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Abstract: Retinoic acid (RA) is a metabolite of vitamin A (retinol) that plays various roles in development
to influence differentiation, patterning, and organogenesis. RA also serves as a crucial homeostatic
regulator in adult tissues. The role of RA and its associated pathways are well conserved from zebrafish
to humans in both development and disease. This makes the zebrafish a natural model for further
interrogation into the functions of RA and RA-associated maladies for the sake of basic research, as well
as human health. In this review, we explore both foundational and recent studies using zebrafish as a
translational model for investigating RA from the molecular to the organismal scale.

Keywords: retinoic acid; vitamin A; development; zebrafish; neurogenesis; kidney; heart; endoderm;
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1. Introduction

For nearly 100 years, vitamin A in the maternal diet has been linked to normal embryonic
ontogeny in vertebrates. Initially, this was based on observations in female pigs and rats that
subsistence on nourishments lacking vitamin A during pregnancy was associated with a plethora
of birth defects in newborns ranging from eye abnormalities to genitourinary defects [1–8].
Continued nutrition research uncovered a complex spectrum of congenital malformations that
occurred consequent to a maternal vitamin A deficient (VAD) diet, which came to be known as
the VAD syndrome [9]. The malformations included defects in the central nervous system, eyes,
ears, heart, lungs, limbs, skin, and urogenital system [9]. These and subsequent studies helped
to stimulate continued research on how retinoids, the biologically active metabolites of vitamin
A, modulate development. Many fundamental insights were uncovered by investigating the
teratogenic effects of RA—how global or local exposure impacted normal processes [10–16]. RA
signaling is now appreciated as being essential for the genesis of nearly every vertebrate tissue
and organ [10–16]. The wide range of RA functions include patterning of the body axis, regional
patterning of the central nervous system, neurogenesis, limb development, and pleiotropic roles
in organogenesis [10–16].

The zebrafish, Danio rerio, is a powerful experimental model for studying the roles
of RA signaling during ontogeny [17] due to its ex utero development, large embryonic
size, and transparent nature—features which have facilitated classical and chemical genetic
approaches [18,19]. Here, we provide an overview of RA biology and the zebrafish model,
and discuss how zebrafish have been used to further our understanding about the roles
of RA during embryogenesis of the neural plate, kidney, heart, blood, endoderm, and in
disease states like cancer.

2. RA and Zebrafish, a Background
2.1. Evolutionary Perspective and Gene Regulation

RA-mediated morphogenic signaling was once thought to represent an evolutionary
split between chordates and non-chordates, as RA is necessary for the anterior-posterior
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(AP) axis and later germ layer organization in early development [20]. However, analysis
involving both genomic and proteomic methods has highlighted evidence that traces
essential RA-related machinery to far more ancient phylogenies, such as mollusks [20].
Even within chordates, machinery slightly differs along the evolutionary timeline. Within
tunicates and other invertebrate chordates, the number of RA receptors is markedly lower
due to the two whole genome duplications associated with vertebrate evolution [21].
Despite the change in the number of receptors, the importance of RA in development is
still highly conserved across phyla. Tunicates such as C. intestinalis treated with exogenous
RA were found to have limited neural tube closure, a feature conserved through zebrafish
and into humans [22–24].

Across species, researchers have linked RA, its receptors, and the accompanying
response elements as upstream regulators to homeobox (hox) genes, a gene family highly
associated with AP positioning, neural crest organization, and overall organogenesis later
in development [25–28]. In the zebrafish genome, hox genes are isolated to clusters, and
this multiple cluster model is conserved throughout vertebrates [29–31]. Though these
clustered identities are well conserved, the number of clusters containing protein coding
regions does differ. In comparison to mammals which have four of these clusters, zebrafish
have seven, the odd number due to a condensation post genome-wide duplication [32–34].
Genes within each of these clusters are genetically positioned 3′ to 5′ in the order in which
they are transcribed, meaning upstream elements represent coding regions for anterior cell
fates [35]. This collinear positioning is also sensitive to RA, as exogenous RA treatments
can lead to the initiation of transcription for upstream/anterior elements in locations
which normally require posterior hox elements, and the opposite for downstream/posterior
identities [36–38].

Other than hox gene regulation, RA has a regulatory footprint in various other signaling
pathways that aid in developmental processes. One signaling family that should be duly
noted is the Fibroblast Growth Factors (FGF) and the ensuing cascades. FGF works on an
opposing gradient to RA in the presomitic mesoderm, among other tissues, and is vital for
posteriorizing cell fates in cell populations such as the neural plate [39]. In the presence
of exogenous RA or RA agonists, fgf8 expression within caudal neural plate explants is
markedly decreased [39]. In these same experiments performed by Diez el Corral et al.
utilizing vitamin-A deficient quail, the researchers found that fgf8 expression extends
to more anterior fates, thus portraying RA as a negative regulator of FGFs [39]. In the
converse manner, FGFs have the ability to increase RA signaling via cyp26 suppression.
Through Cyp26 enzymes, fgf8 transcription works to create a margin between the anterior
and posterior neural ectoderm in the earliest stages of gastrulation, thus allowing for
early organization for future cell fates [40]. RA has a regulatory role on FGF signaling in
other developmental processes as well, for example, in defining the cardiac and forelimb
progenitor fields [10–17].

2.2. Biogenesis, Metabolism, and Receptors Involved

In zebrafish and other vertebrates, de novo RA synthesis does not occur, thus these
species rely upon dietary intake of vitamin A or vitamin A preceptors for canonical RA
signaling (Figure 1). Forms of vitamin A are present endogenously in the early embryo from
maternal sources, e.g., transferred across the placental circulation in mammals or deposited
within the egg yolk as carotenoid stores in oviparous species [41–45]. The forms include
retinol, retinyl esters, and plant-derived provitamin A carotenoids like β-carotene and
β-cryptoxanthin [41–45]. These plant-derived carotenoids must be converted to retinoids
via oxygenases such as ββ-carotene-15,15-oxygenase (bcox) [46]. In zebrafish, knockdown
of the bcox gene leads to phenotypes seen in VAD animals; thus, plant-derived carotenoids
and their corresponding reducing enzymes are essential for proper development [46].
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Figure 1. Overview of RA biosynthesis and the canonical pathway of transcriptional activation.
Schematic provides a view of the cell membrane, with flanking extracellular space (white) and the
cytosol (blue), the latter containing the nuclear compartment (purple). Retinol enters the cell via
STRA6(l) proteins, and is bound by CRBP. Next, it can be reversibly esterified for storage by LRAT, or
processed by two sequential oxidation reactions by RDH and ALDH enzymes to form ATRA. ATRA
can be bound and enter the nucleus upon interactions with RAR/RXR nuclear receptors, or degraded
via the action of CYP26 enzymes. Figure created with BioRender.com.

Once retinol has entered either the serum or the extracellular matrix, retinol binding
proteins (RBPs) bind these free retinoids for escort to the cell membrane (Figure 1). This
method of transport is found not only in the serum, but in the yolk and the yolk syncytial
layer in early development. These bound RBPs act as ligands for the transmembrane
transporters of retinol, STRA6 and STRA6l (stimulated by retinoic acid 6, stimulated by
retinoic acid 6 like, formerly RBPR2) (Figure 1) [47–50]. STRA6/l serve as bidirectional
gatekeepers of retinol, as RBPs bind to the extracellular facing domain, and cellular retinol
binding proteins (CRBPs) bind the cytoplasmic domain [51,52].

Once retinol has bound CRBPs within the cytosol, one of two fates occurs (Figure 1) [11–13].
In the presence of lecithin-retinol acyltransferase (LRAT), CRBPII complexes are responsible
for the transformations of retinol to retinyl esters [51,52]. These retinyl esters are a stable
storage molecule that can be reduced back to retinol in times of RA deficiency [53]. The
second fate for CRBP-bound retinol is the oxidation to retinaldehyde via retinol or alcohol
dehydrogenases (RDHs or ADHs) (Figure 1) [54]. Once the retinal has been synthesized,
the last oxidation of retinaldehyde to RA is facilitated by retinaldehyde dehydrogenases
(RALDH, also known as ALDHs) [55,56].

Though several (R)ALDHs are sensitive to retinol, we wish to highlight the (R)ALDH1A
family and the three proteins that reside within, two of which are present in zebrafish
and other teleosts: aldh1a2 and aldh1a3 [57]. In humans, ALDH1A1 is not associated with
development; rather, the enzyme has a role in alcohol metabolism and has been linked to
several cancers [58]. In zebrafish, aldh1a2 represents the best described ALDH responsible
for RA signaling in development. In the loss of aldh1a2, phenotypes in zebrafish devel-
opment mimic those of VAD embryos in zebrafish and mammals [59–65]. For example,
the death of neural crest cells at 24 h post fertilization (hpf), untidy hox expression pat-
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terns, and lack of pectoral fin skeletal structure were noted in the aldh1a2 null fish [59]. In
zebrafish, aldh1a3 knock down via morpholino results in decreased eye size and overall
aberrant eye morphology [66]. This phenotype of poor eye formation is thought to be
conserved in humans, as mutations within aldh1a3 result in anophthalmia [67,68]. Tran-
scriptionally within development, aldh1a2 and aldh1a3 expression show little temporal
overlap [57,59,62,64,69,70]. In whole embryo qRT-PCR experiments performed by Xi et al.,
aldh1a2 expression begins during mid gastrulation and tapers off dramatically during
segmentation activities [71]. In other work, aldh1a3 expression was shown to initiate in
early somitogenesis/segmentation [57,69]. This falls nearly in step with the earlier work of
Liang et al., who showed aldh1a3 expression to initiate at 14 hpf [69]. This mild discrepancy
highlights the need for updated and further investigation of the regulatory networks in-
volved in RA synthesis machinery through the continued application of effective methods,
such as qRT-PCR [72,73], and whole mount in situ hybridization (WISH) [74–77].

Once synthesized, RA has two direct paths to take (Figure 1). The first of which is to
bind to a cellular retinoic acid binding protein (CRABP) [78,79] that facilitates transport
into the nucleus to bind an RA receptor (Figure 1) [80]. RA receptors represent a body
of nuclear receptor superfamily members [81]. In humans and many other vertebrates,
three RARs exist (A, β, G), and these RARs are accompanied by retinoid X receptors (RXRs,
also: A, β, G) [81–84]. The coupling of these two receptors creates a complex that will
subsequently bind DNA to regulate gene transcription at discrete sequences known as
retinoic acid responsive elements (RAREs) (Figure 1) [85–87]. The important distinction
between RARs and RXRs is the molecules that target them. RARs bind all-trans RA (ATRA)
and 9-cis RA, while RXRs are solely targeted by the 9-cis RA isomer. Once the ligand
and receptor are bound, a heterodimer forms between the twin receptors. Though it is
thought that RARs only dimerize with RXRs, it is known that RXRs possess the ability to
form homodimers with non-RARs such as PparG to play roles in other pathways [88–91].
Interestingly, zebrafish, as a result of genome duplication and subsequent condensation,
possess four RARs (two RARa and two RARG). Despite the loss of RARβ from the zebrafish
genome, the corresponding RXRs were retained through the condensation, and are active
in the regulation of various conserved developmental and regenerative processes [92–99].

Due to the need for RA signaling to occur in a gradient that is discrete in terms
of concentration, an equally precise mechanism for RA degradation is a necessity, thus
providing a second fate for newly synthesized RA (Figure 1). Primarily, three enzymes
belonging to the cytochrome p450 26 subfamily (CYP26A1, CYP26B1, and CYP26C1) are
tasked with RA metabolism [71,100–108]. These enzymes are crucial to tightly control RA
distribution and prevent inappropriate signaling within the embryo [109,110]. Zebrafish
similarly possess these three cyp26 genes (cyp26a1, cyp26b1, and cyp26c1), which are closely
conserved with humans [71,100–108], and are likewise tightly controlled [111,112]. Adjunct
functions of each of these Cyp26 enzymes do exist, however, overlaps in tissue-level
spatial expression patterns are present [113]. In the course of development, the genes
associated with these RA-metabolizing enzymes are found to be activated before synthesis
machinery such as aldh1a2 and aldh1a3 is transcribed [71]. This accumulation of Cyp26
enzymes before gastrulation indicates potential priming of progenitor populations before
the advent of zygotic RA synthesis [71]. This may also be evidence of a fourth enzyme with
potential redundant and compensating retinal oxidizing capabilities in early development
that is yet to be fully characterized [113]. The presence of Cyp26 family enzymes is also
attributed to creating “RA sinks”, which are regions of tissue that act as collecting areas
for diffuse/surplus RA [69,111,112,114,115]. These “sinks” occur in part due to RAREs
present in the promoters of the Cyp26a1 gene expression [116–120], and they contribute to
the creation of RA morphogen gradients in the early embryo [121–127].

2.3. Zebrafish as a Model Organism

The zebrafish presents as a natural model for developmental work [128] as well as
disease modeling [129]. Zebrafish are non-amniotic vertebrates that are fertilized and de-
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velop externally within a transparent chorion [130]. This ontogeny can be witnessed readily
from the single-cell stage, allowing for genetic manipulation via microinjection and other
embryological approaches as well [131–133]. The transparent chorion and translucency
of the early embryonic stages also enable the precise timing of stage-directed treatments.
Cleavage stages transpire rapidly, occurring within the first six hours of development,
followed by gastrulation within the first twelve, then subsequent organogenesis from the
germ layers [130]. By 24 hpf, a full body plan exists [130]. Within two to three months, the
zebrafish is able to breed.

Zebrafish also possess a high fecundity, allowing for genetic screens [134–144] and
high throughput assays to assess varied compounds and their role in developmental
processes [145–152]. For example, RAR and RXR agonists/antagonists and their role in
developmental processes can be explored by adding these compounds at various times
(Figure 2). This short generation time paired with high fecundity also allows for large
scale forward and reverse genetic screens. Further, in contrast to mammals, zebrafish
possess the ability to regenerate many complex tissues and organs such as the kidney, heart,
fin, and eye [153–157]. The zebrafish genome has been sequenced and is well annotated,
allowing for conservation of biomarkers in health and disease [158]; and there are extensive
centralized resources made possible by community efforts [159–161]. Genetically, ~70%
of human protein coding genes share an ortholog with zebrafish [158]. In comparison
to mammalian models, such as mouse and rat, the zebrafish is economically efficient in
terms of the space needed to house adequate colonies. The use of zebrafish as a model has
become increasingly important for providing insights into development and disease, given
the nature and feasibility of many approaches that are unique to the use of this species. For
the aforementioned reasons of rapid development, short generation time, and ease of use
for screens that may utilize large chemical drug/libraries, zebrafish will continue to be a
valuable model for elucidating the roles of RA in development.
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Figure 2. Zebrafish as a model organism. (A) Zebrafish adults reach sexual maturity between
2–3 months of age and mate via broadcast spawning into the water column. (B) Thus, fertilized
embryos can be collected non-invasively and grown in the lab. Embryos develop optimally at a
temperature of 28.5 ◦C, as they are tropical fish, and can be grown in various formats. Here, we
show the example of arraying the embryos in multi-well plates to conduct exogenous treatments
with small molecules to interrogate developmental processes and for toxicology studies. The use of
RA pathway agonists or antagonists, like ATRA or DEAB, can be used to interrogate how changes in
RA biosynthesis or signaling affect ontogeny. Such treatments can begin at any timepoint of interest
to the researcher, such as the 60% epiboly depicted here, and then embryos reared to the stage(s) of
interest, such as 24 hpf, to examine the effects by any number of phenotype assessments, such as live
assessment, WISH, or qRT-PCR. Figure created with BioRender.com.
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3. RA in Development
3.1. Neural Plate Progenitors

Early hindbrain development is reliant on proper RA signaling. During this process,
RA synthesis is thought to be acted on by pbx2 and pbx4 to regulate early hindbrain fate de-
cisions [162]. In aldh1a2-deficient zebrafish neckless (nls) mutants [59], the down regulation
of RARa leads to imprecise regulation of hoxb4. The neuroectoderm of 14-somite stage nls
mutants lacks hoxb4 expression, despite ubiquitous expression in mesodermal tissues [59].
However, by the 16-somite stage (roughly one hour later), hoxb4 expression is restored to
neural tube progenitors within nls mutants, thus implying a potential compensatory mech-
anism of RA-mediated hoxb4 expression. Both RA and FGF gradients work synergistically
to develop positional identities within the rhombomeres, a group of vital cell populations
necessary for early neural crest migration [163–166].

Through the exogenous treatment of embryos with the aldehyde dehydrogenase in-
hibitor molecule N,N-diethylaminobenzaldehyde (DEAB) (Figure 2) starting at the 4 hpf
stage, rhombomere 5 and 6 identities were found to be lost at 16 hpf, implying the impor-
tance of RA in signaling fates in early hindbrain populations [166]. Other work performed
in zebrafish showed that loss of RAR signaling via treatment with a pan-RAR antagonist
led to not only a lack of posterior hindbrain identity, but also an increase in the domain of
anterior rhombomeres two, three, and four [61]. This implies that the two tailed gradient
of RA is opposed by Cyp26 enzymatic activity at both the far anterior and posterior ends
of the developing fish. In work performed by Qiu et al., RA, FGF, and other morphogenic
gradients were wonderfully computationally modeled to highlight the precision neces-
sary for essential fates within the developing hindbrain and the associated rhombomeres
within zebrafish [167].

In later points of development within the forebrain, loss of both aldh1a2 and aldh1a3
results in altered yet intact expression of fgf8 and shh, implying RA is not solely responsible
for early forebrain organization in mice [168]. In zebrafish, depletion of hmx4, a homeobox
gene and ortholog of the human HMX1, results in a significant decrease in aldh1a2 expres-
sion which leads to lack of neural tube closure [169]. In these same studies conducted by
Gongal et al., the addition of exogenous RA to hmx4 morphants rescues gli3 expression and
allows for regular forebrain development, suggesting that hmx4 works via RA to mediate
Shh activation [169]. This work opens exciting new avenues for investigation into RA and
its role in forebrain development.

Eye development in zebrafish as well as other vertebrates originates within the eye
field, a primordial section of the neural plate. Transcriptionally, a grouping of factors
known as eye field transcription factors (EFTF) are credited with this specification. These
factors include homeodomain genes such as rx3, otx2, and lhx2, and pax6 [170]. In RNA-
sequencing analysis of rx3-/- fish at 13 hpf, select RA-related orphan receptors were found
to be transcriptionally downregulated [171]. Loss of this EFTF and the resulting down
regulation of RA-associated machinery may imply transcriptional priming within these
early eye field cells for RA that is used in later regulation of optic development.

3.2. Kidney

The nephron is the functional unit in the kidney, and it is tasked with several critical
physiological roles: the filtering of the blood through the glomerulus, the facilitation of
solutes in and out of circulation via the tubules, and the passage of waste for dismissal
in the collecting duct [172]. In higher vertebrates, the pronephros is the first transient
form of the kidney, followed by the mesonephros, and the final formation of the kidney
is named the metanephros [172]. In zebrafish, only the first two, the pronephros and
mesonephros, are formed [173]. Pronephros development in zebrafish begins during the
process of intermediate mesoderm formation through the action of signals derived from
Bone Morphogenic Proteins (BMPs) [174]. As the intermediate mesoderm forms, RA
signals originating from the paraxial mesoderm orchestrate the genesis of the bilateral
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nephrons [64,175]. These movements can be visualized through the use of transgenic lines
expressing renal progenitor field markers such as lh1xa, pax2a, and pax8 [176].

In the presence of exogenous (10−6 M) ATRA exposure from 60% epiboly/6 hpf stage
to the six-somite stage, two of these same markers, pax2a and pax8, are found to have the
non-discrete spatial expression pattern seen in regular development [175]. In this same
line of experiments, use of the RA synthesis inhibitor DEAB at the same six-somite stage
results in rostralization of evi1 (mecom) [175] a downstream mediator of Fgf signaling [177]
and a marker for more distal tubule fates at the 28-somite/24 hpf stage [64,178]. Further
analysis of the inhibition of RA synthesis through the comparison of aldh1a2 knockdown
via morpholino oligonucleotide and chemical inhibition via DEAB shows that the time
of RA synthesis is crucial to the tubule phenotype within the nephron; and it further
confirms the redundancy within ALDH enzymatic expression patterns [175]. In aldh1a2
knockdown fish, all of the tubules form by 48 hpf; however, distal tubule fates expand
rostrally at the cost of anterior segments [175]. In the chemical inhibition of RA synthesis
via DEAB, time of addition experiments concluded that RA is most needed in tubule fate
decisions between 60% epiboly and 15-somite stages, or approximately 6–16 hpf [175]. Lack
of sufficient RA synthesis during this period of gastrulation and somitogenesis leads to
the complete loss of proximal cell fates (Figure 3) [175]. This work concluded that RA
works to posteriorize proximal cell fates in juxtaposition to Fgf signaling. Though loss
of RA is associated with inefficient pronephros formation, overproduction or addition of
exogenous RA can be equally detrimental to the organization of the tubules. At the same
ATRA concentration (10−6 M) used to determine that intermediate mesoderm patterning
is sensitive to opposing RA and FGF-inducing gradients, exposure to such high levels of
ATRA from 90% epiboly to the 5-somite stage (5–10 hpf) leads to complete loss of distal
segment fates and highly increased proximal convoluted tubule (PCT) and proximal straight
tubule (PST) populations at the 24 hpf/28-somite stage (Figure 3) [175]. This work, and
others involving the nephron and the associated tubule dependence on RA for regulation
of segmentation, is well characterized, and the investigation of the downstream gene
regulatory network has revealed a number of transcription factors crucial for fashioning
segment fates, such as sim1a, tbx2a/b, and emx1, among others [64,179–185]. However,
openings emerge for further interrogation due to the ever-evolving field of RA biology,
the ease of performing chemical/drug/biologic screens in the zebrafish model, and the
prevalence of next generation sequencing approaches in development.
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formation, with the highest level at the rostral-most locations (arrow). (Right, top) As development
proceeds, these RA levels exert an influence on the proximo-distal segmentation patterning. The
zebrafish embryonic kidney comprises two bilateral nephrons with several unique cell populations,
and these undergo morphogenesis events by the 48 stage to connect rostrally at a single midline
blood filter and caudally at the cloaca where waste exits the body. (Right, bottom) The effects of
RA are best understood for the 4 main tubule populations: the proximal convoluted tubule (PCT),
proximal straight tubule (PST), distal early (DE), and distal late (DL). Embryos exposed to a high
dosage of ATRA starting at 60% epiboly form nephrons with only proximal segments. Conversely,
embryos exposed to the RA biosynthesis inhibitor DEAB starting at 60% epiboly form nephrons with
only distal segments. Figure created with BioRender.com and based on [175].

Within the nephron, a subpopulation of aptly named multiciliated cells (MCCs) project
clusters of motile cilia into the tubule lumen and govern fluid flow [186]. MCCs are
detectable via WISH as early as the 10-somite stage [186]. Much like the nephron tubule
populations, MCCs are dependent on RA signaling for differentiation from the renal
progenitors [178]. In the proposed MCC regulatory network, RA works upstream to
downregulate mecom, a positive regulator of Notch, and a factor for distal cell fates [178]. In
knockdown of mecom and the subsequent addition of DEAB from late gastrulation to 24 hpf,
MCC formation was almost completely rescued in terms of the domain they occupied
within the nephrons and the position of this domain in the developing fish [178]. These
experiments involving RA signaling and MCC fate determinants highlight exciting avenues
of future interrogation into the potential regenerative capacities of MCCs after injury, which
may lend potential insights into human disease.

3.3. Heart

From its genesis, the zebrafish heart is reliant on RA for correct spatial patterning of
progenitors. Work performed by Keegan et al. delicately described both RA addition and
the time in which RA is necessary for restricting progenitor fates [187]. When they treated
embryos with a pan-RAR antagonist and then assessed cmlc2 and nkx2.5 expression, which
marking cardiomyocytes precardiac mesoderm, respectively, they observed increased do-
mains of expression at the 16-somite stage, suggesting RA works in restricting cardiac cell
fates in post gastrulation fish [187]. This hypothesis was then confirmed through the use of
exogenous ATRA treatments spanning a time point straddling gastrulation initiation leads
to lessened cmlc2 expression at the 18-somite stage [187]. The mechanism of RA restricting
the cardiac field was further characterized as being mediated by cdx4 and cdx1a expression.
In this process, much like in hindbrain development, RA works through downregulat-
ing cdx4 expression, thereby activating cyp26a1 expression to metabolize RA within the
cell [188,189]. This hypothesis further postulates the intricate nature of RA self-regulation,
as RAREs exist as regulatory units of cyp26/Cyp26/CYP26 family expression [116,117]. Other
work involving regulators of cardiac cell fate such as NR2F have been found to have RARES
within these factors’ promoter regions, which in the presence of DEAB leads to a decreased
nr2f1a domain. The loss of nr2f1a/b contributes to a relative expansion of the nkx2.5 domain,
a commonality seen with RAR antagonism.

Further investigation into RA and its role in early heart field regulation revealed
that RA works indirectly through the homeobox gene hoxb5b to limit cardiac progenitor
populations [190]. Other work established that RA and FGF signaling worked in opposing
manners to regulate heart field establishment, as the heat shock resulting in overexpression
of FGF machinery in late gastrulation led to increased cardiac cell count, a phenotype also
seen in DEAB-treated embryos [191,192]. Similarly, Aldh2 null mouse embryos bear a pos-
teriorization and general domain increase of Fgf8 and its target Isl1 within the developing
cardiac field, thus leading to improper chamber development [193,194].

RA signaling-associated machinery has also been a topic that has provided insights
into RA and its role in heart development. One avenue of investigation included that of
Cyp26 metabolic action for its role in maintaining RA equilibria. Opposite of a pan-RAR
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antagonist, Cyp26-deficient embryos result in a decreased heart field domain marked
by nkx2.5, in course leading to decreased ventricular fates later in development [195].
Interestingly, the use of DEAB on these same cyp26 morphants results in a restoration of
expression, concluding that loss of RA in early cardiac development results in increased
heart field size, while increases in RA restrict these early progenitor populations and can
alter later fate decisions [195]. These insights into RA’s role in cardiac development not only
provide an understanding of base developmental processes, but also present a translational
model for in utero VAD and accompanying congenital defects of the heart.

In work performed at later stages in development, Cyp26-deficient embryos were
found to have increased mmp9 expression, leading to improper outflow tract morphogenesis
due to the diminished addition from second heart field progenitors [196]. This work
proposed a potential mechanism for RA-mediated outflow tract defects, and adds to the
body of knowledge involving the relationship between vitamin A and mmp9. Further
avenues of interrogation into processes associated with retinoid transport and synthesis
within cardiac/cardiac progenitor cells remain open for insights, and make for exciting
new lines of investigation.

One of the many reasons the zebrafish is such an attractive model is due to its regen-
erative capacity within the heart and other tissues [197]. In the ventricular amputation
model [198], one hour after ventricular amputation of the adult zebrafish heart, aldh1a2
expression was remarkably abundant within the atrial endocardium, and within 3 days
post amputation (dpa), expression of the RA-synthesizing enzyme was also localized to the
epicardium, then to the epicardial cells that surround the wound clot by 7 dpa [199,200].

In this same line of experiments performed by Kikuchi et al., overexpression of cyp26a1,
the enzyme responsible for RA degradation, led to dramatic decreases in cardiomyocyte
proliferation at seven days post injury [200]. However, in the case of retinoid agonist
supplementation, no increase in cardiomyocyte proliferation was induced, thus inferring
that RA does not promote the regenerative process, but rather plays a permissive role [200].
Within the mouse model of acute damage to the heart, conflicting reports surround RA, and
the protective effects it may or may not have in the case of myocardial infarction-induced
cellular death [201,202].

3.4. Hematopoiesis

Research with the zebrafish has provided many fundamental insights into the ge-
netic mechanisms of primitive and definitive hematopoiesis [203], from events involving
hematopoietic stem cell (HSC) patterning [204] to fate choice [205,206] and differentia-
tion [207–210]. A number of studies have contributed new insights into the effects of RA
signaling on both the primitive and definitive hematopoietic waves, which are distinct in
the cells they produce; namely, red blood cells and macrophages during the initial wave,
followed by the production of all lineages in the subsequent wave, respectively [203].

Exogenous ATRA treatment of embryos from the late gastrula to the 5-somite stage
elicits a dose-dependent inhibition of primitive erythropoiesis, based on reduced expres-
sion of the erythroid-specific transcription factor gata1 [211], and inhibition of primitive
myelopoiesis, based on reduced expression of several markers [212]. Conversely, DEAB
treatment increased specification of hematopoietic stem and progenitor cells, leading to
elevated primitive erythropoiesis [213]. Further, interference in RA signaling with DEAB
or though aldh1a2 knockdown has been associated with reductions in definitive blood cell
production based on reduced expression of stem cell markers such as cmyb and thymic
rag1/ikaros expression [214]. These findings parallel the ability of RA to enhance progenitor
formation in culture [215], and the requirement for Aldh1a2 expression in the endothelium
to produce definitive HSCs [216].

3.5. Pancreas, Liver, and Intestine

Within the endoderm, several organs/tissues have been characterized to have RA-
dependent morphogenesis. Within the developing liver, RA positively regulates liver fates,
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as exogenous treatment of RA during varied significant points during hepatic differentia-
tion led to increased expression of fabp1a (lfabp) at 72 hpf, while DEAB treatment at like
times results in decreased fabp1a+ domain [217]. In this same line, fish treated with RA
show increased levels of proliferation within the liver primordium via BrdU at 24 hpf [217].
Further investigation into the RA pathway by Garnaas et al. showcased rargb as being a
regulator of early heart and liver morphogenesis, as rargb morphants and antagonists led
to aberrant phenotypes in both tissues, falling in line with RAR agonist work involving car-
diac cell proliferation [217,218]. In the developing intestines, decreases in RA biosynthesis,
specifically in retinol dehydrogenase expression, were found to restrict gut marker expres-
sion domains in 96 hpf fish [219,220]. In these same experiments, interestingly, exogenous
treatment of RA was found to only partially rescue the rdh1l morphants [220]. These results
postulate that RA is a positive mediation of these two foregut tissues. These findings also
suggest exciting avenues and niches for discovery within the realm of retinoid biology,
especially with regard to downstream targets of R(A/X)Rs.

In the mouse model, aldh1a2 null animals were found to lack dorsal pancreatic tis-
sues [221]. In fish, aldh1a2 null animals do not retain this same phenotype, as pdx1, a marker
for beta cell progenitor populations was found to be expressed at 48 hpf, and other pancre-
atic markers were expressed at 72 hpf [63,222]. Further work utilizing both splice blocking
and ATG-binding morpholinos, as well as DEAB, suggested that aldh1a2 is maternally
deposited within fish due to DEAB and ATG-binding morphants resulting in the loss of
pancreatic marker expression; meanwhile, aldh1a2 null and splice blocking MO-treated fish
retained a domain, however aberrant [222]. During pancreatic development, loss of RA
signaling via RAR pan-antagonist BMS493 before late gastrulation (90% epiboly) results
in lack of insulin expression [223–226]. Conversely, ectopic ATRA (10−6 M treated from
9–10 hpf) results in the upregulation of insulin expression within 24 hpf animals, as well as
increasing the insulin+ domain anteriorly, thus furthering the idea of RA-mediated beta cell
proliferation across multiple models [223–226].

Recently, exciting new avenues thanks to multi-omic data have been revealed, and
have opened for further investigation in RA/hepatopancreatic/endodermal biology fields.
Insights into partially retained machinery across all three germ layers within the zebrafish
were established. Among these observations, it was particularly interesting that hox clusters
were established as being hosts to RAR sites, as this helps to confirm the idea of hox
regulation of endodermal foregut tissues in the zebrafish model [227]. These same studies
established RARs as mediating the expression of pioneer factors such as hnf1b and gata6
within the pancreas [227].

4. RA in Disease and Dysfunction
4.1. RA in Deficiency and Surplus in Humans

In addition to studying development, zebrafish have been a powerful system to
study human disease (Figure 4) [18,19]. In work utilizing zebrafish, loss of RA associated
with exposure to teratogenic compounds such as alcohol has been well documented.
Zebrafish as a model for fetal alcohol syndrome has been attractive for the many reasons
previously described [228,229]. In fish, when treated with 150 mM of ethanol from 3–24 hpf,
severe phenotypes were observed within tissues and organs such as the eyes, otic vesicle,
facial cartilage, and pericardial edema, among others [230]. These malformations fall
in line with the severe defects seen clinically, as eye, heart, and improper craniofacial
development are all found. These maladies are thought to be due to acetaldehyde, the
byproduct of ethanol metabolism further being metabolized by an ALDH, thus reducing
retinaldehydes’ ability to bind to ALDHs. In order to bypass this inhibition of RA synthesis,
exogenous ATRA treatments at low levels (10−9 M) have been found to rescue the effects of
ethanol exposure [230,231].
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Figure 4. Summary of zebrafish models of RA signaling in development and disease. Research using
the zebrafish has been a powerful good for realizing new insights into the development of many
tissues and organs. Numbering among them, and discussed in the present work, are the neural plate,
eye, kidney, heart, blood, pancreas, liver, and intestine. Many others have been studied as well [17].
Our understanding about the teratogenic effects of RA in conditions such as fetal alcohol syndrome
and its role in cancer have also been expanded through the use of zebrafish. Figure created with
BioRender.com [232].

Much like insufficient RA is detrimental for fetal development in humans, an excess
can be equally as harmful. Perhaps most notably, the dermatological drug isotretinoin, an
RA isomer, is well characterized for the teratologic role it can have in pregnant individuals
and their offspring. In utero exposure to the drug is estimated to have a 20–35% chance of
congenital defects to many of the same tissues we have described as being RA-dependent in
development. In terms of immeasurable maladies, it is estimated that potentially over 50%
of individuals exposed to isotretinoin in utero may have cognitive impairment [233,234].
In zebrafish, isotretinoin has been used in neuroblastoma work, and has been successfully
shown to have the capacity for decreasing tumor size in larval fish [235].

4.2. RA Pathways in Cancer

Within the realm of cancer biology, the zebrafish model has emerged as an efficient
in vivo model, much for the same reasons why it is so popular in development. Thankfully,
due to high amounts of conservation between the human and zebrafish genome, many onco-
logic markers are subsequently retained, making the fish useful for studying many aspects
of cancer biology (Figure 4) [158,236,237]. The zebrafish immune system allows for tissue
xenografts from mammalian donors, allowing for not only large-scale drug and genetic
screens to take place, but also holding promise for a future in precision medicine [238–241].
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In a zebrafish pancreatic cancer model, antagonization of RARs were used to down-
regulate miR-10a expression, resulting in a loss of invasive and metastatic phenotype;
interestingly, it was also found that microRNA-10a (miR-10a) is an intermediate regulator
between RARs and hox1 and hoxb3 [242]. This same work also showed that miR-10a is
also upregulated in pancreatitis patient samples; this postulates the questions of whether
RA is mediating the micro-RNA in both disease states, and if RA regulation of miR-10a is
associated with normal development of the pancreas [242].

In neuroblastoma, loss of chromatin assembly factor 1 subunit p150 (CHAF1A) pro-
motes oncogenesis/malignancy [243]. Alongside a mouse model, zebrafish were used
to investigate chaf1a expression within regular neural crest cell development as well as
carcinogenesis [244]. The use of ectopic chaf1a expression revealed that chaf1a plays roles
in the critical fate determinant stages of neural crest cells in development. This work was
in step with mouse work that was then used to hypothesize that RA could be used in
combinatorial therapies for those diagnosed with neuroblastomas [244]. In the future,
we believe zebrafish will further emerge as an in vivo model for oncological work as a
supplement for early genetic and/or pharmacological screening methods, as well as for
targeting therapeutics for individual patients [245].

5. Conclusions

Here, we have discussed how zebrafish research has been utilized to uncover new
fundamental insights about the roles of RA signaling in the development of several tissues
and organs, as well as in regeneration and disease. Continuing technological advances in
multi-omics, combined with the tractability of zebrafish for pharmacological treatments,
have facilitated these advances, and offer many prospects for future studies.

Our knowledge about the molecular targets of RA remains in its infancy, and more
work is needed to decipher these gene regulatory networks, and to understand how the
respective targets act to confer RA’s effects on cell fate specification and differentiation.
Appreciating these facets may uncover new prospects for retinoids in clinical therapeutics.
Indeed, the next century will be an exciting time in RA research, and the zebrafish will
continue to proffer unique opportunities to narrow our knowledge gap about the many
roles of this versatile and potent molecule in living systems.
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