high costs and slow
pace in the discovery of new antibiotics [45,50,51].

The main hypothesis of employing anti-virulence agents in diminishing bacterial resis-
tance depends on the facts that (i) anti-virulence agents should not affect bacterial growth
and hence do not cause bacteria to develop resistance [52,53], (ii) anti-virulence agents could
attenuate the bacterial pathogenesis enabling the host immunity to neutralize the invading
bacteria [53,54], and (iii) depending on the key role of QS systems in controlling bacterial
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virulence, anti-QS agents are proposed as efficient anti-virulence candidates [39,55,56].
Gliptins are a class of antidiabetic drugs that are dipeptidyl peptidase-4 inhibitors (DPI-4s)
used for improving β-cell health and controlling blood glucose levels in diabetes mellitus
type 2 [57]. In one of our leading studies, a molecular docking study was conducted to
evaluate the gliptins’ binding affinities to P. aeruginosa and Staphylococcus aureus, and it
was found that gliptins have anti-QS activities against these bacteria, showing in vitro and
in vivo ability to diminish bacterial pathogenesis [3]. Metformin and vildagliptin are two
commonly prescribed medications for the management of diabetes. Metformin, a biguanide,
primarily works by reducing hepatic glucose production, improving insulin sensitivity,
and decreasing intestinal glucose absorption [58]. On the other hand, vildagliptin, a DPP-4
inhibitor, enhances glycemic control by inhibiting the enzymatic degradation of incretin
hormones, which play a crucial role in regulating glucose metabolism [3]. When used in
combination, metformin and vildagliptin have demonstrated a synergistic effect in the
treatment of diabetes. The combination therapy not only addresses the underlying insulin
resistance but also targets the impaired incretin pathway. By leveraging the complementary
mechanisms of action, the dual therapy offers improved glycemic control and a reduced
risk of hypoglycemia compared to individual monotherapy options [59,60]. Additionally,
studies have suggested that the metformin/vildagliptin combination may have additional
benefits beyond glycemic control, such as potential cardiovascular protection and weight
management [61]. Interestingly, metformin showed significant in vitro antibacterial [62–64]
and anti-virulence activities [52,65]; however, it lacks in vivo effectiveness [52]. Vildagliptin
is a cyanopyrrolidine-based hypoglycemic DPI-4 drug [57] that showed a considerable
ability to hinder the QS receptors and downregulate their encoding genes [52,65]. Met-
formin is combined with vildagliptin as synergistic oral hypoglycemic tablets, in different
concentrations [66]. The current study aimed to evaluate the anti-QS and anti-virulence
efficacy of metformin and vildagliptin combinations against P. aeruginosa.

2. Materials and Methods
2.1. Media and Chemicals

Trypticase soya broth (TSB), Mueller Hinton (MH) broth and agar, Luria–Bertani (LB)
broth, and trypticase soya agar (TSA) were obtained from Oxoid (Hampshire, UK). The
chemicals, including dimethyl sulfoxide (DMSO), resazurin dye, crystal violet, and glacial
acetic acid, were obtained from Sigma–Aldrich (St. Louis, MO, USA).

2.2. Bacterial Strain and Growth Condition

P. aeruginosa (PAO1) was provided by the Department of Microbiology, Faculty of
Pharmacy, Mansoura University. PAO1 was grown aerobically on trypticase soya agar at
37 ◦C. For long-term storage, PAO1 was maintained in Muller Hinton broth with glycerol
(10–15%) and kept at −80 ◦C.

2.3. Detection of Minimum Inhibitory Concentrations (MICs)

The broth microdilution method was employed to determine the MIC of metformin
or vildagliptin separately or metformin and vildagliptin in combination against the PAO1
strain following the Clinical and Laboratory Standards Institute guidelines (CLSI, 2016) [38].
Briefly, 2-fold serial dilutions of vildagliptin or metformin were prepared in MH broth and
added into a 96-well microtiter plate. PAO1 overnight culture in MH broth was diluted
to an approximate cell density of 1 × 106 CFU/mL. The adjusted PAO1 suspensions were
added to wells with a final concentration of 5 × 105 CFU/mL and incubated overnight at
37 ◦C. The MICs were considered as the lowest concentrations of metformin or vildagliptin
that inhibited the growth of PAO1.
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2.4. Determination of Effect of Sub-MICs of Metformin and Vildagliptin on PAO1 Growth and
Metabolic Activity

The effect of metformin or vildagliptin on PAO1 growth and metabolic activity was
evaluated by measuring the optical density of bacterial suspension and Alamar Blue assay,
respectively. PAO1 was cultured in TSB broth containing metformin and vildagliptin at
sub-MICs in addition to TSB broth as an untreated control. After incubation, bacterial
suspension was measured at 600 nm [3,65].

A stock solution of resazurin dye was made in phosphate-buffered saline (PBS)
(6.5 mg/mL). Treated cells as well as control cells were collected, washed twice, and
then resuspended in PBS. Resazurin (100 µL) and cell suspension (900 µL) were added and
incubated at 37 ◦C in the dark for 4 h. A blank of sterile PBS with resazurin was included.
Then, the samples were centrifuged, and the fluorescence intensity of the supernatant
containing the reduced resazurin was detected at 590/560 nm (emission/excitation) [67].

2.5. Phenotypic Characterization of P. aeruginosa Virulence

Sub-MICs of metformin or vildagliptin were concurrently used to assess their anti-
virulence activity against PAO1.

2.5.1. Pyocyanin Assay

The effect of metformin or vildagliptin at sub-MICs on pyocyanin biosynthesis was
determined as described previously [68,69]. An overnight culture of PAO1 in TSB broth
was diluted to an OD600 of 0.4. The diluted suspension (10 µL) was inoculated in 1 mL of
LB broth in the presence and absence of sub-MICs of metformin or vildagliptin separately
or metformin and vildagliptin in combination. After 48 h incubation at 37 ◦C, the cultures
were centrifuged, and the absorbance of pyocyanin in the supernatants was measured at
691 nm.

2.5.2. Oxidative Stress Resistance Assay

The effect of metformin or vildagliptin separately or metformin and vildagliptin
in combination at sub-MICs on pyocyanin-mediated resistance to oxidative stress was
evaluated by the cup diffusion method [52,70]. An overnight culture of PAO1 (100 µL) was
uniformly spread on the surface of TSA plates supplemented with sub-MICs of metformin
and/or vildagliptin. Cups were made into agar plates and filled with 20 µL of hydrogen
peroxide (1.5%). The plates were overnight incubated aerobically at 37 ◦C, and the diameters
of the inhibition zones were measured in mm.

2.5.3. Skim Milk Broth Assay for Total Protease Activity

The effect of metformin or vildagliptin separately or metformin and vildagliptin
in combination at sub-MICs on PAO1 total protease production was assessed using a
modified skimmed milk broth method [71,72]. PAO1 was grown overnight in MH broth in
the presence of sub-MICs of metformin and/or vildagliptin. Then, the bacterial suspensions
were centrifuged, and the supernatants (500 µL) were added to 1.25% skimmed milk (1 mL)
at 37 ◦C for 1 h. The optical density of skimmed milk was measured at 600 nm and
compared to untreated control.

2.5.4. Biofilm Inhibition Assay

The PAO1 ability to form biofilms in the presence of sub-MICs of metformin or
vildagliptin separately or metformin and vildagliptin in combination was examined by
employing the modified method of Stepanovic et al. [73,74]. Briefly, suspensions of PAO1
overnight growth were adjusted to 1 × 106 CFU/mL and transferred in aliquots of 100 µL
to the wells of 96-well sterile microtiter plates, to be incubated for 24 h at 37 ◦C. Then the
planktonic cells were aspirated and the wells were washed 3 times with sterile water. The
formed biofilms were fixed with aliquots of 100 µL of 99% methanol for 20 min. Then, the
wells were stained for 20 min with crystal violet (1%), and the excess dye was washed out.
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After drying in air, the dye was eluted by the glacial acetic acid (33%), and the absorbances
were measured at 590 nm.

2.5.5. Motility Inhibition Assay

The influence of metformin or vildagliptin separately or metformin and vildagliptin
in combination at sub-MICs on swarming motility was investigated as described previ-
ously [48,75]. Prior to use, MH agar plates were dried overnight at room temperature.
Two-microliter overnight cultures of untreated and treated PAO1 were spotted on the sur-
face of swarming agar plates. After incubation at 37 ◦C for 24 h, the diameters of swarming
motility were measured, and plates were photographed.

2.6. Quantitative RT-PCR of QS-Encoding Genes

Cell pellets of overnight culture of control and treated PAO1 were obtained by cen-
trifugation. A TRIzol RNA extraction and purification kit (Life Technologies, Carlsbad, CA,
USA) was used according to manufacturer protocol. Extracted RNA was evaluated using a
NanoDrop (ND-1000 spectrophotometer) (Wilmington, DE, USA) at 260 nm and 280 nm to
ensure the quality of RNA yield and saved at −80 ◦C [76,77].

In this study, the expression levels of the QS-encoding genes were determined us-
ing the comparative threshold cycle (∆∆Ct) method, which was described in previous
literature [76,78]. To standardize the expression levels, the housekeeping gene ropD was
used as a reference. The cDNA was synthesized using the high-capacity cDNA reverse
transcriptase kit from Applied Biosystem (Waltham, MA, USA), and amplification was
performed using the Syber Green I PCR Master Kit from Fermentas (Waltham, MA, USA).
The Step One instrument from Applied Biosystem was used for the amplification process.
The primers utilized in this study are listed in [2,47,69,79].

2.7. Histopathological Evaluation of the Protective Effect of Metformin–Vildagliptin against PAO1

In order to assess the anti-virulence activity of the combination of metformin and
vildagliptin in vivo, sub-MIC intra-peritoneal injections of metformin and vildagliptin
were administered to three-week-old Mus musculus (albino mice), and histopathological
examination of kidney and liver tissues was carried out, following methods previously
described in the literature [38,47,72]. The mice were divided into five groups of five
individuals each. The first group received intra-peritoneal injections of metformin and
vildagliptin combination-treated PAO1 (1 × 106 CFU/mL) as a test group. The second
and third groups received intra-peritoneal injections of untreated PAO1 (1 × 106 CFU/mL)
or DMSO-treated PAO1, serving as positive control groups. The fourth and fifth groups
were either injected with sterile PBS or kept un-injected to serve as negative control groups.
After a five-day observation period, the mice were euthanized by cervical dislocation, and
their livers and kidneys were removed and rinsed with normal saline. The tissues were
then fixed in neutral buffered formalin (10%). To prepare the tissues for histopathological
examination, the samples were dehydrated with increasing concentrations of ethanol (70%,
90%, and 100%) and cleared in xylol. The tissues were then embedded in paraffin wax, and
5µm thick sections were cut using a rotatory microtome. The sections were stained with
hematoxylin and eosin (H&E) for observation under a light microscope.

2.8. Virtual Study to Evaluate Metformin and Vildagliptin Affinity to Bind to QS Receptors

P. aeruginosa crystal structures of LasR (PDB code: 1RO5/ 2.30 Å) [80], QscR (PDB
code: 6CC0/ 2.50 Å) [81], and PqsR (PDB code: 6MVN/ 2.20 Å) [82] were retrieved from
the RCSB Protein Data Bank (https://www.rcsb.org/, accessed on 25 September 2022) [69].
The receptor structures were prepared by following the QuickPrep protocol on Molecular
Operating Environment (MOE 2019.012) with Amber10: EHT forcefield [31]. Vildagliptin
and metformin were obtained from the PubChem database (https://pubchem.ncbi.nlm.
nih.gov/, accessed on 18 September 2022) as canonical SMILES. Each drug structure was
prepared individually through energy minimization using 0.1 Kcal/mol/Å2 gradient RMS,
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followed by protonate 3D at physiological pH 7.4. Docking procedures were performed
through Alpha triangle placement with Amber10: EHT forcefield.

2.9. Statistical Analysis

The experiments were carried out in triplicate, and the results are presented as the
mean ± SD. The statistical significance of the inhibitory activities was evaluated using
unpaired one-way ANOVA followed by Dunnett posttest in Graph Pad Prism 8, and
p values below 0.05 were considered to be statistically significant.

3. Results
3.1. Determination of Metformin and/or Vildagliptin MIC Values against PAO1

The minimum concentrations of metformin and vildagliptin that inhibited visible
PAO1 growth were 100 and 20 mg/mL, respectively. The sub-MICs of metformin and
vildagliptin (10 and 1.25 mg/mL, respectively) were used in combination to assess their
inhibitory activities on PAO1 virulence in the former experiments.

3.2. Metformin and/or Vildagliptin at Sub-MICs Did Not Affect Bacterial Growth or Metabolic Activity

Sub-MICs of metformin and vildagliptin did not affect P. aeruginosa PAO1 growth,
as indicated by optical densities of overnight cultures grown in the presence or absence
of metformin or vildagliptin separately or metformin and vildagliptin in combination at
sub-MICs (Figure 1A). Moreover, the Alamar Blue assay was performed and showed no
significant difference in the metabolic activity of metformin- and/or vildagliptin-treated
cells compared to untreated cells (Figure 1B). These results indicate that sub-MICs of
metformin and/or vildagliptin have no effect on either bacterial growth or metabolic
activity. These results could exclude that the anti-virulence activities of metformin and
vildagliptin are due to PAO1 inhibition of growth.
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Figure 1. Sub-MICs of metformin and/or vildagliptin did not affect PAO1 growth or metabolic
activity. (A) The effect of sub-MICs of metformin and vildagliptin on PAO1 growth as indicated by
bacterial optical density at 600 nm. (B) The effect of sub-MICs of metformin and vildagliptin on PAO1
metabolic activity as indicated by Alamar Blue assay (insert photograph represents reduced resazurin
dye in untreated and treated PAO1 cells on the left and right, respectively). Data shown represent the
mean ± standard error from triplicate experiments (ns: non-significant).
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3.3. Metformin and Vildagliptin Combination at Sub-MICs Reduced Pyocyanin Production

The impact of the sub-MICs of metformin and vildagliptin on pyocyanin biosynthesis
was spectrophotometrically estimated. While vildagliptin at sub-MIC did not show a
significant effect on pyocyanin production, metformin at sub-MIC showed a significant
inhibitory effect. Cells treated with metformin and vildagliptin exhibited significantly
reduced pyocyanin production (29.3% ± 3.1) compared to untreated cells and to only
metformin- or vildagliptin-treated bacterial cells (Figure 2).
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Figure 2. Sub-MICs of metformin and vildagliptin significantly reduced pyocyanin biosynthesis
in PAO1. Pyocyanin production was significantly inhibited in treated PAO1 cells compared to
untreated control and only metformin- or vildagliptin-treated bacterial cells. Data shown represent
the mean ± standard error from three experiments (***: p value < 0.001; ns: non-significant).

3.4. Metformin and Vildagliptin at Sub-MICs Sensitized PAO1 to Oxidative Stress

The effect of metformin and vildagliptin on pyocyanin-mediated oxidative stress was
assessed by hydrogen peroxide susceptibility assay. Bacteria treated with metformin and
vildagliptin in combination at sub-MICs showed a significant reduction in resistance to
oxidative stress (71.8% ± 3.2%) compared to control untreated cells, as indicated by the
diameter of the hydrogen peroxide inhibition zone (Figure 3). It is worth mentioning that
metformin at sub-MIC showed a significant reduction in oxidative stress, in contrast to
vildagliptin which had no effect at sub-MIC.

3.5. Metformin and Vildagliptin at Sub-MICs Reduced Total Protease Production

The effect of metformin and vildagliptin on PAO1 proteolytic activity was estimated
using the modified skimmed milk broth assay method. Bacteria treated with the combi-
nation of metformin and vildagliptin at sub-MICs exhibited significantly lower skim milk
proteolysis (81.9%± 1.6%) compared to untreated PAO1 (Figure 4). Vildagliptin at sub-MIC
had no significant effect on protease production, while metformin at sub-MIC significantly
reduced the production of proteases.
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showed a significant inhibitory effect on oxidative stress, while vildagliptin at sub-MIC did not
show a significant effect. Data shown represent the mean ± standard error from three experiments
(**: p value < 0.01; ***: p value < 0.001; ns: non-significant).
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3.6. Metformin and Vildagliptin at Sub-MICs Inhibited Biofilm Formation

The effect of metformin and vildagliptin on PAO1 biofilm formation was assessed
by the crystal violet quantification method. Bacterial cells treated with metformin and
vildagliptin at sub-MICs exhibited a significantly reduced biofilm-forming capability
(43.8 % ± 1.6%) compared to control untreated cells or cells treated with only metformin or
vildagliptin at sub-MICs (Figure 5). Vildagliptin at sub-MIC had no significant influence
on biofilm formation, while metformin at sub-MIC significantly inhibited the formation of
bacterial biofilm.
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Figure 5. Sub-MICs of metformin and vildagliptin inhibited PAO1 biofilm formation, as evaluated
by crystal violet quantification assay. While metformin at sub-MIC significantly inhibited biofilm
formation, vildagliptin had no significant effect. Data shown represent the mean ± standard error
from three experiments (**: p value < 0.01; ***: p value < 0.001; ns: non-significant).

3.7. Metformin and Vildagliptin at Sub-MICs Decreased PAO1 Swarming Motility

The effect of metformin and vildagliptin on PAO1 swarming motility was evaluated.
Treated cells showed decreased capacities to swarm on an agar surface (18.27% ± 1.5)
compared to control untreated cells or cells treated with only metformin at sub-MIC or
vildagliptin at sub-MIC (Figure 6). Vildagliptin at sub-MIC had no significant influence on
bacterial swarming motility, while metformin at sub-MIC showed a significant inhibitory effect.

3.8. Metformin and Vildagliptin at Sub-MICs Altered PAO1 QS Genes’ Expression

The influence of metformin and vildagliptin treatment on the expression of PAO1
QS-encoding genes was evaluated by quantitative real-time PCR. The expression levels of
rhlR, rhlI, lasR, lasI, pqsA, and pqsR were significantly decreased after PAO1 treatment
with sub-MICs of metformin or vildagliptin separately or metformin and vildagliptin in
combination compared to the untreated control (Figure 7).

3.9. Metformin and Vildagliptin Show Virtual Affinity to the Main Three Pseudomonas
QS Receptors

Molecular docking was performed to gain insights into the molecular interactions
of vildagliptin and metformin on P. aeruginosa quorum sensing receptors. There is no co-
crystallized ligand for P. aeruginosa LasR (PDB code: 1RO5), so the MOE site finder module
was utilized for active pocket prediction. Vildagliptin and metformin showed good binding
energy scores (S score = −5.8358 and −4.6581 Kcal/mol, respectively). The Carbonyl group
of vildagliptin exhibited H-bond interaction with the basic Arg30. The protonated amino
group of metformin formed a H-bond with Thr144, and one of the terminal amino groups
showed H-arene interaction with Phe27. For P. aeruginosa QscR (PDB code: 6CC0), the co-
crystalized ligand showed a docking energy score of −10.1568 Kcal/mol. The protonated
amino group of both vildagliptin and metformin exhibited ionic bond interaction with the
acidic Asp75. Moreover, vildagliptin showed H-bonds with Trp62 and Ser38. Metformin
formed a H-bond with Ser129 and H-arene interaction with Trp90. Binding energy scores
of vildagliptin and metformin are promising: −7.2594 and −5.2485 Kcal/mol, respectively.
For P. aeruginosa pqsR (PDB code: 6MVN), the co-crystalized ligand showed a docking
energy score of −9.1325 Kcal/mol. Vildagliptin formed H-bonds with Tyr47, Arg61, and
Asp73 with a binding energy score of −6.0766 Kcal/mol. Metformin formed H-bond
interaction with Tyr56, Thr75, and Asp73 and formed H-arene interaction with Trp88 with
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a binding energy score of −5.4563 Kcal/mol. The simultaneous interactions of vildagliptin
and metformin on P. aeruginosa LasR, QscR, and PqsR are described in Figure 8.
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Figure 6. Sub-MICs of metformin and vildagliptin inhibited PAO1 swarming motility. Significant
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error from three experiments (***: p value < 0.001; ns: non-significant).
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Figure 7. Sub-MICs of metformin and vildagliptin altered PAO1 QS gene expression. RT-qPCR re-
vealed decreased expression of QS-encoding genes (A) rhlR, (B) rhlI, (C) lasR, (D) lasI, (E) pqsR, and 
(F) pqsA in treated PAO1 cells compared to control untreated bacteria. Data shown represent the 
mean ± standard error from three experiments (*: p value ≤ 0.05; **: p value < 0.01; ***: p value < 0.001; 
ns: non-significant). 
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Figure 7. Sub-MICs of metformin and vildagliptin altered PAO1 QS gene expression. RT-qPCR
revealed decreased expression of QS-encoding genes (A) rhlR, (B) rhlI, (C) lasR, (D) lasI, (E) pqsR,
and (F) pqsA in treated PAO1 cells compared to control untreated bacteria. Data shown represent the
mean± standard error from three experiments (*: p value≤ 0.05; **: p value < 0.01; ***: p value < 0.001;
ns: non-significant).
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ited severe congestion of liver blood vessels, perivascular fibrosis, and hydropic degener-
ation of hepatocytes (Figure 9A–C), as well as degenerative changes, swelling, and areas 
of cellular proliferation in renal tubules and caseous necrosis in kidney tissues (Figure 
9D–E). On the other hand, mice injected with P. aeruginosa treated with metformin and 
vildagliptin showed only mild infiltration of von Kupffer cells, vacuolation of few hepato-
cytes, and mild congestion in hepatic blood vessels (Figure 9G–I). Furthermore, metfor-
min and vildagliptin reduced P. aeruginosa pathogenesis in kidney tissues, where mild 
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Figure 8. (A) Three-dimensional vildagliptin–P. aeruginosa LasR (PDB code: 1RO5); (B) 3D metformin–
P. aeruginosa LasR (PDB code: 1RO5); (C) 3D vildagliptin–P. aeruginosa QscR (PDB code: 6CC0);
(D) 3D metformin–P. aeruginosa QscR (PDB code: 6CC0); (E) 3D vildagliptin–P. aeruginosa pqsR
(PDB code: 6MVN) interaction diagram; (F) 3D metformin–P. aeruginosa PqsR (PDB code: 6MVN)
interaction diagram. Vildagliptin and metformin are thick yellow and green sticks, respectively.
H-bonds and H-arene bonds are shown as green and cyan dots, respectively.
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3.10. Metformin and Vildagliptin Diminish the P. Aeruginosa Pathogenesis

Representative photomicrographs were taken of the renal and liver tissues of mice
infected with P. aeruginosa and treated with the combination of metformin and vildagliptin
at sub-MICs to demonstrate its effectiveness in reducing P. aeruginosa-induced pathogenesis.
The liver tissues isolated from mice injected with untreated P. aeruginosa exhibited severe
congestion of liver blood vessels, perivascular fibrosis, and hydropic degeneration of
hepatocytes (Figure 9A–C), as well as degenerative changes, swelling, and areas of cellular
proliferation in renal tubules and caseous necrosis in kidney tissues (Figure 9D–F). On
the other hand, mice injected with P. aeruginosa treated with metformin and vildagliptin
showed only mild infiltration of von Kupffer cells, vacuolation of few hepatocytes, and mild
congestion in hepatic blood vessels (Figure 9G–I). Furthermore, metformin and vildagliptin
reduced P. aeruginosa pathogenesis in kidney tissues, where mild diffuse cystic dilation
of renal tubules, fewer focal areas of cellular infiltration, and normal renal cortex were
observed (Figure 9J–L). These results indicate that the combination comprising metformin
and vildagliptin at sub-MICs has a beneficial effect in reducing P. aeruginosa-induced
pathogenesis.
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Figure 9. Metformin and vildagliptin diminished the P. aeruginosa pathogenesis. The mice were
divided into 5 groups of five female, three-week-old mice each. The test group was intra-peritoneally
injected with metformin and vildagliptin combination-treated PAO1 (1 × 106 CFU/mL), and there
were two negative control groups (un-injected and PBS-injected) and two positive groups (injected
with untreated PAO1 or DMSO-treated PAO1). After observation for 5 days, the mice were euthanized,
and their livers and kidneys were isolated for examination. Histopathological photomicrographs of
the liver and kidney tissues (H&E × 200) from infected mice with untreated P. aeruginosa or with met-
formin and vildagliptin combination-treated P. aeruginosa mice groups were taken. (A) Photomicrograph
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of H&E-stained liver section of group infected with untreated PAO1 showing severe conges-
tion of hepatic blood vessel (arrow) with perivascular inflammatory cell infiltration (arrowhead).
(B) Photomicrograph of H&E-stained liver section of group infected with untreated PAO1 show-
ing caseous necrosis (tailed arrows) with perivascular inflammatory cell infiltration (arrow) and
individualization of some hepatocytes. (C) Photomicrograph of H&E-stained liver section of group
infected with untreated PAO1 showing subcapsular congestion of both blood sinusoids and blood
vessels (arrowhead) with nuclear hyperchromasia of some hepatocytes (tailed arrow) and focal
leucocytic cellular proliferation (arrow). (D) Photomicrograph of H&E-stained kidney section of
group infected with untreated PAO1 showing focal leucocytic cellular proliferation (arrows) with
degeneration of some renal tubules represented by cloudy swelling (arrowhead) in renal cortex.
(E) Photomicrograph of H&E-stained kidney section of group infected with untreated PAO1 showing
vacuolation of renal epithelium tubules of some renal tubules (arrowhead) in renal cortex. (F) High
power of the previously demonstrated photomicrograph to show vacuolation of renal epithelium
tubules of some renal tubules (arrowhead) in renal cortex. (G) Photomicrograph of H&E-stained
liver section of group infected with tested combination-treated PAO1 showing apparently normal
hepatic parenchyma architecture with mild hepatic nuclear hyperchromasia (arrows) and sinusoidal
congestion (arrowhead). (H) Photomicrograph of H&E-stained liver section of group infected with
tested combination-treated PAO1 showing mild subcapsular hepatic nuclear hyperchromasia (arrows)
and dilation of hepatic sinusoids (arrowhead). (I) Photomicrograph of H&E-stained liver section
of group infected with tested combination-treated PAO1 showing mild perivascular leucocytic cell
infiltration (arrowhead). (J) Photomicrograph of H&E-stained kidney section of group infected with
tested combination-treated PAO1 showing mild endotheliosis (arrows) with increased thickness of
blood vessels (arrowhead) with perivascular edema (stars). (K) Photomicrograph of H&E-stained
kidney section of group infected with tested combination-treated PAO1 showing intertubular leuco-
cytic cell infiltration (arrows). (L) Photomicrograph of kidney section of group infected with tested
combination-treated PAO1 showing fewer focal areas of cellular infiltration (arrows) (bar = 100 µm).

4. Discussion

P. aeruginosa is one of the most notable human pathogens; it uses a variety of com-
petitive and cooperative strategies to thrive in different environments, using numerous
virulence factors [83–85]. P. aeruginosa possesses most known antimicrobial resistance mech-
anisms, which is why common empirical antibiotic treatments are expected to be ineffective
in most cases [86,87]. Therefore, novel therapeutic approaches are required to develop
new antimicrobials [31,88]. Targeting the QS systems has advantages as it avoids directly
affecting bacterial growth and decreases the emergence of resistance [89,90]. The current
work aimed to test the anti-QS activities of metformin and vildagliptin in combination
against P. aeruginosa.

Metformin and vildagliptin are used in combination to control diabetes type II at
concentrations of 500/50 mg/mL [66]. The MICs of metformin or vildagliptin against
P. aeruginosa were low (100 and 20 mg/mL, respectively) as compared to the concentrations
used to control hyperglycemia. The main concept of targeting bacterial QS is attenuating
the virulence without influencing the bacterial growth [52,91]; thus, the anti-QS and anti-
virulence activities of metformin and/or vildagliptin were assessed at sub-MICs. The
selected sub-MICs were 10 and 1.25 mg/mL for metformin and vildagliptin, respectively;
these concentrations keep the same ratio of metformin to vildagliptin (almost 10:1) as
that used in the hypoglycemic tablets. There was no effect of metformin or vildagliptin
separately or metformin and vildagliptin in combination at sub-MICs on bacterial growth.

P. aeruginosa possesses three main QS systems that control its virulence: two LuxI/LuxR
QS systems and a non-LuxI/LuxR QS system called the PQS system [89]. LasI and RhlI
synthases synthesize autoinducers C12-homoserine lactone and butanoyl homoserine lac-
tone, respectively, to be sensed by QS receptors LasR and RhlR, respectively [92,93]. It is
worth mentioning that QscR is another LuxR homolog that senses the autoinducers made
by LasI [94]. Additionally, there is another non-Lux type QS receptor, namely PQS, which
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senses the autoinducers that are encoded on pqsA-D genes [95]. By the binding of autoin-
ducers to their cognate receptors, they are able to interact with short DNA sequences of
the bacterial chromosome such as Lux boxes controlling the expression of the downstream
virulence genes [30,46,96]. Surprisingly, metformin or vildagliptin separately or metformin
and vildagliptin in combination at sub-MICs significantly downregulated the expression
of the three QS-encoding genes. Moreover, metformin in combination with vildagliptin
lowered the expression of LasI/R-encoding genes as compared to single drugs. A docking
study was conducted to evaluate the affinity of metformin and vildagliptin to the three
main P. aeruginosa QS receptors, LasR, RhlR, and PqsR. The results showed a considerable
affinity of metformin or vildagliptin to bind and interfere with the QS receptors. Based on
these findings, it is supposed that metformin and vildagliptin possess anti-QS activities.

The roles of QS in controlling bacterial virulence have been extensively studied and
reviewed [90,97–100]. There is an important relation between biofilm formation and bac-
terial motility, it was found that non-motile bacterial mutants could lack the ability to
form biofilms and that bacterial mutants lacking the ability to form biofilms could be
non-motile [23,101–104]. The role of QS in the regulation of biofilm formation and bac-
terial motility is well studied [55,88,105–107]; intriguingly, metformin combined with
vildagliptin at sub-MICs significantly diminished both biofilm formation and swarming
motility. QS systems control a wide array of virulence factors in P. aeruginosa, including
the production of extracellular enzymes such as protease, elastase, and hemolysin besides
the characteristic P. aeruginosa bluish-green pigment pyocyanin [108,109]. The metformin
and vildagliptin combination at sub-MICs significantly diminished the production of pro-
tease and pyocyanin in P. aeruginosa. Pyocyanin is known to kill competing microbes and
mammalian cells through oxidation and reduction reactions [110]. In compliance with the
significant effect of the metformin and vildagliptin combination on reduction in pyocyanin,
the metformin and vildagliptin combination significantly reduced P. aeruginosa′s tolerance
to oxidative stress. In complete agreement with the significant effects of the metformin and
vildagliptin combination on reduction in virulence phenotypically, the in vivo results em-
phasized these findings. Histopathological photomicrographs of kidney and liver tissues
of injected mice revealed the alleviation of P. aeruginosa-induced pathogenesis.

In previous studies, the anti-QS and anti-virulence activities of metformin and
vildagliptin at sub-MIC, separately, were evaluated against P. aeruginosa [52] and Serratia
marcescens [65]. In agreement with the current results, metformin at sub-MIC acquired a
significant in vitro diminishing effect on the virulence of both P. aeruginosa and S. marcescens,
while it lacks any in vivo activity. Vildagliptin lacks both in vivo and in vitro anti-virulence
activities against P. aeruginosa and S. marcescens; however, it downregulated the expression
of QS-encoding genes in P. aeruginosa [52] and virulence-encoding genes in S. marcescens [65].
Furthermore, vildagliptin and metformin showed affinity to bind to the QS receptors LasR,
QscR, and PqsR in P. aeruginosa [52] and SmaR in S. marcescens [65]; however, the docking
scores of metformin were higher than those of vildagliptin. The low docking score of
vildagliptin was attributed to the planar nature of its bulky aliphatic adamantyl group,
besides its rapid conformational changes which could be a barrier for fitting on QS recep-
tors efficiently, which could explain the in vitro and in vivo inactivity [52]. On the other
hand, metformin with its small very active biguanide moiety does not fit all active pockets
on the QS receptors, but it is able to fit and sufficiently block QS receptors in a way that
could result in significant anti-QS activities in vitro. The metformin activity is due to the
non-ionized form that is very sensitive to acidic pH and rendered in an ionized inactive
form, which may explain the in vivo inactivity due to a decrease in pH during microbial
growth [111] that in turn inactivates metformin.

In the current study, the metformin and vildagliptin combination significantly dimin-
ished the virulence of P. aeruginosa in vitro and showed obvious mitigation of its pathogen-
esis in vivo. Metformin was proven to be an efficient efflux pump inhibitor [112,113] that
could increase the internalization of vildagliptin in bacterial cells. Taking into consideration
the downregulation effects of vildagliptin and metformin on the expression of QS-encoding
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genes, the increased internalized vildagliptin could bind to and hinder the cytosolic QS
receptors [92], which could explain the activity of the metformin and vildagliptin com-
bination in vivo. Another consideration is the basic nature of vildagliptin [114], which
could raise the pH to keep the unionized active form of metformin during bacterial growth,
which also may enhance the in vivo activity of the combination.

In summary, the metformin and vildagliptin combination showed significant anti-
virulence activities in vitro and in vivo in very low concentrations (10/1.25 mg/mL). Bear-
ing in mind that metformin and vildagliptin are used together as an antidiabetic in con-
centrations of 500/50 or 500/100, it is advisable to prescribe this combination to control
bacterial infections besides its main purpose of use as an antidiabetic. Furthermore, these
findings give the chance to use this combination in very low doses to be tested as an anti-
virulence and antibiotic adjuvant without an effect on blood glucose levels; however, this
requires further pharmacological assessment to determine the effective dose and exclude
any side effects.

5. Conclusions

The strategy of repurposing drugs is a highly effective approach to discovering new an-
timicrobial agents. This study was conducted to investigate the anti-virulence properties of
the antidiabetic metformin–vildagliptin combination at sub-MICs against P. aeruginosa. The
results reveal that the vildagliptin–metformin combination considerably reduces biofilm
formation, bacterial motility, and the production of virulent extracellular enzymes and
pyocyanin pigment. Moreover, the drug combination substantially enhances the suscepti-
bility of P. aeruginosa to oxidative stress, which indicates improved immunity in eliminating
bacterial cells. In line with the in vitro results, the histopathological photomicrographs of
mice receiving the metformin–vildagliptin combination show significant protection against
P. aeruginosa and the alleviation of inflammation resulting from P. aeruginosa-induced patho-
genesis. The anti-virulence activities of the metformin–vildagliptin combination can be
attributed to the anti-QS activities of both metformin and vildagliptin, as both exhibit
considerable affinity to QS receptors. Furthermore, the combination considerably downreg-
ulates the expression of the QS-encoding genes in P. aeruginosa. The effectiveness of this
combination at a very low concentration encourages extending the pharmaceutical and
pharmacological studies to attest to the possible clinical use of metformin–vildagliptin as
an anti-virulence drug.
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