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Abstract: Triple-negative breast cancer (TNBC), characterized by a deficiency in estrogen receptor
(ER), progesterone receptor (PR), and human epidermal growth factor receptor2 (HER2), is among the
most lethal subtypes of breast cancer (BC). Nevertheless, the molecular determinants that contribute
to its malignant phenotypes such as tumor heterogeneity and therapy resistance, remain elusive.
In this study, we sought to identify the stemness-associated genes involved in TNBC progression.
Using bioinformatics approaches, we found 55 up- and 9 downregulated genes in TNBC. Out of
the 55 upregulated genes, a 5 gene-signature (CDK1, EZH2, CCNB1, CCNA2, and AURKA) involved
in cell regeneration was positively correlated with the status of tumor hypoxia and clustered with
stemness-associated genes, as recognized by Parametric Gene Set Enrichment Analysis (PGSEA).
Enhanced infiltration of immunosuppressive cells was also positively correlated with the expression
of these five genes. Moreover, our experiments showed that depletion of the transcriptional co-factor
nucleus accumbens-associated protein 1 (NAC1), which is highly expressed in TNBC, reduced the
expression of these genes. Thus, the five genes signature identified by this study warrants further
exploration as a potential new biomarker of TNBC heterogeneity/stemness characterized by high
hypoxia, stemness enrichment, and immune-suppressive tumor microenvironment.

Keywords: tumor progression; cancer stem cells; gene signature; NACC1; triple-negative breast cancer

1. Introduction

The stratification of breast cancer (BC) into morphologically and molecularly discrete
subtypes has improved the overall treatment of patients with this disease [1,2]. TNBC, a
subtype of BC with a poor prognosis is characterized by deficiency in the expressions of
estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor
receptor 2 (HER2). Compared with other subtypes of BCs, TNBC is mostly common in
women younger than 40 years, women of color, or those with a BRCA1 mutation. In
addition, TNBC is more proliferative and metastatic, and there are few targeted therapies
for TNBC. Therefore, patients with this disease are inclined to have a worse prognosis [2–4].

Enrichment of breast cancer stem cells (CSCs), a subpopulation of tumor cells is
marked by high CD44 expression and low CD24 expression as well as increased ALDH1A1/3
activity. CSCs intrinsic ability to self-renew, differentiate and repopulate the bulk tumor [5],
is believed to contribute substantially to the poor prognosis of TNBC [6]. TNBC tumor het-
erogeneity driven by CSCs and a lack of effective therapeutic arsenals other than chemother-
apy often lead to poor outcomes in patients with TNBC. In recent years, innovations in
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omics technologies have contributed immense knowledge about TNBC microenvironment
heterogeneity [7]. Moreover, identifying the key molecular determinants associated with
the tumor heterogeneity and tumor progression in TNBC may help develop novel strategies
for treating this malignancy. In this study, we sought to find the critical genes associated
with TNBC stemness through analysis of Gene Expression Omnibus (GEO) datasets, The
Cancer Genome Atlas (TCGA), and Clinical Proteomics Tumor Analysis Consortium (CP-
TAC). We also employed the PGSEA algorithm, performed Gene Ontology (GO) analysis,
and evaluated protein–protein interaction (PPI) networks to elucidate co-expressed genes
with shared biological process terms (BP) and their linkage to stemness pathways in TNBC.
Our analyses led to the identification of CDK1, CCNA2, CCNB1, AURKA, and EZH2 as
signature genes involved in cancer stemness and progression. Moreover, we found that
expressions of these signature genes were affected by NAC1, a transcriptional co-factor
belonging to the BTB gene family and possessing an oncologic role [8,9]. The findings re-
ported here may have potential and important implications in the prognosis and treatment
of TNBC.

2. Materials and Methods
2.1. Identification and Evaluation of Differentially Expressed Genes

The following keywords: triple-negative breast cancer or TNBC, neoplasm, triple-
negative breast cancer, RNA sequencing, TNBC patient samples, or breast cancer patient
samples, were used to search in the Gene Expression Omnibus (GEO) database. We identi-
fied six TNBC datasets with adjacent normal tissues. The datasets were randomly grouped
into training and validation groups. The training group comprised of GSE65194, GSE36295,
and GSE38959, while for the validation group, we used GSE21653, GSE20711, and GSE61725
datasets. GEO2R, an online platform using Limma R packages and GEOquery to deal
with diverse experimental designs, was used to determine differentially expressed genes
in tumors and normal samples. GEO2R analysis [10] was performed with Limma-voom
Benjamin and Hochberg and p ≤ 0.05 as the settings for all datasets. All the other settings
defaulted to GEO2R. We then characterized genes as differentially expressed between
TNBC and normal if log2FC was ≥1.5 and the p-value was ≤0.05. Common genes in both
the training and validation groups were obtained and used for downstream analysis.

2.2. GO Analysis

GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis was
performed using Funrich software to determine enriched BP terms and oncogenic processes
associated with the differentially expressed genes [11]. Integrated Differential Expression
and Pathway Analysis (iDEP), a platform that allows for selection of multiple pathways
analysis methods and databases [12,13], was employed to perform parametric analysis
of gene set enrichment (PGSEA) [14] to retrieve the genes involved in similar BP and
differentially upregulated in TNBC.

2.3. Protein–Protein Interaction (PPI) Network Analysis and Hub Gene Confirmation

To evaluate the possible PPI of the differentially expressed genes, Searching Tool for Re-
curring Instances of Neighboring Genes (STRING) [15], Metascape [16], and Cytoscape [15]
were used to construct and visualize the networks. UALCAN, a TCGA-based online plat-
form for analysis of gene expression profiles in tumor and normal samples [17,18], was used
to determine signature gene expressions in BC subtypes. The TNM plot online platform [19]
was employed to compare the identified signature gene expressions in normal, primary,
and metastatic samples. Assessment of mRNA expression and copy number alterations was
executed using the cBio cancer genomics portal (cbioportal) in TCGA and PanCancer Atlas
samples [20]. Immune cells infiltration in correlation with gene expression was analyzed
using Timer 2.0, a comprehensive platform for systematic analysis of immune infiltrates
in tumors (https://cistrome.shinyapps.io/timer/, accessed on 12 December 2022) [21].
Analysis of protein expression was performed using the Human Protein Atlas database, a
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repository of tumor and normal IHC stained tissues [22] (https://www.proteinatlas.org,
accessed on 12 December 2022), as well as the cBioPortal-Clinical Proteomic Tumor Analysis
Consortium (CPTAC) proteomics-pipeline.

2.4. Analysis of the Identified Signature Genes Clinical Relevance

The KM plotter [23] was employed to evaluate the clinical significance of the identified
signature genes. Using PAM50, a 50-gene signature classification system [24], we analyzed
the implication of the identified genes in TNBC (basal) samples.

2.5. In Vitro Expression of Signature Genes in TNBC Cell Lines

To determine protein expression in TNBC cells, we chose a wide range of cell lines
across established TNBC subtypes; basal 1 (MDA-MB-468), basal 2 (HCC1806), mesenchy-
mal (BT-459), and mesenchymal stem-like (MDA-MB-231). As controls, MCF10A was
used as normal epithelial-like cell lines. Cells were cultured following the ATCC recom-
mendation. DMEM was used to culture MDA-MB-231 and MDA-MB-468; DMEM-F12
was used for MDA-MB-453; and RPMI-1640 for HCC1806 cell lines. MCF10A cells were
cultured using mammary epithelial cell growth kit (promo-cell cat#C-21010). The media
was supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin
antibiotic mix. The cells were incubated at 37 ◦C with 5% CO2 and 95% humidity.

2.6. Western Blot Analysis

Cells were harvested into a cold PBS buffer. The cells were spun down, and protein
extraction was performed using Laemmli buffer supplemented with protease inhibitor.
BCA assay kit (Thermo Scientific, #23228, Waltham, MA, USA) was used for protein quan-
tification. Samples were ran in sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) at 100 V. Protein blotting was done using immun-Blot® PVDF membrane in
transfer buffer (100 V for 75 min). The membranes were blocked with 5% defatted milk for
1 h, and blots were incubated overnight with appropriate primary antibody at 4 ◦C. Sec-
ondary antibody incubation was performed at room temperature for 2 h. TBST buffer was
used to wash the membranes for 15 min each before and after adding horseradish peroxi-
dase (HRP)-secondary antibody. Protein expression was visualized using the ChemiDOCTM

MP imaging system (BioRad, Hercules, CA, USA).

3. Results
3.1. Identification of Highly Altered Genes in TNBC

We retrieved six datasets from the GEO database and divided them randomly into
two groups: training group and validation group. The training group comprised of
GSE65194, GSE36295, and GSE38959 datasets, which contained 96 TNBC, 29 normal,
and 125 non-TNBC samples; the validation group consisted of GSE21653, GSE61725, and
GSE20711 datasets, which had 140 TNBC, 48 normal, and 233 non-TNBC samples (Table 1).

These datasets were subjected to a systematic analysis as depicted in Figure 1. Differ-
entially expressed genes in each dataset were analyzed using the GEO2R tool (p ≤ 0.05
and log2FC ≥ 1.5). The common down- and upregulated genes in each group are shown
in Figures 2a and S1a,b. In the training group, we identified 112 common upregulated
genes (Figure 2a) and 74 downregulated genes (Figure S1c), and in the validation group we
observed 67 common upregulated and 23 downregulated genes (Figrues 2b and S1d). Next,
we compared the altered genes in the training group with those in the validation group
and found that 64 (55 upregulated and 9 downregulated) genes were common between the
training and validation groups (Figures 2c and S1e). A heatmap displaying the expression
profiles of the common 64 genes in all 6 datasets is shown in Figure 2d. In addition, utilizing
the TCGA pan-cancer data, we explored the expression of these 64 genes among TNBC
patient samples. Out of the 1084 TCGA BC samples, we analyzed 171 TNBC (basal-like)
and 114 normal samples and found that these 64 genes were highly expressed in TNBC
compared to normal samples (Figure 2e).

https://www.proteinatlas.org
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Table 1. The dataset compositions.

GEO Datasets TNBC Samples Normal Non-TNBC

Training datasets

GSE65194 55 11 98

GSE36295 11 5 27

GSE38959 30 13 0

Sum 96 29 125

Validation datasets

GSE21653 75 29 162

GSE20711 17 2 71

GSE61725 48 17 0

Sum 140 48 233
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Figure 1. Workflow of the study. In total, six datasets containing TNBC samples were collected from the
GEO database and randomly divided into the training or validation groups. Differentially expressed
genes were analyzed in the training and validation groups and the common genes found were
subjected to further analysis. A total of 64 differentially expressed genes constituting 55 upregulated
and 9 downregulated genes were identified. PPI and gene function analysis were performed to
evaluate the enriched terms of the common genes. Analyses of genes with the common expression
pattern and shared common BP terms were performed using PGSEA. The five genes identified were
further validated and evaluated for their potential role in the regulation of CSCs features.
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Figure 2. Identification of the genes significantly altered in TNBC using GEO2R. (a) The upregulated
genes in the training group; (b) the upregulated genes in the validation group; and (c) the common
genes in the training and validation datasets. (p ≤ 0.05 and logFC ≥ 1.5). (d) Evaluation of the
common genes’ expression pattern in the six datasets. (e) Confirmation of the expression profile of
the common differentially expressed genes in the TCGA pan-cancer TNBC and normal samples.
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3.2. Correlation of the Highly Expressed Genes with Cancer Progression

To explore the implication of the highly expressed genes in TNBC formation and
progression, we performed a PPI analysis using STRING and Metascape [16]. This analysis
revealed possible interactions between the common 55 upregulated genes. The genes
interaction network showed 55 nodes, 1359 edges, and an average node degree of 49.4. The
average local clustering coefficient of the PPI network was 0.946, with a PPI enrichment
p-value of 1.0 × 10−16 (Figure 3a). The common 55 upregulated genes were further eval-
uated for their enrichment in the GO-biological process (GO-BP) terms. Intriguingly, we
found that these genes were significantly enriched in the pathways associated with cell
cycle, PLK1 and Aurora B kinase signaling, DNA replication, FOXM1 transcription factor
(TF) network, G2/M checkpoints, and p73 transcription factor network, which are highly
dysregulated biological processes in many types of cancer (Figure 3b). Additionally, we
found that the regulator of TNBC progression, nuclear transcription factor Y subunit alpha
(NFYA), was involved in the regulation of more than 50% of the 55 common upregulated
genes (Figure 3c). Our findings imply that the aggressive phenotype of TNBC may be
influenced by the overexpression of these genes.

3.3. PGSEA Analysis of the TNBC Altered Genes Identifies a Five Gene-Signature with a Putative
Role in Tumor Stemness

We next performed a series of bioinformatics assessments and experimental valida-
tions to determine the effects of those altered genes on the stemness features of TNBC.
Firstly, we performed the Parametric Gene Set Enrichment Analysis (PGSEA) to identify
the genes with similar expression patterns and shared common GO-BP terms [14]. This
analysis pinpointed several relevant pathways, one of which is the regeneration term
that includes CDK1, EZH2, CCNB1, CCNA2, and AURKA (Figure 3d). We then retrieved
the background genes from the regeneration list (157 genes) and delved into the genes
likely associated with cancer stemness/cell self-renewal (Table S2). Among these genes,
POU domain-class 5-transcription factor 3 (OCT4), SRY-box transcription factor 2 (SOX2),
SRY-box transcription factor 9 (SOX9), Wnt signaling pathway proteins, catenin signaling
genes, NOTCH signaling, matrix metallopeptidase 9 (MMP9), Kruppel-like factor 5, and
MYC signaling genes, are all implicated in CSCs and self-renewal. In addition, the regen-
eration term contained several cytokines, such as interleukin-6 (IL-6) and interleukin-10
(IL-10). These analyses suggest that CDK1, EZH2, CCNB1, CCNA2, and AURKA genes in
regeneration terms may have roles in driving the stemness of TNBC. Thus, we selected
these five signature genes for further analysis.

The search tool for recurring instances of neighboring genes (STRING) and Cytoscape-
cytoHubba validation analyses revealed a highly functional and physical association be-
tween these signature genes with paired score degree values greater than 0.64 and a
statistically significant enrichment (p = 6.17 × 10−5). Interaction scores obtained from
PPI analysis demonstrated that CDK1 had the highest connectivity scores with the other
proteins (score > 0.9) (Table S1). Additionally, CDK1 showed a high interaction with EZH2
that had a slightly lower interaction with the other three proteins (EZH2-Aurora A, EZH2-
Cyclin B1, and EZH2-Cyclin A2). To determine whether these five genes are significantly
enriched in cancer-associated GO-biological processes, we performed a functional enrich-
ment assessment using STRING. We found that these genes were not only enriched in cell
regeneration, but were also significantly associated with other tumor-related biological
processes, including histone phosphorylation, histone modification, and G2/M transition
of mitotic cell cycle (FDR < 0.0001) (Table S2). Furthermore, functional exploration of the
five signature genes in the Wikipathways database affirms their roles in tumor-associated
pathways, including retinoblastoma tumor regulation, DNA damage response, DNA repair,
Ataxia telangiectasia Mutated (ATM) signaling pathway, miRNA regulation of DNA dam-
age response, 5′ adenosine monophosphate-activated protein kinase (AMPK) signaling,
cell cycle regulation, and DNA damage response (FDR ≤ 0.02) (Table S3).
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script and protein levels using the TCGA dataset samples. Our analysis found that except
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CCNB1, which its increase in TNBC did not attain a significant level compared to HER2
positive samples, all the other genes were highly expressed in TNBC samples as compared
to the normal or other BC subtypes (p ≤ 0.05) (Figure 4a). Using the CPTAC Platform
samples, we also analyzed the protein expression of the signature genes in TNBC samples
(Figure 4b). A significant upregulation of Aurora A, Cyclin B1, CDK1, and EZH2 was ob-
served in TNBC as compared to other types of BCs (O-BCs) (p ≤ 0.05). CCNA2 expression
in TNBC was not significantly higher than that in O-BCs. Analysis of the signature genes’
protein expression using the Human Protein Atlas also showed high expressions of these
proteins in tumor samples compared to normal samples (Figure S2). Moreover, our Western
blot analysis verified the higher expressions of EZH2, Aurora A (encoded by AURKA) and
Cyclin B1 (encoded by CCNB1) in MDA-MB-231, and MDA-MB-468 TNBC cells than in
non-malignant MCF10A breast cells (Figure 4c).
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cBioPortal-CPTAC database for protein expression of the SGs in TNBC and other BCs (p ≤ 0.05—*,
p ≤ 0.01—**, p ≤ 0.001—***, p ≤ 0.0001—****, ns-not significant); (c) Western blot analysis of the
SGs protein in TNBC cell lines, (d) SGs expression in normal, primary, and metastatic samples from
TCGA; (e) the ROC curve for the SGs, comparing their association to TNBC with normal and other
BCs; and (f) patients’ overall survival (OS) in relation to signature genes expression. Analysis of
clinical relevance of the signature genes in TNBC in relation to basal 50 genes Prediction Analysis
of Microarray (PAM50) using the sub-type samples in the KNM plotter platform that comprises
309 TNBC/basal samples.

Using TCGA dataset, we investigate the potential contributions of the identified
signature genes to tumor metastasis using the tumor-normal-metastasis (TNM) plotter plat-
form. The Pearson correlation analysis demonstrated a significantly increased expression
of the signature genes in primary and metastatic samples compared to normal samples:
CDK1, p = 4.98 × 10−56; CCNA2, p = 4.42 × 10−16; CCNB1, p = 1.5 × 10−33; AURKA,
p = 1.5 × 10−18; and EZH2, p = 6.94 × 10−7 (Figure 4d). This analysis not only confirms the
increased expression of these genes in TNBC but also supports our hypothesis that these
genes have important roles in TNBC tumor progression. The receiver operating characteris-
tic (ROC) analysis also displayed the specificity of these genes to TNBC versus non-TNBC,
as illustrated by the high area under the curve (AUC) values: CCNA2: 0.857 (p < 0.00001);
EZH2: 0.844 (p < 0.00001); AURKA: 0.784 (p < 0.00001); CCNB1: 0.762 (p < 0.00001), and
CDK1: 0.722 (p < 0.00001) (Figure 4e). Furthermore, using the KM-Plotter platform, we
assessed the clinical implication of the identified signature genes in prognosis of TNBC
patients. Among the five signature genes, the expression of EZH2 and CCNB1 appeared to
highly affect the clinical prognosis of TNBC patients (Figure 4f). Collectively, our datashow
that the elevated expression of the identified signature genes in TNBC may substantially
contribute to the aggressive phenotype of TNBC, including tumor stemness genes.

3.4. Signature Genes Expression Is Positively Associated with Immunosuppressive Cells
Infiltration and Hypoxia Status in TNBC

Recent studies have revealed an association between stemness and immune signa-
tures [25–27]. It is believed that CSCs in highly hypoxic regions of the tumor microen-
vironment (TME) can interact with immune cells, including T-cells, tumor-associated
macrophages, and myeloid-derived suppressor cells (MDSCs) [28]. Reciprocally, the im-
mune cells such as MDSCs and Tregs can nurture stemness niche to support CSC sur-
vival [27]. We, therefore, ascertain whether the expressions of the signature genes have
an association with the infiltration of Tregs and MDSCs in TNBC samples. TNBC-TCGA
samples from the Tumor Immune Estimation Resource (TIMER) 2.0. were utilized, and
the published guideline for choosing transcriptome quantification methods was followed
to determine the influence of gene expression on immunity [29]. We selected the Tumor
Immune Dysfunction and Exclusion (TIDE) platform [30] for analysis of MDSCs infiltration
and computational pipeline for quantification of the tumor immune contexture from human
RNA-seq data (QUANTISEQ) for Tregs. Notably, there was a significant positive correlation
between the mRNA expressions of AURKA, CCNA2, EZH2, and CDK1 with infiltration
of MDSCs (p < 0.05). Additionally, there was a significant positive correlation between
enhanced AURKA, CCNA2, EZH2, and CDK1 mRNA expression with MDSCs and Tregs
infiltration (p < 0.05) (Figure 5a). Upon analysis of the cell types infiltrated in the TME, we
observed that stromal and immune scores are positively correlated to low tumor purity [31]
and that tumor purity is associated with the expression of signature genes, suggesting
that the source of signature genes’ mRNA transcriptome was from tumor cells but not
from infiltrated immune cells (Figure 5a). Additionally, through explorative analysis of
the role of these genes in predicting patients’ response to immune-checkpoint inhibitors
(ICIs), including anti-PD1, anti-PD-L1, or anti-CTLA4 antibodies, we found that EZH2
(p < 0.05) and AURKA (p < 0.05) could better predict outcomes of patients receiving these
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treatments (Figure 5b–d). Retrieving the immune-TME and TNBC aggression-associated
marker genes from the Pan-cancer TCGA-dataset, we found a high positive correlation
of the expression of S100A9 and S100A8, two immune suppression marker genes, with
AURKA and EZH2 in the TNBC samples. Similarly, a correlation existed between Arginase 1
(ARG1), known to dampen T-cell proliferation, with EZH2 and AURKA. Additionally, high
CCNB1 expression was correlated with elevated expression of KDM5A (a drug resistance
marker), while AURKA positively correlated with HAVCR2 (TIM3) (a marker for highly
exhausted T-cells) (Figure 5e). These analyses imply that the signature genes identified
here may have potential roles in modulating immune-TME and the interaction between
immune cells and CSCs, contributing to the immunosuppressive phenotype of TNBC.
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was analyzed using the Timer2.0 online platform. (a) Correlation of MDSCs and Tregs infiltration
with signature genes (SGs) expression; (b) KM plotter analyses of OS of cancer patients treated with
anti-PD1 in reference to SGs expression; (c) KM plotter analyses of OS of cancer patients receiving
anti-PD-L1 treatment in reference to SGs expression; (d) KM plotter analyses of OS of cancer patients
receiving anti-CTLA4 treatment in reference to SGs expression; and (e) a multiple variance analysis
of correlation of SGs with immunosuppressive, drug resistance, and proliferative cell markers.

Oxygen deficiency is one of the features of TME in solid tumors. Oxygen deficiency fa-
vors CSCs enrichment and MDSCs accumulation, contributing to an immuno-suppressive
environment [32,33]. Thus, we queried whether these signature genes are involved in
the modulation of hypoxia. We retrieved the transcriptomic and copy number alterations
(CNAs) data from TCGA and quantified tumor hypoxia in TNBC and non-TNBC samples
using three independent hypoxia gene signature-based scoring tools: Winter [34], Rag-
num [35], and Buffa [36]. The samples were stratified into TNBC (basal-like) and non-TNBC
and evaluated for the differences in hypoxic status. We found that the hypoxic level was
significantly higher in the TNBC samples than in the non-TNBC (p < 0.0001) (Figure 6a).
Sorting the samples based on Ragnum score hypoxia intensity and examining the CNAs
and mRNA expression of the signature genes uncovered a correlation between mRNA
amplification and CNAs with higher hypoxia intensity (Figure S3a).
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To determine whether the expression patterns of CNAs and mRNA were also ex-
hibited at the protein level, we explored the CPTAC pan-cancer data. A positive cor-
relation between the expression of the five proteins and hypoxia scores status was ob-
served (Figure S4b), and all three methods demonstrated similar changes and correlations
(correlation coefficient > 0.2) (Figure S3c). The proteins that had the highest correlations
with the hypoxia scores were CDK1 (Buffa score: 0.60; Winter score: 0.51; Ragnum score:
0.52) and EZH2 (Buffa score: 0.52; Winter score: 0.45; Ragnum score: 0.44). Furthermore,
the EZH2–CDK1 pair demonstrated a high correlation (correlation coefficient; 0.62), while
Aurora A expression was highly correlated with CDK1 protein levels (correlation coefficient;
0.53) under hypoxia conditions (Figure S3c). To determine whether these five signature
genes can predict hypoxia status in BC, we stratified the TCGA samples into two groups
based on the Buffa score. The samples with positive Buffa scores were grouped as positive
responders, while those with zero or negative scores were grouped as non-responders.
ROC analysis demonstrated high specificity of these genes in predicting the samples with
high hypoxia (Figure 6b). Intriguingly, AUC values of the signature genes matched those
of Ragnum (0.88, p < 0.00001) and Winter (0.951, p < 0.00001) hypoxia prediction scores:
AURKA, 0.847 (p < 0.00001); CCNB1, 0.827 (p < 0.00001); CDK1, 0.806 (p < 0.00001); CCNA2;
0.835 (p < 0.00001); and EZH2; 0.812 (p < 0.00001). Together, these analyses suggest that
the signature genes identified in this study may have important roles in regulating or
predicting hypoxic status in TNBC.

3.5. Depletion of NACC1 Reduces the Signature Genes Expression

We and others have previously shown that NACC1 plays an oncogenic role in sev-
eral forms of cancers by supporting cell survival in hypoxic environments. [37]. More
recently, we showed that NAC1 (encoded by the NACC1) expression in melanoma cells
promotes their evasion from immune surveillance [38]. Thus, we asked whether this
transcription co-factor has any effects on those signature genes in TNBC cells. Analysis
of the GSE183947 dataset [39] matched normal, primary, and metastatic TNBC samples
found a significant upregulation of NACC1 mRNA level in primary and metastatic tu-
mors compared to normal tissues (Figure 7a). It has been shown that p27 is enriched in
less proliferative cells in TNBC [5]. We identified DEGs between p27-low and p27-high
TNBC samples in the GSE198713 dataset [5]. Surprisingly, we found that the signature
genes were significantly downregulated in p27-high samples (Figure 7b). Consistently, our
experiments demonstrated that depletion of NAC1 in MDA-MB-231 TNBC cells marked
reduced Aurora A, Cyclin B1, and EZH2 expressions (Figure 7c). Furthermore, NACC1
expression in patients under ICIs treatment could clearly predict patients OS. Additionally,
a combination of NACC1 and EZH2 expression revealed better patient OS under anti-
PD-L1 treatment (Figure 7d). Oncogenic driver gene signature analysis using GSEA on
NACC1 depleted cells RNA-seq data showed that the downregulated genes were enriched
in PRC2-EZH2, KRAS, BC-associated genes, epidermal growth factor receptor (EGFR), AKT
signaling, and WNT pathway (Figure S4a). Furthermore, our Western analysis on AKT
pathway-associated gene expression in the NACC1-depleted tumor cells showed decreased
expressions of phospho-PTEN, β-catenin, and cyclin-D1 (Figure S4b), which is consis-
tent with the RNA-seq data. The NOTCH pathway represents a major CSC regulator in
TNBC [40]. By RNA-seq analysis, we found that NAC1 depletion decreased the expression
of NOTCH-associated genes compared with nontargeted controls (Figure S4c), suggesting
that NAC1 positively regulates the NOTCH pathway. Furthermore, the expression of
EZH2 and CCNA2 also positively correlated with the expression of NOTCH1(Figure S4d).
Overall, these findings imply that the upregulation of NAC1 in TNBC may promote tumor
progression and hypoxia adaption by affecting the oncogenic and stemness-associated
pathways and genes, including the five signature genes identified in this study.



Biomedicines 2023, 11, 1223 13 of 18Biomedicines 2023, 11, x FOR PEER REVIEW 14 of 18 
 

 

Figure 7. NACC1 depletion reduces the expression of the SGs, and a combination of NACC1 with 

EZH2 provides a better prognosis for patients under ICIs therapy. (a) NACC1 expression in the 

matched normal, primary, and metastasis TNBC samples(p ≤ 0.0001—****, ns-not significant); (b) 

expression of the five genes in p27 high vs. p27 low samples of GSE198713 datasets; each dots rep-

resent a sample, and bars represent median values with range (c) expression of Aurora A, Cyclin B1, 

and EZH2 in TNBCs cells subjected to depletion of NAC1; and (d) overall survival analysis of pa-

tients under ICIs treatment in relation to SGs and NACC1 expression. 

4. Discussion 

Intra- and inter-tumor heterogeneity, tumor relapse, metastasis, and therapy re-

sistance constitute the major challenges in the treatment of TNBC, and CSCs are an im-

portant contributor to these malignant phenotypes [41]. To better understand these 

Figure 7. NACC1 depletion reduces the expression of the SGs, and a combination of NACC1
with EZH2 provides a better prognosis for patients under ICIs therapy. (a) NACC1 expression in
the matched normal, primary, and metastasis TNBC samples(p ≤ 0.0001—****, ns-not significant);
(b) expression of the five genes in p27 high vs. p27 low samples of GSE198713 datasets; each dots
represent a sample, and bars represent median values with range (c) expression of Aurora A, Cyclin
B1, and EZH2 in TNBCs cells subjected to depletion of NAC1; and (d) overall survival analysis of
patients under ICIs treatment in relation to SGs and NACC1 expression.
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4. Discussion

Intra- and inter-tumor heterogeneity, tumor relapse, metastasis, and therapy resistance
constitute the major challenges in the treatment of TNBC, and CSCs are an important
contributor to these malignant phenotypes [41]. To better understand these problems,
we explored the genes that drive the malignant phenotype of TNBC. We mined six GEO
datasets and TCGA samples and analyzed the altered gene expressions at both transcrip-
tome and protein levels using PGSEA algorithm, STRING, Metascape, and TIMER2.0.
Through these analyses, we identified 55 upregulated and 9 downregulated genes impli-
cated in the regulation of aggressive phenotypes in TNBC. Further exploration led to the
identification and validation of CDK1, CCNB1, AURKA, EZH2, and CCNA2, a five-gene
signature with high interactions and potentially associated with tumor stemness, hypoxia
enhancement, and TME regulation. Consistently, these five genes are among those reported
to be potential prognostic biomarker signatures for hepatocellular carcinoma [42].

Protein–protein interactions, as well as gene co-expression, are crucial in the control
of various malignant features. Here, we found a close association of the 55 common
differentially expressed genes as well as the identified signature genes at the mRNA and
protein levels, especially for CDK1-EZH2 pairing. A strong correlation of these genes at
the mRNA level may suggest a shared transcription regulation machinery. We further
identified NFYA, known to promote tumor progression in TNBC [43], as the most enriched
transcription factor targeting over 50% of the upregulated genes. The short-isoform of
NFYA transcriptionally amplifies the survival and tumor cell proliferation-associated genes.
On the other hand, the long NFYA isoform enhances cell signaling through EMT transition
and leads to a more belligerent phenotype of Claudinlow basal-like tumors [43]. Similarly,
the expression of NYFA and sex determinant region Y are independent prognostic markers
in gastric cancer, and that NFYA promotes growth of clear cell renal cell carcinoma (ccRCC)
through the regulation of cyclins activity [44,45]. These observations support the hypothesis
that upregulation of the signature genes transcription and their protein translation in TNBC
play a significant role in tumor progression.

Recent studies have demonstrated that interaction and phosphorylation of SOX2 by
CDK1 positively regulate stemness in lung cancer [46], and CDK1 phosphorylation of both
HIF-1α and EZH2 promotes tumor cells survival and proliferation [47,48]. Our analyses
show that CDK1 is highly correlated with EZH2 as well as other signature genes in TNBC.
Additionally, we found that both CDK1 and EZH2 are strongly correlated with hypoxia
status at transcription, CNAs, and protein translation levels. Under hypoxia, tumor cells
can stimulate MDSCs to establish a premetastatic niche that promotes cancer cells aggres-
sion [33]. Although tumor cells have the capability to adapt to hypoxia, the hypoxia-related
products can deter activation of tumor-infiltrating immune cells, establishing an immuno-
suppressive environment critical for tumor cell evasion from immune surveillance [33].
IL-6 is a cytokine that is involved in immunosuppression and its expression is upregulated
by CDK1 activity [49]. Under hypoxia, IL-6 can upregulate HIF1α to enhance CSCs sur-
vival under cisplatin therapy [50]. We show here that the upregulation of signature genes
(especially CDK1, EZH2, and AURKA) is correlated with hypoxia in TNBC at the mRNA
and protein levels, and that these signature genes are highly expressed in primary and
metastatic samples. Increased expression of EZH2 can enhance TNBC cells invasion and
metastasis through suppression of TIMP2 transcription and subsequent amplification of
MMP-2 and MMP-9 activity [51]. The role of hypoxia in regulating immune-TME of TNBC
is emerging, and studies have demonstrated the importance of hypoxia in immune–tumor
cell interactions that drive tumor progression [52]. The high correlation of the signature
genes with tumor hypoxia, stemness status, and increased immune cells infiltration may
provide new insights into this issue. Our ROC analysis further corroborates these observa-
tions and implies the potential of the identified signature genes in predicting the hypoxia
status of TNBC.
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NAC1 expression in melanoma cells was recently reported by us to be essential for
immune evasion. [38] and that NACC1 expression negatively regulates the suppressive
activity of Tregs [53] and CD8+ memory T-cells [54]. The current study suggests that NAC1,
likely through the regulation of the identified signature genes, has a role in immunosup-
pressive TME. The expression of these genes in HCC positively correlates with infiltrations
of neutrophils, macrophages, and dendritic cells and could predict HCC patient’s responses
to anti-PD-1, anti-PD-L1, and anti-CTLA-4 antibodies [55]. Here, we showed that increased
infiltration of MDSCs and Tregs is substantially correlated with high expression of hallmark
genes. The infiltration of both Tregs and MDSCs suggests multiple roles of the signature
genes in modulating immuno-TME in TNBC. Liu et al. [56] demonstrated that CCNB1
and EZH2 together could influence immune cell infiltration and serve as a prognostic hub
in prostate cancer. However, our results show that EZH2 expression but not CCNB1 is
associated with poor prognosis in patients receiving ICIs, and that a combination of EZH2
and NACC1 may better predict the survival of patients receiving anti-PDL1 treatment. An
in vivo study and further validation of these signature genes and their implication in TNBC
are ongoing.

In conclusion, we discovered five NAC1-regulated genes implicated in TNBC aggres-
sive phenotypes, including tumor stemness and immune cells infiltration. The expressions
of these genes could be further explored as useful prognostic markers of TNBC. The protein
products of these genes may also be exploited as potential targets for TNBC therapy.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines11041223/s1, Figure S1: Identification of the common
upregulated and downregulated genes in TNBC. Figure S2: Expression of the stemness-associated
proteins in BC vs. normal tissues samples from the human protein atlas. Figure S3: Correlation of the
signature genes expression with tumor hypoxic status. Figure S4: Analysis of the RNA seq data from
the NACC1-depleted tumor cells and in vitro validation of affected pathways; Table S1: Interaction
scores of the signature genes. Table S2: Validation of the signature genes. Table S3: WIKIpathway
analysis of the five signature genes.
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