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Abstract: Although immunotherapy is already a staple of cancer care, many patients may not
benefit from these cutting-edge treatments. A crucial field of research now focuses on figuring out
how to improve treatment efficacy and assess the resistance mechanisms underlying this uneven
response. For a good response, immune-based treatments, in particular immune checkpoint inhibitors,
rely on a strong infiltration of T cells into the tumour microenvironment. The severe metabolic
environment that immune cells must endure can drastically reduce effector activity. These immune
dysregulation-related tumour-mediated perturbations include oxidative stress, which can encourage
lipid peroxidation, ER stress, and T regulatory cells dysfunction. In this review, we have made an
effort to characterize the status of immunological checkpoints, the degree of oxidative stress, and the
part that latter plays in determining the therapeutic impact of immunological check point inhibitors
in different neoplastic diseases. In the second section of the review, we will make an effort to assess
new therapeutic possibilities that, by affecting redox signalling, may modify the effectiveness of
immunological treatment.

Keywords: immune checkpoint; immune check points inhibitor; oxidative stress; cancer; immune
system; immunotherapy; immunosurveillance; T lymphocyte; PD-1; PD-L1

1. Introduction
1.1. General Considerations on Immunological Checkpoints and Oxidative Stress in Neoplasms

One strategy tumour cells have developed to evade immune surveillance is a changed
expression of the immunological checkpoint receptor programmed death receptor 1 (PD-1)
and its ligand, PD-L1 [1]. The ligand–receptor interactions that lead to the activation of
numerous immunological checkpoints also involve the cytotoxic T lymphocyte-associated
protein-4 (CTLA4), PDL2 receptors expressed on immune and tumour cells, and others [2]
(Figure 1). When PD-1 on cytotoxic T-cells binds to PD-L1 on the surface of cancer cells,
this inhibits T lymphocyte stimulation and immune escape. Probably, the primary method
of immunological resistance to cancer is the activation of specific immune checkpoint
mechanisms.

Immunotherapy reduces immunological tolerance by preventing the communication
between tumour cells and the immune system. Hence, it is anticipated that blocking im-
munological checkpoints will be a new cancer therapeutic method [1]. In fact, to prevent the
contact and hence restore antitumour immunity, monoclonal antibodies (mAbs) targeting
PD-1 or PDL1 have been produced. Over the past few years, a number of mAbs have been
registered in various tumour pathologies, and a number of further anti-PD-(L)1 mAbs are
presently undergoing clinical progress. The similar goal of blocking the checkpoint and
activating T cell-based immunotreatment has also been achieved via the development of
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peptides and small compounds that target PD-L1 [3]. Increasing evidence demonstrates
that immunotherapy techniques are highly effective at eliminating tumours, preventing
their reappearance, and have potential for future application [4].
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Figure 1. Immune checkpoint structure and interactions.

Immune checkpoint inhibitor (ICI) medications have had significant success; however,
most patients who receive ICI monotherapy do not experience sufficient long-term anti-
cancer effects [5]. The so-called “cold tumour” caused by defects in antigen presentation to
T cells, absence of T cell activation, lack or minority of activated T cell infiltration in tumour
tissues, and abundance of immune suppressor cells such as regulatory T cells (Tregs) and
myeloid-derived suppressor cells (MDSCs) is one of the main indicators of a poor response
to ICI therapy [6–9].

As a result, recent research on immunogenic cell death (ICD) has been conducted
extensively to study the field of cancer immunotherapy [10,11] and ways of reducing
oxidative stress (OS), which led to an improved immune response against the tumour [12].
In fact, OS is one of the most representative biological situations that cancer cells are
typically exposed to [13,14]. The raised intracellular amounts of reactive oxygen species
(ROS) are a feature of the cancer milieu, which is characterized by increased OS [15]. ROS
are extremely reactive oxygen compounds that include hydrogen peroxide, superoxide,
peroxides, and hydroxyl radicals. The activation of specific oncogenes, hypoxia, and
external stimuli such as chemotherapy and radiotherapy can all be linked to dysregulated
ROS in tumours cells.

Owed to abnormalities in DNA repair, protein degradation, and lipid peroxidation,
excessive ROS production might be fatal to cancer cells [16–18]. Consequently, OS has a
significant function in the emergence and growth of cancers as well as the management of
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neoplastic illnesses [19]. The intracellular biological redox steady state is disrupted when
cells are continuously exposed to environmental stress, such as UV radiation, metabolic
stress, and anti-cancer medications. Excessive ROS are then produced, which affects im-
mune dysfunction, signal transduction, cell growth, and cell death [20]. However, as
mentioned above, ROS may also cause DNA base modifications or sequence rearrange-
ments, DNA damage-derived miscoding lesions, and oncogene activation, all of which
work in concert to promote the growth and spread of tumours [21] (Figure 2). In actuality,
OS has a role in a number of malignancies, including those related to the brain, breast,
pancreatic adenocarcinoma, lung cancer, and others [22–28].
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1.2. Oxidative Stress and Immune System

Both immune effectors and tumour cells are influenced in a tumour microenvironment
(TME) when ROS concentrations are maintained at elevated levels. According to certain
studies, immune cells’ ability to act as antioxidants plays a role in their ability to combat
cancer [29,30]. Immune suppression takes place in the TME when the ROS level rises to
prevent immune cells from destroying tumours [31]. Furthermore, knowledge of the effects
of ROS on dendritic cells (DC), macrophages, natural killer (NK) cells, T cells, and B cells
has increased [32–34]. Because it affects both tumour cells and TME, oxidative stress has
been shown to either promote or inhibit the growth or spread of tumours [35].

Moreover, ROS have a substantial impact on how PD-1 and PD-L1 are expressed,
although it is not always clear how ROS and PD-(L)1 interact. Nonetheless, a number of
studies have indicated that ROS regulate PD-L1 expression [36]. Particularly important, a
considerable increase in the expression of PD-L1 was observed when cells were exposed to
a number of ROS inducers, including buthionine sulphoximine and the anticancer drug
paclitaxel. [37]. Many natural items, well-known medications, and experimental chemicals
were found to modulate the expression of PD-L1 and ROS.
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An important component of redox control and antioxidant defence is the thioredoxin
(Trx) system. It is made up of the crucial anticancer targets Trx and thioredoxin reductase
(TrxR). Anticancer drugs frequently target the Trx/TrxR system. The thi-oredoxin reductase
1 (TrxR1) enzyme, for instance, is a vital intracellular redox sensor and antioxidant enzyme
that is frequently overexpressed in a range of cancer types. It is inhibited by the organosele-
nium chemical ethaselen (BBSKE). Through the formation of two covalent connections with
the cysteine-497 and selenocystine-498 residues, BBSKE particularly targets the C-terminal
redox core of TrxR [38]. BBSKE’s suppression of TrxR1 causes cells to produce more ROS
due to inhibition of scavenging [39]. When taken with other anticancer drugs such sodium
selenite [40] and the multi-targeted tyrosine kinase inhibitor sunitinib [39], BBSKE has
demonstrated a synergistic effect. According to a recent publication, TrxR1 is inhibited by
BBSKE, or the enzyme is knocked down, in cancer cells, which lowers the amount of PD-L1
expression [41]. Nevertheless, prior to BBSKE exposure, a therapy with the antioxidant
N-acetylcysteine restored PD-L1 expression.

Similarly, the antipsychotic medicine trifluoperazine (TFP), which is also taken into
consideration for the treatment of cancer [42,43], deserves to be included as another ROS-
inducing substance. Recent research has shown that TFP increases ROS levels in colorectal
cancer cells while also raising PD-L1 expression in these cancer cells and PD-1 expression
in CD4+ and CD8+ T cells that infiltrate tumours [42].

Metformin and phenformin, two biguanide medications used to treat diabetes, have
also demonstrated anticancer activity both in vitro and in vivo. They both promote oxida-
tive stress-mediated apoptosis in cancer cells and inhibit PD-L1 expression, mainly via the
Hippo signalling pathway [44–47]. They also both enhance the production of ROS. It has
been shown that metformin promotes the interaction and phosphorylation of PD-L1 by the
AMP-activated protein kinase (AMPK) protein, leading to its abnormal glycosylation and
subsequent destruction [48,49]. They appear to increase the anticancer activity of PD-1 inhi-
bition, not diminish it, and hence they do not reduce the efficacy of anti-PD-1 therapy [50].
Immune checkpoint inhibitors combined with metformin were given to subjects affected
by melanoma or lung cancer [51,52]. By suppressing myeloid-derived suppressor cells
and lowering tumour cell oxygen consumption, these drugs might amplify PD-1 blocking.
Additionally, this would diminish intratumoural hypoxia [53].

The catechin by-product EGCG (epigallocatechin-3-gallate), which is prevalent in
green tea, can likewise lessen intracellular ROS production and stop the loss of antioxidants.
This natural substance can reduce the OS brought on by several stimuli, including, for
instance, arsenic and cigarette smoke [54–56]. It is a powerful immune–epigenetic mod-
ulator for the treatment and/or prevention of cancer [57,58] and has a variety of targets,
comprising histone deacetylases and metalloproteinases. Its anti-oxidative and free radical
scavenging properties have received a lot of attention [59]. It is interesting to note that
PD-L1 expression was shown to be decreased by EGCG in pulmonary tumour cell lines,
and that PD-L1 suppression by EGCG led to a recovery of T cell function [60].

The action of aryl hydrocarbon receptor (AhR) appears to be more complex [61]. Ini-
tially, AhR was identified as a transcription factor controlling xenobiotic response [62]. As
a result of ligand interaction, AhR is translocated into the nucleus where it heterodimerizes
with Aryl hydrocarbon Receptor Nuclear Translocator (ARNT) to create an active tran-
scription complex. In the absence of a ligand, AhR aggregates in the cytoplasm with other
chaperone proteins. The cytochrome P450 enzymes, which include CYP1A1, CYP1A2, and
CYP1B1, are a subfamily of metabolizing enzymes that are recognized by the AhR/ARNT
complex as xenobiotic-responsive elements (XREs) [63]. In addition to controlling immuno-
logical checkpoint protein expression, AhR is essential in modulating immune tolerance
and immune suppression [64]. For instance, AhR is involved in PD-1 and PD-L1 tran-
scriptional activation [65,66]. Another enzyme implicated in immunological suppression,
indoleamine 2′ 3′-dioxygenase 1 (IDO1), is transactivated by AhR as well [67].

Tryptophan (Trp) is an amino acid that IDO1 uses to enzymatically convert into
kynurenine (Kyn), an oncometabolite that can decrease T cell cytotoxicity in the tumour mi-
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croenvironment by depleting Trp [68]. A study revealed that the hydrogen peroxide-treated
human keratinocyte cell line (HaCaT) had increased AhR activity, resulting in increased
expression of its downstream targets, including cytochrome P450 genes. Intriguingly,
AhR activation and its downstream signalling were increased by preincubating the whole
culture media with hydrogen peroxide. The oxidant causes the synthesis of oxindole, a
tryptophan catabolic product, according to a later mass spectrometric investigation. The
fact that 2-oxindole can activate AhR was also demonstrated by the authors, strongly
indicating that ROS may have a considerable influence on AhR signalling [69,70]. AhR’s
role as an oncogene is mostly explained by the ROS accumulation caused by enhanced CYP
activities, which favours malignant transformation by causing severe OS and increased
DNA damage [71]. High AhR expression in breast cancer cells is significantly correlated
with ROS build-up, which causes AhR to translocate into the nucleus and enhances its
transcriptional activity [72,73].

In any case, although immune checkpoint inhibitors have transformed the way that
cancer is treated, only a small percentage of patients get long-lasting improvements. There-
fore, it is crucial to comprehend the connections between ROS and the PD-(L)1 checkpoint,
particularly to aid in the development of novel medication combinations. Yet, as demon-
strated above, the relationship between PD-L1 presence and ROS generation is complicated.
ROS have the ability to either increase or decrease the amount of PD-L1 in cancer cells.
PD-L1 expression is frequently encouraged by increased ROS production, and vice versa,
ROS scavenging can inhibit PD-L1. In spite of that, there are clear exceptions when it comes
to medications that boost ROS production while lowering PD-L1 expression and vice versa.
Although no clear and distinct association can be inferred, drugs that alter ROS generation
can have a considerable impact on PD-L1 expression [74] (Figure 3).
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PD-L1 expression. PD-L1 expression is increased in cells treated with As2O3 and disulfiram,
but ROS scavenging is shown simultaneously with PD-L1 downregulation. However, in
many instances (after cell treatment with the plant extract Anoectochilus formosanus),
ROS production and PD-L1 expression showed a similar pattern. It has been discovered
that human oncoviruses such as the EBV, which infect human primary monocytes to
significantly increase the expression of PD-L1 on their surface by producing ROS, follow a
similar pattern [75].

The impact of ROS-inducing drugs on the expression of PD-L1 is undoubtedly more
complicated than has previously been documented, and these chemicals may also have
additional modes of action. For instance, an alternative mechanism used by AhR could
be the excess kynurenine produced by malignant cells and the impact of kynurenine
on TME immune cells. Kynurenine may increase the expression of PD-L1 on G-MDSC,
macrophages, and DCs, all of which express AhR, just as it does in cancerous cells. Through
direct transcriptional regulation, AhR activation also produces the immunosuppressive
CD39 ectoenzyme on macrophages and T cells. Furthermore, melanomas’ production of
AhR and “transcellular” Kynurenine has been connected to PD-1 expression on CD8+ T
cells in the TME. Chronic IFN production appears likely to aggravate each of these AhR-
mediated consequences. It was surprising to learn that a large portion of the effect of IFN
on Cd274 transcription in the MOC1 model is due to the AhR. It was also remarkable that
the recognized IFN-induced induction of Ido was mostly AhR controlled. Although there
have been suggestions that IFN and AhR signalling interact, it has been reported that AhR
control of IFN-driven outcomes, notably PD-L1 and IDO activation, can be demonstrated
in the context of cancer [65].

The condition of the check points and the redox balance in distinct neoplasms will be
discussed in more detail in the sections that follow, as well as how changing OS might affect
how well check point inhibitors prevent tumour growth in particular tumour pathologies.

2. Cancer, Oxidative Stress, and Immune Check Point Inhibitors
2.1. Breast Cancer

With no effective targeted therapy, triple-negative breast cancer (TNBCs) is a particu-
larly deadly and aggressive kind of breast cancer. Just 25–30% of TNBC patients respond
to neoadjuvant chemotherapy or radiotherapy, which continues to be the cornerstone of
treatment. Thus, there is an unmet clinical need to create new TNBC therapy approaches.
However, although anti-PD-L1 monoclonal antibodies have demonstrated a high clinical
efficacy in other tumours, TNBCs have not responded well to anti-PDL1 monotherapy. In
the Keynote 012 study, only 18.5% of TNBC patients showed response to pembrolizumab
monotherapy [76]. Similarly, 8.6% of patients with locally advanced or metastatic TNBC
and 26% of those with metastatic TNBC responded to avelumab and atezolizumab, re-
spectively [77], and it has been suggested that in TNBCs, anti-PD-L1 monotherapy may
not be as effective as a combination of PD-L1-targeting treatments and other targeted
medicines [78].

The increased intracellular OS that leads to BC is a major factor in its pathogenesis [79].
Antioxidants that are upregulated, such as Trx and glutathione (GSH), shield cancer cells
from this heightened OS and give them a survival advantage [80–82]. Glutathione reductase
(GSR) and TrxR1 are redox enzymes that maintain the reduced forms of GSH and Trx,
hence maintaining the efficiency of both antioxidant systems. When there is no antioxidant
activity, these two systems functionally balance one another out. When the GSH system in
lung cancer cells is downregulated, the Trx system is then upregulated, making the cancer
cells functionally reliant on Trx. TNBC cells are therefore more vulnerable to higher levels
of oxidative stress despite having increased intracellular OS and decreased glutathione.

As for BC, the expression of the Trx pathway genes is significantly elevated in TNBC
patients compared to non-TNBC patients and is connected with poor survival outcomes,
according to a study that evaluated a panel of antioxidant genes using The Cancer Genome
Atlas (TCGA) and METABRIC databases [83]. Hence, a number of compounds have been
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used to reduce OS, including Auranofin (AF), a gold (I)-containing molecule that was
authorized in 1985 as a main treatment for rheumatoid arthritis [84]. By interfering with
the redox system inside the cell, AF has been shown to behave as a pro-oxidant agent
as one of its main modes of action. This is accomplished by two selenoenzyme isoforms
inhibiting TrxRs. TrxRs bind to around four triethylphosphinenegold (I) cations (AuPet3+)
fragments, and biochemical experiments show that the gold compound dramatically alters
the active selenocysteine site of the enzymes. TrxRs also have a selenocysteine moiety that
is redox active. It seems that the cytotoxicity of AF is influenced by the inhibition of both
mitochondrial TrxR2 and cytoplasmic TrxR1. TrxRs are NADPH-dependent because they
transfer electrons from NADPH to the active disulfide site on the oxidized Trx protein
in order to enable Trx to function. In this way, Trx catalyses the reduction of ROS from
oxidized cysteines of proteins and in the process, Trx itself becomes oxidized [85]. The
interaction between the active site dithiol in reduced Trx and oxidized cysteines of many
proteins induces the process of thiol/disulfide exchange reaction to form an oxidized Trx.

Treatment with AF reduced the development of TNBC cells produced as spheroids and
caused selective cell death. Moreover, AF therapy significantly reduced Trx redox activity in
a number of TNBC models, including the syngeneic 4T1.2 model, MDA-MB-231 xenograft,
and patient-derived tumour xenograft. For the first time, the investigation demonstrated
that AF boosted CD8+Ve T-cell tumour infiltration in vivo and modified immunological
checkpoint PD-L1 expression in an ERK1/2-MYC-dependent way. Moreover, AF and
antiPD-L1 antibody together effectively slowed the growth of 4T1.2 primary tumours. These
studies offer a potential therapeutic approach that could be used in TNBC patients [83] that
combines AF with an anti-PD-L1 antibody.

2.2. Ovarian Cancer

The most common pathological subtype of ovarian cancer (OC), which kills women in
developed nations, is epithelial ovarian cancer (EOC) [86,87]. Advanced epithelial ovarian
cancer has an extremely high probability of recurrence, and its five-year survival rate is
just about 30%. Additionally, the effectiveness of treatment for individuals with recurrent
ovarian cancer frequently falls short of the initial therapy, and the length of time it takes to
establish remission following therapy shortens with each additional recurrence.

On OC, OS has a variety of intricate impacts. The imbalance of antioxidant processes
causes OS levels to typically be significantly greater in OC patients, according to pertinent
findings [88–90]. According to a study, The hydroxyl radical created by the Fenton reaction
can cause DNA double-strand breaks (DSB) in the fallopian tubal epithelium, which can
hasten the progression of OC [91]. More importantly, it has been shown that a number
of redox-modified signalling pathways, such as the Wnt/-catenin signalling network,
the AKT/mTOR signalling pathway, the Nrf2/PGC1 signalling pathway, and the Notch
signalling system [92–95], are essential in the pathogenesis of OC.

For example, the Wnt/-catenin signalling pathway can be activated by the nucle-
oredoxin oxidized by ROS [96], and the active Wnt/-catenin signalling route has been
linked to the increased platinum resistance in OC [97]. By influencing immune cells and
metabolites in the tumour microenvironment (TME), OS also contributes to the develop-
ment of OC [98,99]. Advanced OC patients’ neutrophils have amplified functional activities
compared to healthy women, and stimuli dramatically enhance the amount of ROS that are
produced [100].

OS has some bearing on the treatment outcome in OC patients, as demonstrated
by the earlier investigations. OS can specifically influence chemoresistance by causing
point mutations in important redox enzymes [101]. Moreover, immune cells produce ROS,
one of their key second messengers, which opens the door for the use of antioxidants in
immunomodulatory therapy [102].

Oxidative stress-correlated genes (OSRGs) were sourced from the Molecular Signatures
Database for one investigation. Moreover, The TCGA gene expression profiles and clinical
data were used to find the prognostic OSRGs. Furthermore, successive analyses were
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performed to create a predictive signature that was later on verified indifferent Gene
Expression Omnibus (GEO) datasets. The role of the OSRG signature in immunotherapy
was then further investigated using immunological checkpoint genes (ICGs), the tumour
immune dysfunction and exclusion (TIDE) algorithm, the GSE78220 and IMvigor210 and
cohorts. The importance of the OSRG signature in chemotherapy was further examined
using the Genomics of Drug Sensitivity in Cancer (GDSC) and CellMiner databases. At
the conclusion of the investigation, 34 prognostic OSRGs were found, and 14 of them were
selected to create the most effective prognostic signature. The prognosis of patients with
lower OS-related risk scores was better, and OC subjects in the low-risk category may
have responded more favourably to immunotherapy. Furthermore, results showed that
anti-PD-1/L1 immunotherapy was more likely to be beneficial for patients with lower
OS-related risk scores. These findings suggest that the OSRG profile might serve as a potent
prognostic factor for OC, which helps develop more specialized treatment plans for OC
subjects. Immunotherapy affects immunological subgroups differently, and as a result,
diverse clinical developments may result [103].

Based on possible signalling pathway and TMB level connections with immunotherapy,
a study considered the immunotherapeutic responses of patients in different risk groups.
Immune dysfunction was calculated for each patient using the TIDE module in order to
predict the immunotherapeutic response. Patients in the low-risk group had a higher
chance of responding favourably to immunotherapy, but those in the high-risk group were
more susceptible to immunological escape and dysfunction. Last but not least, it was
determined that the OS-related risk score could predict the clinical response to anti-PD-
1/L1 immunotherapy using the IMvigor210 and GSE78220 datasets. This finding showed
that patients in the high-risk group with lower OS-related risk scores may be more likely to
benefit from anti-PD-1/L1 immunotherapy because they had significantly lower responses
than those in the low-risk group and because responders in both datasets had OS-related
risk scores that were noticeably lower than those of non-responders [104].

2.3. Endometrial Cancer

The incidence of endometrial cancer (EC), which is second only to cervical cancer in
terms of frequency of diagnosis, is among the most common gynaecological cancers. Every
year, EC claims the lives of more than 50,000 women globally [105,106]. Due to the missed
opportunity for surgery and efficient chemotherapy treatments for endometrial cancer
patients with metastases, the prognosis for EC is still dismal. Therefore, it is essential to
investigate efficient therapeutic options for endometrial cancer.

Targeted therapy and immunotherapy have recently been shown to be more de-
pendable and effective EC treatment options [107,108]. Moreover, several research have
examined the links between immunotherapy and the modifications of the redox system in
patients with EC and how these variations may affect the effectiveness of immune therapy.

The solute carrier family 7 member 11 (SLC7A11) is widely overexpressed in cancers
and is well-known for its role in maintaining intracellular glutathione levels and preventing
oxidative stress-induced cell death, such as ferroptosis [109]. It is the primary regula-
tor of this type of apoptosis, and ferroptosis is marked by a reduction in its expression
level [110–112]. In a study, researchers visualized the expression of SLC7A11 across EC,
assessed its prognostic significance, and examined its relationships with immune cell infil-
trates and immunological biomarkers. Additionally, they used data mining to thoroughly
investigate whether SLC7A11 overexpression is connected to how well immunotherapy
works for cancer patients. In individuals with uterine corpus endometrial cancer (UCEC),
SLC7A11 expression was markedly increased and correlated with prognosis. In comparison
to individuals with UCEC, normal participants had considerably greater DNA methylation
levels in the SLC7A11-promoter region. Additionally, they showed a relationship between
SLC7A11 overexpression and the immune checkpoint blocker (ICB), tumour immune
induction complex (TIIC), and immunotherapy responsiveness. As a result, SLC7A11
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overexpression is linked to both the effectiveness of immunotherapy and a good prognosis
for patients with UCEC [113].

2.4. Melanoma

The skin cancer type that is most deadly, cutaneous melanoma, is challenging to
cure and has gained attention recently due to an increase in incidence around the world.
Resistance, serious side effects, and a poor quality of life have all been connected to the use
of antitumoral therapies for this neoplasm [114]. Cancer immunotherapies are now often
utilized as adjuvant and neoadjuvant therapy in melanoma patients and have improved
previously low survival rates, such as checkpoint inhibitors ipilimumab, nivolumab, and
pembrolizumab [115,116].

As for the OS in this disease, the pro-survival cellular responses to OS rely heavily on
the KEAP1-NRF2 pathway [117–119]. The E3 ubiquitin ligase adaptor KEAP1 negatively
regulates the transcription factor NRF2 by targeting it for ubiquitination and proteasome-
dependent degradation, which keeps NRF2 at low levels under basal, non-stressed condi-
tions [120–122]. Several cysteine-based stress sensors found in the KEAP1 protein allow it
to modulate its function in response to changes in the cellular redox state [123–126].

In addition to traditional chemotherapeutics, NRF2 hyperactivation can make tumours
resistant to immune checkpoint inhibitor therapies, and it is suggested with examples that
using a synthetic lethal strategy mediated by NRF2-target gene-dependent bioactivation
of prodrugs represents a promising strategy to specifically enhance toxicity to previously
incurable NRF2-hyperactivated human tumours [127].

Moreover, methylglyoxal (MG), an oncometabolite implicated in metabolic reprogram-
ming, is detoxified by glyoxalase 1 (encoded by GLO1), a glutathione-dependent enzyme.
GLO1 has recently been shown to be overexpressed in human malignant melanoma cells
and patient tumours, supporting its new function as a molecular regulator of invasion
and metastasis in melanoma. It was recently revealed that CRISPR/Cas 9-based GLO1
deletion from human A375 malignant melanoma cells changes redox homeostasis, which is
associated with acceleration of carcinogenesis. This was carried out using NanoStringTM
gene expression profiling. TXNIP, a master regulator of cellular energy metabolism and
redox homeostasis, was found via NanostringTM analysis to exhibit the most dramatic ex-
pression shift in response to GLO1 removal. The use of the pharmacological GLO1 inhibitor
TLSC702 matched the effects of GLO1 KO, indicating that GLO1 regulates MG to control
the expression of TXNIP. Reduced glucose uptake and metabolism with downregulation of
gene expression (GLUT1, GFAT1, GFAT2, LDHA), depletion of related critical metabolites
(glucose-6-phosphate, UDP-N-acetylglucosamine), and immune checkpoint modification
were characteristics of the GLO1 KO condition (PDL1).

The authors noted that GLO1 KO melanoma cells displayed a shortened population
doubling time, cell cycle alteration with increased M-phase population, and enhanced
anchorage-independent growth, a phenotype supported by expression analysis, while
confirming an earlier finding that GLO1 deletion limits invasion and metastasis with mod-
ulation of EMTrelated genes (e.g., TGFBI, MMP9, ANGPTL4, TLR4, SERPINF1) (CXCL8,
CD24, IL1A, CDKN1A). A375 melanoma tumour development and metastasis can be dys-
regulated in opposite ways as a result of GLO1 deletion, as was shown by the observation
of an enhanced growth rate of GLO1 KO tumours in a SCID mouse melanoma xenograft
model, together with TXNIP overexpression and metabolic reprogramming [128].

Lastly, several studies focused on the expression of PDL1 expressed by melanoma
cells [129–133] because it has recently been demonstrated that tumour glucose metabolism
(as associated with high flux through glycolysis and the hexosamine pathway) modulates
expression of specific genes relevant to cancer cell immune evasion. Moreover, the study
found that GLO1 KO condition reduced PDL1 expression, both at the mRNA and pro-
tein levels (GLO1 WT versus GLO1 KO [B40 and C2]), a noteworthy finding given the
significance of PD-L1 as a key target for clinically relevant melanoma immunotherapeutic
intervention [128].
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2.5. Glioma and Glioblastoma Multiform

A central nervous system tumour known as a glioma can affect the brain and spinal
cord. It makes up 81% of craniocerebral malignancies and is the major tumour of the central
nervous system that occurs the most frequently. Glioma is divided into four main forms by
the World Health Organization, with grade IV glioblastoma multiform (GBM) being the
most prevalent and aggressive variety.

Adenosine triphosphate (ATP) is produced by normal cells’ mitochondria through
oxidative phosphorylation (OXPHOS). Adenosine diphosphate (ADP) would be converted
into ATP on the mitochondrial membrane via the chemical gradient-driven electron trans-
port chain during the OXPHOS [129–135]. The Warburg effect states that healthy cells rely
on OXPHOS for energy while malignant cells use aerobic glycolysis as their primary energy
source [136–138].

Several studies have demonstrated that cancer cells’ mitochondrial architecture and
functions are aberrant, and that these redox abnormalities may encourage cell growth and
even metastasis. In a study, the cell viability of the U87 MG, GBM cell linesT98G, GBM 8401,
and U138 MG was assessed using isoaaptamine and aaptamine. The results demonstrated
that in these four cell lines, isoaaptamine was more effective than its iso-form, aaptamine,
and that GBM 8401 was the most responsive to isoaaptamine. The research on GBM 8401
cells demonstrated that isoaaptamine caused an increase in cleaved caspase 3 and poly ADP-
ribose polymerase (PARP), which led to the induction of apoptosis. Moreover, isoaaptamine
increased the amounts of ROS, inhibited SOD1 and SOD2 in mitochondria and cells, and
altered the potential of the mitochondrial membrane. The oxygen consumption rates and
activity of mitochondrial complexes I through V also significantly decreased. After being
treated with isoaaptamine, mitochondrial dynamics tended to fission rather than fusion,
and ATP production was eliminated. Furthermore, autophagy was activated as evidenced
by the formation of acidic organelle vesicles [139].

Several other research have discovered a link between changes in the immune sys-
tem, immunological check points, and the redox system. One such example is the ability
of tumour-infiltrating immune cells (TIICs) in the TME to quicken the proliferation of
tumour cells [140,141]. The likelihood that tumour-associated macrophages (TAMs) en-
courage glioma cell growth and invasion is growing [142]. Interestingly, TAM suppression
effectively prevents the development of gliomas [143].

Furthermore, disorders of the structural and functional neural systems may result from
oxidative stress, which plays a role in central nervous system illnesses. Overproduction
of ROS and reactive nitrogen species (RNS) during oxidative stress can result in neuronal
malfunction and death [144]. KLHDC8A was identified as a hub gene via differential
expression analysis using bioinformatics methods. Proteins from the Kelch superfamily that
include Kelch domains are encoded by KLHDC8A [145]. Many human diseases, including
cancer and neurological disorders, depend on the function of several Kelch proteins. In
cancer, Kelch protein expression is increased [146,147]. The proliferation, migration, and
invasion of glioma cells are all triggered by the overexpression of KLHDC8A [148].

A study showed that KLHDC8A was expressed by both tumour cells and macrophages
associated with tumours. When compared to healthy brain tissues, glioma tissues had
higher levels of KLHDC8A expression, which was linked to the clinical characteristics of
the patient. Macrophages, neutrophils, regulatory T cells, the immunological checkpoint
PD-L1, and KLHDC8A expression were all highly expressed in gliomas. According to a Cox
regression study, KLHDC8A and CD68+ macrophages were predictive of poor prognosis
in glioma patients. Finally, protein–protein interaction network analysis demonstrated that
the expression of KLHDC8A was connected to oxidative stress and hypoxia [149].

It is possible to predict who would develop glioma using the immunological traits
of macrophages, opening a new path for targeted glioma therapy. When PD1 and PD-L1
interactions were blocked in vivo, TAM phagocytosis increased, and tumour develop-
ment was inhibited [150]. This finding implies that PD-1-PD-L1 therapy is appropriate
for therapeutic use since it affects macrophages. In glioma cells, oxidative stress increases
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macrophage infiltration [151,152]. However, as was already mentioned, the most lethal
primary brain tumour is GBM, which has not responded well to treatment. The specific
immunological milieu of the brain is reflected by a complex tumour immune microenviron-
ment (TIME) in GBM. Nuclear receptor subfamily 4 group A member 2 (NR4A2)-dependent
transcriptional activity was induced in microglia as a result of the extreme oxidative stress.
Genetic targeting of either heterozygous Nr4a2 (Nr4a2+/−) or microglia-specific Nr4a2
(Nr4a2fl/flCx3cr1cre) changed microglia plasticity in vivo by lowering alternatively acti-
vated microglia and increasing CD8+ T cells’ ability to present antigens in GBM. Squalene
monooxygenase (SQLE) was triggered by NR4A2 in microglia to disrupt the homeostasis of
cholesterol. Pharmacological NR4A2 inhibition decreased pro-tumorigenic TIME, and tar-
geting NR4A2 or SQLE increased the therapeutic efficacy of immune checkpoint blockade
in vivo [153]. As a result, oxidative stress and NR4A2-SQLE activation in microglia speed
up the growth of tumours, which has an impact for emerging immunotherapy concepts for
brain cancer.

2.6. Pancreatic Adenocarcinoma

Pancreatic adenocarcinoma (PAAD) is the sixth most prevalent cause of cancer-related
death globally [154,155]. Pancreatic cancer patients have a poor prognosis over the long
term, with a median survival time of less than six months and a five-year survival probabil-
ity of only 5% [156].

Immune checkpoint therapies that target PD1/PD-L1 and CTLA-4 have recently
been rapidly developed as cancer treatment options. With clinical trials demonstrating
suboptimal outcomes and a poor response to PD-1/PD-L1 inhibition monotherapy, pan-
creatic cancer has been demonstrated to be among the most immunotolerant forms of tu-
mours [157,158]. In a phase-2 clinical trial, 3.0 mg/kg of the anti-CTLA-4 drug ipilimumab
was ineffective in treating either locally advanced or metastatic pancreatic cancer [159].

The “ConsensusClusterPlus” program was used in a study to identify molecular
subtypes of pancreatic cancer based on 184 immunological markers, and the correlation
between clinical characteristics and immune cell subtype distribution was examined [160].
Additionally, the correlation between immune checkpoint expression and immunological
subtype composition was evaluated. For the purpose of comparing the immunological
scores of various molecular subtypes, the CIBERSORT algorithm was developed. The
TIDE algorithm was used by the authors to evaluate the potential therapeutic impact of im-
munotherapy therapies on single-molecule subtypes. Additionally, the core module of the
index and its distinctive genes were identified using weighted correlation network analysis,
which was used to generate the oxidative stress index using linear discriminant analysis
DNA (LDA). Three molecular subtypes of pancreatic cancer—IS1, IS2, and IS3—have sig-
nificantly different prognoses among various cohorts. Immune checkpoint-associated gene
expression was considerably downregulated in IS3 while being elevated in IS1 and IS2,
indicating that the three subgroups respond to immunotherapy interventions differently.
According to the results of the CIBERSORT study, IS1 had the highest levels of immunologi-
cal infiltration, whereas the TIDE analysis revealed that IS1 had a greater T-cell dysfunction
score than IS2 and IS3. Moreover, compared to IS1 and IS2, IS3 was found to have a higher
immunological signature index and to be more susceptible to 5-FU.

Ten possible gene markers were found using WGCNA analysis, and immunohisto-
chemistry investigation confirmed their expression at the protein level [160]. The effec-
tiveness of immunotherapy can be predicted by specific molecular expression patterns in
pancreatic cancer, which can also affect patients’ prognoses.

In a different study, a prognostic model for PAAD was developed, and its predictive
power was assessed. To find oxidative stress genes with differential expression, TCGA
and three GEO datasets were employed [161]. Four genes, including MET, FYN, CTTN,
and CDK1, were chosen from a list of differentially expressed oxidative stress genes in
order to build a prediction model. According to GESA, the high-risk group had much more
enriched immune-related pathways, metabolic pathways, and DNA repair pathways than
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the low-risk group. Moreover, there were noticeably more genetic alterations in high-risk
groups compared to low-risk ones. In addition, the expression of synthetic driver genes for
T cell proliferation and immunological checkpoint-related genes was dramatically altered,
with the superior immunotherapy effect occurring in the low-risk group.

These four oxidative stress gene prognostic models may hold promise for prognostic
prediction and efficacy monitoring in clinical personalized therapy. Additionally, the
findings revealed that a number of immune checkpoint genes, including CD47, TNFSF9,
and PVR, were significantly overexpressed in patients with high-risk scores, suggesting that
this model based may serve as a guide for patients with PAAD who need individualized
immunotherapy [161].

2.7. Hepatocellular Carcinoma

With an annually rising incidence rate, hepatocellular carcinoma (HCC) is a frequent
cause of cancer-related death [162] as there is not a commonly acknowledged ideal treat-
ment for HCC yet. Due to treatment resistance and tumour recurrence, the median five-year
survival rate for HCC patients is less than 20%. In order to increase the overall survival of
HCC patients, it is imperative to discover new treatment agents.

The existence of a strong association between the redox system and HCC has been
shown by numerous experiments. In an in vitro study, the flavonoid calycosin-7-glucoside
(CG) inhibits the growth of human cancer cells by targeting Trx1 [163]. The effects of Trx1 on
the CG-induced inhibition of HCC were then further investigated using si-TRX1. According
to the findings, CG dramatically increased OS, significantly increased apoptosis, decreased
Huh-7 and HepG2 cell growth, and suppressed Trx1 expression. Moreover, in vivo studies
shown that CG dose-dependently controlled the expression of Trx1, oxidative stress, and
apoptotic proteins to slow the growth of HCC [163].

Thus, a connection between immunological therapy and OS was displayed, and other
studies confirmed this relationship. Nuclear factor erythroid 2 like 1 (NFE2L1/Nrf1) is a
crucial component of the cap’n’collar basic-region leucine zipper (CNC-bZIP) family of
antioxidant transcription factors [164]; in liver cancer tissues, NFE2L1 expression is very
low or non-existent, and it is correlated with the clinical stage of liver cancer [165–168].
Animal studies demonstrated that, once the NFE2L1 gene was deleted from the liver, all
mice developed HCC without further stimulation [166]. According to research, TNFSF15 is
a specific downstream gene of NFE2L1, which has the ability to regulate TNF expression.
Furthermore, liver cancer tissues express both NFE2L1 and 41BBL at low levels [168],
suggesting that 41BBL may be related to the formation of HCC brought on by NFE2L1
deletion. Therefore, it is possible that NFE2L1 can regulate the transcription of 41BBL.
According to transcriptome data, 41BBL might be an immunological checkpoint that
responds to OS. The outcomes of the experiment on promoter activity demonstrated that
NFE2L1 can activate the transcription of the 41BBL gene via the ARE component in the
promoter region. Furthermore, overexpression of 41BBL has been linked to both cell
senescence and cell growth, according to cell biology research. Significantly, ROS levels
in the cells greatly rose after 41BBL was overexpressed, whereas NFE2L1 was repressed.
This suggests that 41BBL has the ability to regulate OS in the cells through feedback. Thus,
a key mechanism that mediates the interaction between oxidative stress and the tumour
immune response may be represented by the NFE2L1/41BBL axis [169].

However, the relationship between OS and the effectiveness of check point inhibitors
in HCC has been supported by several investigations. While adoptive transfer of Tet2 -
deficient B cells inhibited the growth of HCC, OS from the HCC microenvironment activated
ten-eleven translocation-2 (TET2) in B cells, promoting IL-10 production. TET2 must
bind to the aryl hydrocarbon receptor in order to hydroxylate IL-10. Moreover, patients
with HCC have a bad prognosis if their B cells have high amounts of IL-10, TET2, and
5hmc. Additionally, a study used 5hmc to measure TET2 activity in B cells to assess the
effectiveness of anti-PD-1 therapy. Particularly noteworthy is that TET2 inhibition in B cells
promotes antitumour immunity to enhance anti-PD-1 therapy for HCC [170].
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2.8. Gastric Cancer

One of the main causes of cancer-related death has been gastric cancer (GC) [171].
Because stomach cancer is typically already advanced when it is discovered, the mor-
tality rate was 8.2% in 2018 [105]. When diagnosed, the majority of GC patients have
advanced disease. There is a critical need for innovative therapeutic approaches because
chemotherapy or surgery alone frequently produces subpar outcomes.

In assessing the effectiveness of immunotherapy in this kind of patient, the redox
state analysis appears to be crucial. After thorough molecular analysis of 295 primary
gastric cancers, the TCGA database identified four different subtypes: Epstein–Barr virus
(EBV), microsatellite instability (MSI), chromosomal instability (CIN), and genome stable
(GS) [172–174]. As immunotherapy advances, recognition of molecular subtypes can as-
sist in establishing a new paradigm of cancer therapies. Yet, the therapeutic efficacy of
immunotherapy varied according on the molecular subtype. Interestingly, solid tumours
with the MSI phenotype responded to anti-PD1 drugs more dramatically than solid tu-
mours with the Microsatellite Stable (MSS) phenotype [175–177]. In contrast to GS and
CIN, metastatic GC patients with the MSI and EBV subtype responded remarkably to PD1
inhibitors and treatment [178,179]. The correct evolution of EBV infection and MSI status
could therefore be exploited as a possible biomarker for anti-PD1/PDL1 targeted ther-
apy in GC. The High-Microsatellite Instability (MSI-H) phenotype has gained significant
recognition as a prognostic indicator for immunotherapy as a result of the high PD-L1
expression [180–182].

The correlation between EBV, d-MMR/MSI-H subtypes, and clinical characteristics
in GC cases was thoroughly summarized by Cai et al. [183]. Additionally, using bioin-
formatics techniques, the GSE62254/ACRG and TCGA-STAD datasets, which came from
GEO and TCGA, respectively, were examined to identify the genetic features associated
with prognosis. Regardless of race, the clinical examination of the GSE62254/ACRG and
TCGA-STAD datasets revalidated the positive predictive significance of MSI in various
cohorts. Subsequently, using weighted gene co-expression network analysis, a critical
gene module that was strongly related with improved status and a longer overall survival
duration for MSI cases was discovered [183].

Additionally, it is well-recognized that oxidative stress can initiate autophagy. Yao
et al. attempted to investigate novel autophagy-related clusters and create a multi-gene
signature for GC that could predict prognosis and immunotherapy response [184]. Using
consensus clustering, a total of 1505 individuals from eight GC cohorts were divided into
two subgroups. Patients in cluster 1 have better survival rates and epithelial-mesenchymal
transition scores than those in cluster 2, which is the comparison group. High heterogeneity
in terms of immune cell infiltration, somatic mutation pattern, and pathway activity via
gene set enrichment analysis are further characteristics of the two subtypes. PTK6 amplifi-
cation and BCL2/CDKN2A deletion were found in a majority of the 21 autophagy-related
differential expression genes (DEGs) identified by the authors. The four-gene risk signa-
ture (BNIP3, HSPB8, GABARAPL1, and PEA15,) was further built and validated in three
separate datasets with strong predictive performance. The risk score has been shown to be
a reliable prognostic indicator. Strong validity of GC survival was revealed by a prognostic
nomogram. Immune cell infiltration status, tumour mutation burden, MSI, and immune
checkpoint molecules were all substantially correlated with the risk score. The IMvigor210
cohort proved the model’s accuracy in predicting the outcome of immunotherapy and
tumour-targeted therapy [185]. Additionally, this model can distinguish between patients
with low and high risk.

2.9. Colorectal Cancer

Crosstalk between oxidative stress and ferroptosis is shown in a variety of human ill-
nesses, including colorectal cancer (CRC). To predict the prognosis and therapy response in
CRC patients, an experiment was conducted to generate an oxidative stress- and ferroptosis-
related gene (OFRG) prognostic signature [185]. As OFRGs, 34 insertion genes between
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genes associated with OS and genes related to ferroptosis were found. Three OFRG clusters
were created from patients with CRC, and DEGs (differentially expressed genes) between
clusters were found. OFRG clusters were linked with both immune cell infiltration and
patient survival. Patients in the low-risk group in this study had better prognoses, higher
levels of immune cell infiltration, and better reactions to fluorouracil-based chemotherapy
and immune checkpoint blockade therapy than patients in the high-risk group. Hence,
hot tumours might be used to describe CRC at low risk, whereas cold tumours could be
used to describe CRC at high risk. The expression levels of five hallmark genes in CRC
and nearby normal tissues were further confirmed using an in vitro experiment in order to
further uncover possible biomarkers for CRC [185]. In conclusion, OFRG-related prognostic
signature performed exceptionally well in predicting survival and treatment outcomes for
CRC patients treated with immune checkpoint inhibition. For specific treatment methods
in practical practice, this might be useful.

2.10. Renal Cancer

Although other kidney cell types have also been proposed as the primary source of
renal cell carcinoma (RCC), tubular cells are the primary source of this malignancy [186].
More than 400,000 new cases, or 2% of all cancer diagnoses, were reported in 2020 according
to GLOBOCAN data, with a higher prevalence in male patients [187].

RCC treatment options have changed significantly over time. Although their inherent
toxicity, IL-2 and IFN-based therapies were the most widely used choices over two decades
ago. Sunitinib, Bevacizumab, and subsequent combinations with PD-1 inhibitors such as
Pembrolizumab were used to target the VEGF angiogenic pathway [188]. In fact, both ICI
and ICI plus TKI are increasingly being investigated as treatments for RCC.

Because RCC are among the most immune-infiltrated tumours, therapeutic methods
based on ICI are quite pertinent [189,190]. It is interesting to note that mounting data point
to a strong correlation between the activation of metabolic pathways and angiogenesis
and inflammatory markers [191,192]. Therefore, in silico analysis revealed that both the
metabolic and immunological status of the tumours might be utilized to predict progno-
sis [193]. High metabolic activity in RCC tumours has been shown to decrease immune
infiltration. According to research [194], patients with RCC who exhibit high inflammation
and low metabolic activity benefit most from immunotherapy, which is consistent with
this idea and the finding that the tumour microenvironment has a significant impact on
responses to systemic therapy [195].

The activation of the NRF2 pathway and other ROS-producing drugs has been as-
sociated with resistance to inducers of ferroptosis, a regulated form of iron-dependent
oxidative cell death [196]. Translocation renal cell carcinoma (tRCC), a poorly understood
subtype of kidney cancer, is mostly brought on by MiT/TFE gene fusions. A study [197]
identified the hallmarks of tRCC by an integrated analysis of 152 patients with the disease
who were found in genomic, a clinical trial, and retrospective cohorts. With the exception of
MiT/TFE fusions and homozygous deletions at chromosome 9p21.3, the majority of tRCCs
have minor somatic changes. A stronger NRF2-driven antioxidant response is observed
transcriptionally in tRCCs, and this response is linked to resistance to targeted treatments.

Results for subjects with tRCC cured with vascular endothelial growth factor receptor
inhibitors (VEGFR-TKI) were consistently reported to be poorer than those for those treated
with ICI. While the tumours are infiltrated with CD8+ T cells, the data from multiparametric
immunofluorescence showed that these T cells have an exhaustion immunophenotype that
is different from that of clear cell RCC. These findings contributed to a thorough under-
standing of the clinical and molecular aspects of tRCC and may inspire new therapy ideas.

Similar results were attained by Ren et al. who conducted a predictive signature
study in patients with Kidney Renal Clear Cell Carcinoma (KIRC) [198]. Authors examined
the gene expression and clinical information of KIRC patients with the aid of the TCGA
database. The identification of antioxidant-related genes with notable variations in ex-
pression between KIRC and normal samples followed. Patients with higher risk scores
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had a worse prognosis, more advanced grade, and stage, and more M0 macrophages,
regulatory T cells, and follicular helper T cells than other patients. Between the two risk
groupings, there were statistically significant variations in the expression of the HLA and
checkpoint genes. In various risk groupings, the study examined the expression levels of
12 immune checkpoint genes. The research on the association between immune checkpoint
gene expression and risk score offered a fresh perspective on immunotherapy. The expres-
sions of BTLA, CD137, CD27, CD276, CD28, CTLA4, HCVCR2, LAG3, PD1, TNFRSF4,
TNFRSF18, and TNFSF14 were higher in the high-risk group compared to the low-risk
group, suggesting that the prospective immune checkpoint inhibitors may have an impact
on high-risk KIRC patients. The nomogram performed well and accurately predicted the
3-year and 5-year survival of KIRC patients. The different set-up could justify the different
therapeutic success obtained in these patients by the immunotherapy treatment [198].

2.11. Oral Squamous Cell Carcinoma

Almost 90% of oral cancers are caused by oral squamous cell carcinoma (OSCC), which
is sixth in the world in terms of cancer incidence [199]. Although medicines have made
great improvement, the overall survival rate is still pitiful at 20% [200].

Based on mRNA expression data from the TCGA database, Lu et al. created an oxida-
tive stress-related prognostic signature and assessed its relationships with OSCC prognosis,
clinical characteristics, immunological status, immunotherapy, and medication sensitivity
through a number of bioinformatics analysis [201]. The signature was demonstrated to
be an independent prognostic factor with high accuracy and was proven to be a good
indicator for predicting the prognosis and immunological state of patients with OSCC on
the basis of both the TCGA-OSCC and GSE41613 cohorts. Additionally, they discovered
that the risk score had a substantial impact on the chemotherapeutic sensitivity and tumour
microenvironment and that immune checkpoint therapy would be more advantageous
for patients with high-risk scores than for patients with low-risk scores. The prognostic
signature might offer a reliable and effective predictive tool that might forecast prognosis
and immunological state and direct clinicians in creating individualized treatment plans
for patients with OSCC [201].

2.12. Lung Adenocarcinoma

One of the most frequent malignant tumours and the main reason for cancer-related
death worldwide is lung cancer, and surgery can only be used to treat up to one-third of
patients [202].

To study the effect of OS on the prognosis of patients with lung adenocarcinoma
(LUAD), Zhu et al. created a prognostic risk score model and tested its predictive power in
the TCGA and GEO cohorts [203]. To further examine the probable processes in LUAD,
they divided the patients into two groups and then carried out analyses of immune cell
infiltration, mutational landscape, immunological checkpoints, and correlation of treatment
response. They discovered a prognosis-related risk model based on a LUAD gene signature
for OS, which includes the genes CYP2D6, FM O 3, CAT, and GAPDH.

As comparison to the low-risk group, LUAD patients in the high-risk group had
a shorter overall survival. Lung cancer cells’ ability to proliferate, invade, and migrate
may be reduced by overexpressing CAT. Tumour-associated immune cell infiltration and
immune checkpoint molecule expression were substantially correlated with each other, and
the tumour mutation burden was higher in LUAD patients with high-risk scores. Between
the high- and low-risk groups, there are considerable differences in drug sensitivity, which
may have an impact on clinical treatment decisions and provide new knowledge for future
anti-tumour immunotherapy [203].

A different study performed an integrative analysis of genomic, transcriptomic, and
proteomic data from early stage and chemo-refractory KRAS-mutant lung adenocarcinoma
(LUAC) and discovered three strong KRAS-mutant LUAC subgroups, each of which was
dominated by co-occurring genetic events in STK11/LKB1 (the KL subgroup), TP53 (the



Biomedicines 2023, 11, 1325 16 of 32

KP subgroup), and CDKN2A/B inactivation along with low expression of the NKX2-1
(TTF1) transcription factor (the KC subgroup) [204].

KL tumours showed fewer immunological markers, such as PD-L1, and had high
frequencies of KEAP1 mutational inactivation. Inflammatory indicators, immunological
checkpoint effector molecules, somatic mutation levels, and relapse-free survival were all
higher in KP tumours. Drug sensitivity patterns varied, and KL cells particularly exhibited
a greater sensitivity to HSP90-inhibitor therapy. This study offers proof that KRAS-mutant
LUAC subgroups with unique biology and treatment vulnerabilities can be identified by
co-occurring genetic changes [204].

Lastly, earlier research created helical polypeptides that can target the mitochondria
and trigger mitochondria-dependent apoptosis [205]. The mitochondrial membranes may
be targeted and destabilized by the helical polypeptides, which also enhanced OS and pro-
grammed cell death. Because of the development of intracellular oxidative conditions, their
ability to damage mitochondria is likely to be used as an ICD inducer. Stimulating the cyto-
toxic T cell response and decreasing the immunosuppressive tumour microenvironment,
fluorinated mitochondria-disrupting helical polypeptide (MDHP) and antiPD-L1 dramati-
cally inhibited tumour development in in vivo experiments and prevented metastasis to
the lungs. Fluorinated MDHP and PD-L1 combined cancer immunotherapy significantly
reduced tumour growth and lung metastasis. This treatment reduced the number of im-
mune suppressor cells such as MDSCs and Tregs while triggering immunological responses
against a tumour. These findings imply that immune checkpoint blockade treatment and
fluorinated MDHPs, an ICD inducer, work synergistically to provide an effective cancer
immunotherapy regimen [206] (Table 1).

Table 1. Modification of the oxidative state and its consequences on the immunotherapy treatment.

Disease Oxidative Status Mechanism Intervention Ref.

Breast cancer Thioredoxin pathway
genes overexpression

Reduced ROS
production; increase CD8

tumour infiltration; up
regulation of PD-L1

expression

Auranofin
Anti PD-L1 antibody [83]

Ovarian
cancer Increased ROS levels

High oxidative
stress-related risk score

patients have minor
benefits from immune

treatment

Anti PD1/L1
immunotherapy [104]

Endometrial
cancer

Solute carrier family
7-member 11

overexpression

Immune cell infiltration;
correlation with PD-1,

PD-L1, PD-L2 and
CTLA-4 expression

Salubrinal,
S-trityl-L-cysteine [113]

Melanoma

Reduced glutathione
content; modified
KEAP1-NRF2 and

glyoxalase 1 pathways

TXNIP-dependent
phenomena GLO1 inhibitor [128]

Glioma Increased ROS
production

KLHDC899
overexpression;

increased macrophage
infiltration

Anti-mouse PD-1
specific monoclonal

antibody
[153]

Pancreatic ade-
nocarcinoma

Increased oxidative
stress genes expression

Changed expression of
immune checkpoint

genes
Immunotherapy [161]

Hepatocellular
carcinoma Modified TRX1 levels

Effects of 41BBL and
NFE221 levels;

TET2-medated IL-10+
B-cell generation

Bobcat229, anti PD-1 [170]
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Table 1. Cont.

Disease Oxidative Status Mechanism Intervention Ref.

Gastric cancer
Oxidative

phosphorylation and
glutathione changes

PTK6 amplification,
BCL2/CDKNA deletion,

modified autophagy
Immunotherapy [184]

Colorectal
cancer

Modified oxidative
stress

Ferroptosis, reduced
immune infiltration

PD-1/PD-L1/PD-L2
blockade [185]

Renal cancer NFR2 antioxidant
response change Expression of T effectors Immunotherapy [197,198]

Lung
carcinoma

Increased oxidative
stress

Anti PD-L1 and
Fluorinated

mitochondria-
disrupting helical

polypeptide

[206]

3. Conclusions and Future Perspectives

The tumour microenvironment, which has intricated biological and chemical link-
ages and offers a favourable substratum for tumour progress and expansion, significantly
contributes to the advancement of cancer. Targeting tumour cells while disregarding the
contiguous TME is ineffective in curing cancer, according to mounting research. TME con-
tributes to the immune escape of tumours via a variety of direct and indirect mechanisms
on particular immune cells, including the generation of various cytokines/chemokines.
interactions that influence the activation of regulatory immune cells, as well as the re-
programing of an immunosuppressive function in immature myeloid cells. One of the
primary regulatory mechanisms that inactivates tumour-infiltrating lymphocytes in cancer
lesions is the activation and overexpression of inhibitory immunological checkpoints or
their ligands in TME compartments. In fact, according to their targets and modes of action,
ROS production can cause both an up- and a down-regulation of PD-L1 expression in
cancer cells [207].

In fact, different studies have pointed out a regulation of PD-L1 expression by ROS.
Moreover, in the tumour microenvironment, high levels of intracellular ROS can stimulate
the secretion of IL-6, a pro-inflammatory cytokine that facilitates proliferation, migration,
and metastasis of several types of tumours [208,209], and the anti-tumour immune response
to anti-PD-L1 treatment in solid tumours has been demonstrated to be significantly sup-
pressed by IL-6 [210,211]. Therefore, one of the essential approaches to comprehend the
function of the immune response in cancer patients undergoing ICB therapy is to investigate
the particular involvement of ROS in the PD-1/PD-L1 pathway across cancer types. Thus,
altering the redox system could be a valuable strategy to change the anti-cancer effectiveness
of immunotherapy, and new tactics have been developed in addition to the aforementioned
approaches in order to get better outcomes, such as the employ of vitamin C.

Humans and the majority of animals are unable to synthesis vitamin C, making it
a vital natural micronutrient and a significant physiological antioxidant [212]. Vitamin
C is well-known to help prevent a variety of disorders, particularly those brought on by
oxidative stress, including cardiovascular and neurological dysfunctions [213–215]. As for
neoplastic diseases, it is interesting to note that vitamin C has been demonstrated to have
the ability to eradicate different cancer cell types in vitro [216–218]. Moreover, a number of
studies have shown that supplementing cancer cell lines with high doses of vitamin C with
standard anti-cancer medications increased their cytotoxicity [219–223].

The anti-tumour properties of vitamin C have been attributed to several molecular
mechanisms, interactions that modify the immunosuppressive role of immature myeloid
cells and the activation of regulatory immune cells [224]. The activation and overexpression
of inhibitory immunological checkpoints or their ligands in TME compartments is one of
the main regulatory mechanisms that inactivates tumour-infiltrating lymphocytes in cancer
lesions. In fact, PD-L1 expression in cancer cells can be up- or down-regulated by ROS
generation, depending on their targets and modes of action [207].
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It is interesting to note that a recent study found that vitamin C regulates epigenetic
processes via DNA demethylation, which may be related to its anti-cancer effects [225].
Moreover, it is significant to note that vitamin C can influence the TME by promoting
T lymphocyte invasion and cytokine production. As a result, vitamin C may be crucial
in the control of the immune system’s anti-tumour response. In a syngeneic lymphoma
mouse model, it has been demonstrated that vitamin C in large doses enhanced the anti-
tumour impact of anti-PD-1 therapy [226]. Furthermore, a recent study found that high
doses of vitamin C can enhance the cytotoxic activity of adoptively transferred CD8+ T
cells, modulate immune cells’ infiltration into the tumour microenvironment, and work
in conjunction with anti-PD-1 and anti-CTLA-4 checkpoint inhibitors in mice bearing
syngeneic tumours [227]. Vitamin C has been shown to boost the intra-tumoral infiltration
of CD4+ and CD8+ T lymphocytes, as well as macrophages, into the cancer milieu by
increasing the production of granzyme B and interleukin-12. High doses of vitamin C
have also been demonstrated to cooperate with anti-PD-1 and anti-CTLA-4 therapies
in mice bearing syngeneic malignancies, alter immune cell infiltration into the tumour
microenvironment, and increase the cytotoxic activity of adoptively transplanted CD8+
T cells [227]. It is intriguing to note that vitamin C may support anti-PD-L1 activity
by increasing levels of the chemokines CXCL9, CXCL10, and CXCL11 and promoting
lymphocyte invasion of tumours while boosting anti-tumour immunity [228].

However, it is crucial to highlight a few factors that make vitamin C’s effect specific
to certain neoplastic disease types. The expression of sodium-dependent vitamin C trans-
porters 1 and 2 (SVCT1 and SVCT2) is linked to the cytotoxicity of vitamin C in the tumour
microenvironment. In fact, vitamin C treatment of cancer cells with high SVCT-2 expression
levels led to the observation of a sizable cytotoxic effect. Only high dose vitamin C (>1 mM)
had an anti-cancer impact in cell lines with low SVCT-2 expression, but low-dose therapy
led to the proliferation of cancer cells. Additionally, SVCT-2 may be used as a marker
for the start of vitamin C therapy, according to a study on breast cancer. The same study
also shown that SVCT2 knockdown in breast cancer cells led to resistance to vitamin C
therapy [229]. These findings help to understand why vitamin C therapy does not have
the same positive effects on cancer patients. However, although there is mounting evi-
dence that vitamin C may improve immunotherapy response, more pre-clinical and clinical
research is still required to fully understand and confirm this impact [227].

Many other pharmaceutical strategies have been tested. Currently being examined
in clinical trials as an anticancer medication is auranofin (AUR), a medication already
approved for the treatment of rheumatoid arthritis. The medication causes a significant
amount of oxidative stress, which leads to the ROS-mediated inhibition of enzymes such
hexokinase [230]. AUR has recently been discovered to significantly increase the expression
of PD-L1 on cancer cells and to promote CD8+ T-cell infiltration in the tumour [83]. AUR
boosted the expression of PD-L1 at the surface of cancer cells both in vitro and in vivo,
favouring tumour resistance in breast cancer cells. When coupled with an antibody that
targets PD-L1, it increased PD-L1 presumably via the Erk1/2-Myc pathway and demon-
strated synergistic effect [83]. In this interesting study, it was shown that auranofin was
extremely efficient in causing cell death and preventing the growth of triple negative breast
cancer cells grown as spheroids. It was also shown that AUR was effective in vivo in
patient-derived tumour xenografts by inhibiting TrxR1 activity and increasing CD8+T
cell infiltration.

AUR and an anti-PD-L1 antibody together synergistically reduced the growth of
syngeneic 4T1.2 primary tumours [231]. Moreover, in vivo hepatocellular carcinoma treat-
ment with AUR and anti-PD-L1 therapy was successful in enhancing the ICD effects of
oxaliplatin [232,233]. This possibility is further bolstered by research that demonstrates
the sensitivity of breast cancer tissues to the antiprogestin and antiglucocorticoid drug
mifepristone [234], which can induce ICD and work in synergy with PD-L1 inhibition [235].
According to a recent study, mifepristone’s anti-cancer actions were linked to the generation
of proteotoxic ER stress, a route that must be activated for ICD to be effective [236].
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Butaselen, a TrxR1 inhibitor and cellular ROS producer that may be helpful in the
chemoprevention of hepatocellular carcinoma, has been shown to have a very similar
effect. Via the STAT3 pathway, butaselen was discovered to inhibit PD-L1 expression on
the surface of tumour cells [237].

The anticancer compound chaetocin, a natural product obtained from the fungal
species Chaetomium, was discovered to follow the similar pattern. Inducing an excessive
build-up of ROS in cells, chaetocin is a powerful TrxR1 (and histone methyltransferase)
inhibitor that causes cancer cells to undergo apoptosis [238]. In human pancreatic cancer
cells treated with chaetocin, it was discovered that the amount of the PD-L1 protein had
significantly decreased [239]. It is feasible that a change in PDL-1 levels could affect how
well immunological check point inhibitors work as a treatment.

Trifluoperazine (TFP), an antipsychotic, and disulfiram (DSF), a medication used
to treat chronic alcoholism, are two further medicines that modify ROS that are worth
mentioning. The treatment of cancer with both medications is also being considered [42].
In recent studies, TFP, a phenothiazine-type calmodulin inhibitor, has been shown to raise
ROS levels in colorectal cancer cells while also encouraging the production of PD-L1 in
these cancer cells and of PD-1 in the tumour-infiltrating CD4+ and CD8+ T cells [240].

Recent research has shown that photobiomodulation (PBM) using near-infrared (NIR)
light in the NIR-II window reduces OS and encourages CD8+ T cell proliferation, suggesting
that PBM using NIR-II light may boost anti-cancer immunity [241]. A novel method to
help CD8+ T cells that have penetrated tumours is to combine a high tissue penetration
depth NIR-II laser with PBM, claims a study. Brief treatments with simultaneous 1064
and 1270 nm lasers reduced the expression of PD-1 in CD8+ T cells in a syngeneic animal
model of breast cancer [153]. The adoptive transfer of laser-treated CD8+ T lymphocytes
ex vivo against a model tumour antigen resulted in a better tumour development delay,
which demonstrated the NIR-II laser treatment’s direct impact on T cells. Additional
research revealed that a specific set of NIR-II laser characteristics improved the effect of
an immune checkpoint inhibitor on tumour growth. PBM with NIR-II light increases
the efficacy of cancer immunotherapy by encouraging CD8+ T cells. Contrary to current
immunotherapy, which entails risks of negative drug–drug interactions and major adverse
events, the laser is inexpensive, safe, and it may be widely combined with other therapies
without modification to achieve therapeutic value.

As a therapeutic intervention, NIR-II light-based immunotherapy offers many benefits,
including deep tissue penetration and no mutagenic or carcinogenic potential. The NIR
laser poses little to no danger of negative effects when used properly [153].

Carbon monoxide (CO) gas therapy is also becoming more and more popular because
of its incredible anticancer potential and lower side effects [242,243]. CO was discovered
to be an essential biogas transmitter linked to mitochondria as an endogenous gaseous
molecule. This biogas transmitter can greatly speed up mitochondrial respiration, which
forces cancer cells to use more oxygen to produce energy [244,245]. These metabolic
processes cause the mitochondria to be depleted and a significant amount of ROS to be
produced [246,247]. Most importantly, exogenous CO possesses potent immune regulation
capabilities that, in addition to its direct anti-tumour action, can affect the recruitment
of innate immune cells and the growth of myeloid cells [248]. Additionally, CO has no
detrimental effects on healthy cells and can destroy cancer cells by decreasing medication
resistance [249,250].

For tumour control, metastasis prevention, and recurrence prevention, CO gas therapy
is used in a study [251]. To overcome the drawbacks of monotherapy, it is suggested that
CO2-g-C3N4-Au@ZIF-8@F127 (CCAZF) combine immunotherapy and gas therapy into
a photocatalytic nanogenerator. The highly efficient CO release behaviour displayed by
CCAZF causes ICD by gradually escalating the OS in tumour cells. When ICD is induced,
CO therapy improves immune responses and makes it possible for effective immune cells
to be activated. CCAZF exhibits an increased immunological impact when coupled with
ICB, which causes the regression of primary and distant tumours [251]. This approach
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to in situ photocatalytic CO therapy provides a fresh approach for developing novel ICD
inducers while also largely avoiding the toxicity of CO leakage (Table 2).

Table 2. Possible interventions to increase the effectiveness of therapy with check point inhibitors.

Molecule Disease Mechanism Treatment Study Ref.

Vitamin C Lymphoma Increased CD8+T
cells

Anti PD-1
therapy, anti

CTLA-4
In vivo [226,227]

Auranofin Breast cancer

Modified ROS
amount, inhibition

of hexokinase,
increase of CD8+T

cell infiltration,
inhibition of TrxR1
activity, proteotoxic

ER stress

Anti-PD-L1,
anti PD-L1

plus cisplatin

In vivo
and

in vitro
[83,231,234]

Butaselen Hepatocellular
carcinoma

TrxR1 inhibition,
inhibition of PD-L1

expression
In vitro [237]

Chetocin Pancreatic
cancer

TrxR1 inhibition,
reduction of PD-L1 In vitro [239]

Photo-
biomodulation

and
Near-infrared

light

Breast cancer

Reduction of PD-1
in CD8+ T cells,

CD8+ T cell
proliferation.

Immune check
point inhibitors In vivo [153]

Carbon
monoxide Cancer cells ROS modification Immunotherapy In vitro [251]

A biomimetic Ru-TePt@siRNA-MVs multifunctional nano-integrator was created by
Wu et al. [252] and shown good specificity for the transport of siRNA, exogenous US
irradiation, and endogenous TME. In a nutshell, this technology has the ability to effec-
tively control TME hypoxia and then combine gene immunotherapy with ROS to increase
anticancer efficacy. In addition to their sonodynamic and chemical kinetic effects, the
Ru-TePt spindle nanorods’ plentiful positive charges on the surface enable effective siRNA
loading. Moreover, adaptable nanotheranostics were created by modifying cell membrane
vesicles that expressed transferrin (MVs-Tf). By RNA interference gene suppression of the
PD-1/PD-L1 pathway, tumour-targeting Ru-TePt@siRNA-MVs can enhance ROS-induced
cancer immunotherapy.

This layout has several clear advantages. The charge-trapping properties of Ru-TePt
nanorods prevent the recombination of electron-hole(e−–h+) pairs in a way that triggers
an adaptive immune response and causes immunogenic cell death. Additionally, the
encapsulation of biocompatible cell membrane vesicles can further improve NRs targeting
and endosomal escape, resulting in promising gene delivery efficacy and sonodynamic
therapy effectiveness. The chemical kinetic effect of Ru-TePt nanorods can also produce
toxic OH, amplifying ROS-based cell killing. Moreover, in the presence of immunological
checkpoints blocked cytotoxic T cells, enhanced cytotoxic ROS efficiently induces ICD to
enhance anti-tumour immunity.

Other methods will soon be able to improve the PD-L1 control mechanisms, increasing
the potential for treating neoplastic diseases. Clustered regularly interspaced short palin-
dromic repeats/CRISPR-associated nuclease 9 (CRISPR/Cas9) gene editing technology,
which can recognize the target genome sequence with single-strand guide RNA (sgRNA)
and direct the Cas9 protease to knock down the target gene, has significantly aided the
development of anti-PD-1/PD-L1 tumour immunotherapy [253]. The TME’s lymphocytes
can be functional again thanks to the CRISPR/Cas9 technology, which can boost PD-L1
deletion at the genomic level and diminish PD-L1 expression. Zhang et al. combined focal
adhesion kinase (FAK) siRNA, Cas9 mRNA, and PD-L1 sgRNA into self-assembling lipid
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nanoparticles (LNPs) to overcome the rigid extracellular matrix and PD-L1 overexpression.
Gene editing was increased >10-fold in tumour spheroids as a result of enhanced cellular
uptake and tumour penetration of nanoparticles brought on by FAK-knockdown. In four
mouse cancer models, including those with ovarian and liver cancer, the addition of siFAK
+ CRISPR-PD-L1-LNPs significantly reduced tumour growth and metastasis [254]. A study
found that the deletion of TP53 resulted in reduced ex vivo macrophage phagocytic activity,
which is a common cause of chemoimmunotherapy resistance in B-cell malignancies. Addi-
tionally, TP53 deletion boosted the expression of PD-L1 and the production of extracellular
vesicles by B-cell lymphoma cells. The improvement of macrophage phagocytic capacity
and in vivo therapeutic responsiveness by PD-L1 CRISPR-KO was due to the disruption of
EV-bound PD-L1 [255].

Finally, a variety of other mechanisms that can control PD-1 expression should be inves-
tigated. The TRAF family of proteins includes the protein known as TRAF6. In response to
signals from the TNFR and interleukin-1 receptor/TLR superfamilies, it encourages the ac-
tivation of the transcription factors NF-kB and AP-1, both of which cause the production of
pro-inflammatory cytokines in myeloid cells. TRAF6 signalling in T cells also controls how
they develop and function. It was discovered that immunological checkpoint molecules
CTLA-4 and PD-1 are expressed in considerably larger concentrations on the cell surfaces
of T cells with defects in the TRAF6 gene. These findings show that the TRAF6 signalling
pathway in T cells, which controls anti-tumour immunity, activates the tumour-specific
CTLs and Th9 cells in a tumour microenvironment [256]. A mechanistic study evaluated
the efficacy of combining ATR inhibitors (ATRi), irradiation (IR), and anti-PD-L1 antibodies
was evaluated in colorectal cancer. The authors showed that IR + ATRi could attenuate
SHP1-mediated inhibition of the TRAF6-STING-p65 axis by promoting SUMOylation of
SHP1 at lysine 127, thereby activating both the canonical cGAS-STING-pTBK1/pIRF3 axis
and the non-canonical STING signalling. Immunotherapy was made easier by IR + ATRi,
which increased STING signalling, produced type I interferon-related gene expression,
robust innate immune activation, and revived the cold tumour microenvironment. Thus,
the combination of ATRi and IR could facilitate anti-PD-L1 therapy by promoting STING
signalling in CRC models with different microsatellite statuses [257].

Finally, a number of studies have suggested that angiogenesis is crucial to the patho-
physiology of cancer [258–260]. Analysing the impact of immunotherapy and antiangio-
genic drug combinations in cancer patients would be helpful given that both treatments
may have synergistic antitumor effects. Anlotinib and PD-1 inhibitors together are a poten-
tial therapy option for LUAD patients who have developed EGFR-TKI resistance, according
to a study [261]. Recent research has also demonstrated the strong relationship between
angiogenic dynamics and oxidative stress [262], and it is possible to interfere with this
axis using drugs that might alter the generation of ROS, hence enhancing the efficacy of
immunotherapy.

In conclusion, the in vitro and in vivo experimental findings showed that several
strategies might be used to successfully activate the immunological response triggered by
OS and suppress immune resistance mediated by the PD-1/PD-L1 axis. As a result, this
coordinated therapeutic paradigm offers insightful information for creating prospective
oxidative stress and genetic immunotherapy. The use of metabolic modulators, particularly
those that may target oxidative metabolism, to promote immunotherapeutic response is
supported by literature evidence. Normalizing the oxygen tension of the tumour microen-
vironment is an interesting method for increasing immunotherapy’s effectiveness. The
use of oxidative stress modulators may be able to alter the tumour microenvironment so
that it is metabolically conducive to T cell function, thereby increasing the effectiveness of
immunotherapeutic cancer treatments.
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