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Abstract: Waterpipe smoking (WPS) is prevalent in Asian and Middle Eastern countries and has
recently gained worldwide popularity, especially among youth. WPS has potentially harmful chem-
icals and is associated with a wide range of adverse effects on different organs. However, little
is known regarding the impact of WPS inhalation on the brain and especially on the cerebellum.
Presently, we aimed at investigating inflammation, oxidative stress and apoptosis as well as mi-
crogliosis and astrogliosis in the cerebellum of BALB/C mice chronically (6 months) exposed to
WPS compared with air-exposed mice (control). WPS inhalation augmented the concentrations
of proinflammatory cytokines tumor necrosis factor, interleukin (IL)-6 and IL-1β in cerebellar ho-
mogenates. Likewise, WPS increased oxidative stress markers including 8-isoprostane, thiobarbituric
acid reactive substances and superoxide dismutase. In addition, compared with the air-exposed
group, WPS caused an increase in the oxidative DNA damage marker, 8-hydroxy-2′-deoxyguanosine,
in cerebellar homogenates. Similarly, in comparison with the air group, WPS inhalation elevated
the cerebellar homogenate levels of cytochrome C, cleaved caspase-3 and nuclear factor-κB (NF-κB).
Immunofluorescence analysis of the cerebellum showed that WPS exposure significantly augmented
the number of ionized calcium-binding adaptor molecule 1 and glial fibrillary acidic protein-positive
microglia and astroglia, respectively. Taken together, our data show that chronic exposure to WPS is
associated with cerebellar inflammation, oxidative stress, apoptosis, microgliosis and astrogliosis.
These actions were associated with a mechanism involving NF-κB activation.

Keywords: waterpipe smoking; cerebellum; neuroinflammation; oxidative stress; DNA damage

1. Introduction

Tobacco smoking is considered one of the major causes of preventable diseases and
premature death worldwide [1]. According to a previous report, in the last two decades
there was a dramatic shift in the methods of tobacco consumption [2]. While cigarette
consumption has declined [3], the use of waterpipe smoking (WPS) has substantially
increased [4]. The prevalence of WPS is growing particularly among young people, and
it became an emerging global epidemic that requires action [5]. This increase in WPS use
is attributed to the misconception that WPS is less toxic and less addictive than cigarette
smoking (CS) as well as to the use of sweetened and flavored tobacco, which makes it more
appealing to consumers [6].

Experimental and clinical studies, including our own, have reported that WPS induces
multiple adverse health effects on various organs such as the heart, lungs and kidneys [7–13].
However, its effect on the brain is underexplored.
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It is well evidenced that CS is a risk factor in neurodegenerative diseases, and the
associations between CS and neurological disorders such as stroke, Alzheimer’s disease,
and multiple sclerosis have been established by various studies [14–16]. High levels of
biomarkers for Alzheimer’s disease such as amyloid β42 levels and excessive oxidative
stress and neuroinflammation have been reported in the brain of smokers [17]. Moreover,
animal studies have revealed that CS exposure triggers multiple immune, inflammatory
and oxidative responses in the brain that may play a crucial role in the pathogenesis of neu-
rological diseases [18–21]. In the traumatic brain injury model, it was shown that there was
CS-induced neuroinflammation and loss of blood–brain barrier integrity [22]. In addition,
chronic exposure of rats to CS resulted in significant histological alterations, apoptosis, lipid
peroxidation and mitochondrial dysfunctions in the brain [23]. Furthermore, the exposure
of human premonocytic line U-937 and the rat insulinoma parental cell line RINm5F to
tobacco smoke induced protein oxidation, DNA damage and cell death by apoptosis and
necrosis [24].

In contrast, only a few experimental studies have explored the impact of WPS exposure
on the brain. A clinical study has reported a reduced level of circulating brain-derived
neutrophic factor in adolescent WPS smokers [25]. A prospective observational study has
reported that exposure to WPS causes neuronal damage through the increase in cerebral
blood flow rate, elevation in carboxyhemoglobin and S100 calcium-binding protein [26].
Furthermore, adverse effects on cognitive executive measures were recorded in humans
following one session of WPS inhalation [27]. It has been reported that exposure to WPS
induced inflammation in the mesocorticolimbic brain regions [28]. In addition, the occur-
rence of oxidative stress in the hippocampus and cognitive decline were shown in rats
following WPS exposure [29,30].

The cerebellum represents about 10% of the mass of the brain [31]. It plays a crucial role
in motor control, and recent studies have reported its involvement in cognition, emotions
and social interaction [32–35]. A reduction in the cerebellar gray matter was shown in
CS smokers compared to nonsmokers [36,37]. However, to the best of our knowledge, no
study has investigated the effect of WPS exposure on the cerebellum. Therefore, in this
study, we sought to examine the impact of chronic exposure to WPS in mice on cerebellar
inflammation, oxidative stress, apoptosis, the expression of nuclear factor (NF)-κB and the
occurrence of microgliosis and astrogliosis.

2. Materials and Methods
2.1. Animals and Treatments

This study was reviewed and approved by the United Arab Emirates University
animal ethics committee, College of Medicine and Health Sciences, and experiments were
performed according to protocols approved by the Institutional Animal Care and Research
Advisory Committee.

2.2. WPS Exposure

BALB/C mice (animal house facility, College of Medicine and Health Sciences, United
Arab Emirates University) were housed in a conventional animal house and maintained on
a 12 h light–dark cycle (lights on at 6:00 a.m.), humidity of 60% and controlled temperature
(22 ± 1 ◦C). Animals had free access to water and food ad libitum. Animals were indiscrim-
inately separated into air- and WPS-exposed groups after one week of familiarization to
their conditions.

Mice were placed in soft restraints and connected to the exposure tower as described
previously [38–41]. Using a nose-only exposure system connected to a waterpipe (InExpose
System, Scireq, Montreal, QC, Canada), the animals were exposed to either WPS or air
through their noses. Animals were exposed to mainstream WPS generated by commercially
available apple-flavored tobacco (Al Fakher Tobacco Trading, Ajman, UAE). Tobacco was
lit with instant light charcoal. Similar to its use in humans, the smoke from the waterpipe
passed through the water first before it was drawn into the exposure tower which was
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controlled by a computerized system (In Expose System, Scireq, Montreal, QC, Canada).
A computer-controlled puff was generated every minute, leading to a 2 s puff duration
of WPS exposure followed by 58 s of fresh air. The duration of an exposure session was
30 min/day. Regarding the WPS group, mice were exposed to WPS 5 days/week for
6 months (mo), and control mice were exposed to air only [38–41].

2.3. Cerebellum Collection and Homogenates Preparation

At the end of the exposure period, WPS (n = 8) and air (n = 8) mice were sacrificed by
decapitation. The brain was removed, and the cerebellum was immediately dissected out
on ice, frozen in liquid nitrogen and stored at−80 ◦C until assayed. Cerebellar homogenates
preparation for the measurement of markers of oxidative stress, inflammation and apoptosis
were prepared as described before [42].

2.4. Measurement of the Concentrations of Tumor Necrosis Factor α (TNFα), Interleukin (IL)-6
and IL-1β

The concentrations of TNFα, IL-6 and IL-1β were measured using commercially
available Elisa kits (Duo Set, R&D systems, Minneapolis, MN, USA).

2.5. Quantification of Levels 8-Isoprostane, Thiobarbituric Acid Reactive Substances (TBARS) and
Superoxide Dismutase (SOD)

The concentrations of 8-isoprostane were assayed according to the protocols described
by the manufacturer (Cayman Chemicals, Ann Arbor, MI, USA). NADPH-dependent mem-
brane lipid peroxidation was measured as TBARS, using malondialdehyde as the standard
(Sigma-Aldrich Fine Chemicals, St. Louis, MO, USA). The activity of the antioxidant enzyme
SOD was quantified as per the vendor’s protocols (Cayman Chemicals, Ann Arbor, MI, USA).

2.6. Assessment of 8-Hydroxy-2′-Deoxyguanosine (8-OHdG), Cytochrome C, Cleaved Caspase-3,
Nuclear Factor-κB (NF-κB) and Phosphorylated (Phospho)-NF-κB

Using commercially available ELISA kits, we measured in cerebellum homogenates
the levels of 8-OHdG (Cusabio Biotech Co., Ltd., Wuhan, China), cytochrome C (R&D
Systems, Minneapolis, MN, USA), cleaved caspase-3 (R&D Systems, Minneapolis, MN,
USA), NF-κB and phospho-NF-κB (Cell Signaling Technology, Danvers, MA, USA) as
described previously [43–45].

2.7. Immunofluorescence Labeling

For the immunofluorescence analysis we used a separate set of animals; at the end
of 6 mo exposure to WPS, mice of each group WPS (n = 5) and air (n = 5) were deeply
anesthetized with sodium pentobarbital (35 mg/kg, i.p) and perfused with 20 mL of
phosphate-buffered saline followed by 100 mL of freshly prepared 4% formaldehyde as
a fixative. The cerebellum was post-fixed with formalin and embedded with paraffin.
Using microtome (Leica, RM2125RT, Wetzlar, Germany), 1 µm thick sagittal sections of the
cerebellum were cut and mounted on gelatin-coated slides. Sections were deparaffinized
with xylene and rehydrated with a graded series of ethanol, and heat-induced antigen
retrieval was performed in citrate buffer (pH 6.0) using the microwave.

Double immunofluorescence labeling was achieved by incubation at 4 ◦C overnight
with the primary antibodies. We used rabbit polyclonal anti-Iba-1 (cat#019-19741, Wako,
Osaka, Japan, 1:1500) for microglia, guinea pig monoclonal anti-neuronal nuclear antigen
antibody (Neun) (cat#ABN90P, MerckMillipore, Darmstadt, Germany, 1:1500) for neurons
and rabbit polyclonal anti-GFAP (cat#Z0334, Dako, Glostrup, Denmark, 1:500) for astroglia.
The next day, sections were washed three times in PBS, followed by incubation for 1 h at
room temperature with secondary antibodies: donkey anti-rabbit conjugated to Alexa 488
(cat#A32790, Invitrogen, Rockford, USA, 1:200) and donkey anti-guinea pig conjugated to
Rhodamine (cat#706-295-148, Jakson, PA, USA, 1:100). Next, sections were incubated with
4,6-diamidino-2-phenylindole (DAPI) for nuclei counterstaining for 5 min and then were
washed in PBS three times. Slides were then cover-slipped with Fluoroshield mounting
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medium (cat#ab104135, Abcam, Waltham, MA, USA, 1:100). Images were acquired using
an EVOS M5000 microscope.

For quantification of Iba-1,GFAP and NEUN/DAPI positive microglia, astroglia and
neurons, respectively, three sections of the cerebellum from each animal were used; five
animals from each group. Cell counting was performed at 20X magnification in the whole
sections of the cerebellum with ImageJ software (NIH, Bethesda, MY, USA).

2.8. Statistical Analysis

The statistical analysis was performed using GraphPad Prism (version 7; GraphPad
Software Inc., San Diego, CA, USA). Data were tested using the unpaired t-test for dif-
ferences between the two groups. The results are expressed as the mean ± SEM, and
p-values of <0.05 were considered to be significantly different.

3. Results
3.1. Effect of Chronic Exposure to WPS on the Concentrations of TNFα, IL-6 and IL-1β
in the Cerebellum

Figure 1 shows that, compared to the air-exposed group, WPS exposure for 6 mo
caused a significant increase in the concentrations of TNFα (Figure 1A, p < 0.001), IL-6
(Figure 1B, p < 0.0001) and IL-1β (Figure 1C, p < 0.01) in the cerebellar homogenates.
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cerebellar homogenates of mice exposed to either air or waterpipe smoke (WPS) for 6 months. Data
are mean ± SEM (n = 7–8).
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3.2. Effect of Chronic Exposure to WPS on the Concentrations of 8-Isoprostane and TBARS and
Activity of SOD in the Cerebellum

Compared to the air-exposed group, WPS inhalation for 6 mo induced a significant
increase in the concentrations of 8-isoprostane (Figure 2A, p < 0.0001), TBARS (Figure 2B,
p < 0.05) and activity of SOD (Figure 2C, p < 0.01) in the cerebellar homogenates.
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3.3. Effect of Chronic Exposure to WPS on the Concentrations of 8-OHdG in the Cerebellum

As illustrated in Figure 3, there was a significant (p < 0.01) increase in the concen-
trations of 8-OHdG, a marker of oxidative DNA damage, in the cerebellar homogenates
following WPS exposure for 6 mo compared with the air-exposed group (Figure 3).
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Figure 3. 8-hydroxy-2′-deoxyguanosine (8-OH-dG) concentrations in the cerebellar homogenates of
mice exposed to either air or waterpipe smoke (WPS) for 6 months. Data are mean ± SEM (n = 7–8).

3.4. Effect of Chronic Exposure to WPS on the Levels of Cleaved Caspase-3 and Cytochrome C in
the Cerebellum

Figure 4 illustrates that WPS exposure for 6 mo induced a significant increase in
the levels of cleaved caspase-3 (p < 0.0001) and cytochrome C (p < 0.01) in the cerebellar
homogenates compared with the air-exposed group.
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mice exposed to either air or waterpipe smoke (WPS) for 6 months. Data are mean ± SEM (n = 7–8).



Biomedicines 2023, 11, 1104 7 of 18

3.5. Effect of Chronic Exposure to WPS on the Expression of NF-κB and Phospho-NF-κB
in the Cerebellum

The total concentrations of NF-κB and phospho-NF-κB in the cerebellar homogenates
are shown in Figure 5. WPS exposure for 6 mo resulted in a significant elevation (p < 0.001)
in the total concentrations of NF-κB (Figure 5A) and phospho-NF-κB (Figure 5B) compared
with the air-exposed group.
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6 months. Data are mean ± SEM (n = 7–8).

3.6. Effect of Chronic Exposure to WPS on Iba-1 Labeling and Quantification of Iba-1-Positive
Microglia in the Cerebellum

The double immunofluorescence staining of microglia (Iba-1, green), neurons (NEUN,
red) and the counterstain for nuclei (DAPI, blue) of sagittal sections of the cerebellum after
6 mo WPS exposure revealed an increase in the immunoreactivity of Iba-1 in different
areas, indicating the occurrence of microgliosis (Figure 6E,H). In contrast, representative
images of air-exposed mice showed a lower immunoreactivity of Iba-1 where the microglia
appeared in their resting state with small cell bodies and thin processes in the white matter
of the cerebellum (Figure 6A,D). The quantitative analysis showed that the number of Iba-1-
positive microglia in the cerebellum of WPS-exposed mice was significantly higher (p < 0.01)
compared with the air-exposed group (Figure 6I).
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diamidino-2-phenylindole (blue as a nuclei counterstain) of sagittal sections of the cerebellum of 
mice exposed to either air or waterpipe smoke (WPS) for 6 months. (A–D) Representative images of 
air-exposed mice showing ramified, resting microglia in the white matter of the cerebellum. (E–H) 
Representative images of WPS-exposed mice showing increased Iba-1 immunoreactivity in the 
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Figure 6. Representative images of double-immunofluorescence staining for anti-ionized calcium-
binding adaptor molecule 1 (Iba-1, green), anti-neuronal nuclear antigen antibody (red) and 4,
6-diamidino-2-phenylindole (blue as a nuclei counterstain) of sagittal sections of the cerebellum of
mice exposed to either air or waterpipe smoke (WPS) for 6 months. (A–D) Representative images
of air-exposed mice showing ramified, resting microglia in the white matter of the cerebellum.
(E–H) Representative images of WPS-exposed mice showing increased Iba-1 immunoreactivity in the
white matter of the cerebellum. Scale bars = 50 µm, (n = 5). (I) Bar graph showing cell counting of
Iba-1 positive microglia that revealed a significant increase in the number of microglial cells in the
cerebellum of mice exposed either to air or WPS for 6 months. Data are mean ± SEM (n = 5).

The examination of the Iba-1 labeling of the cerebellum showed a slight increase in the
number of Iba-1 positive microglia in the granular layer (Figure 7E,H) of the cerebellum
after WPS exposure compared with the air-exposed group (Figure 7A,D).
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Figure 7. Representative images of double-immunofluorescence staining for Iba-1 (Iba-1, green),
NEUN (red) and DAPI (blue as a nuclei counterstain) of sagittal sections of the cerebellum of
mice exposed to either air or waterpipe smoke (WPS) for 6 months. (A–D) Representative images
of air-exposed mice showing ramified, resting microglia in the granular layer of the cerebellum.
(E–H) Representative images of WPS-exposed mice showing increased Iba-1 immunoreactivity in the
granular layer of the cerebellum. Scale bars = 50 µm, (n = 5).

3.7. Effect of Chronic Exposure to WPS on the GFAP Labeling and Quantification of
GFAP-Positive Astroglia in the Cerebellum

In order to examine the effect of WPS exposure for 6 mo on GFAP immunoreactivity
in the cerebellum, a double immunofluorescent labeling of astroglia (GFAP, green), neurons
(NEUN, red) and the counterstain for nuclei (DAPI, blue) was performed. Activated
astrocytes underwent morphological changes and appeared hypertrophic and showed
intense GFAP immunoreactivity in the white matter of the cerebellum of WPS-exposed
mice (Figure 8E,H). In the air-exposed group, the astrocytes appeared with thin cell bodies
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and short processes (Figure 8A,D). Figure 8I shows that the exposure to WPS for 6 mo
resulted in a significant increase (p < 0.01) in the number of GFAP-positive astrocytes in
the cerebellum compared with the air-exposed group. Moreover, Figure 9E,H shows more
GFAP immunoreactivity in the granular layer after WPS exposure in comparison with the
air-exposed group (Figure 9A,D).
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Figure 8. Representative images of double-immunofluorescence staining for GFAP (green), NEUN
(red) and DAPI (blue as a nuclei counterstain) of sagittal sections of the cerebellum of mice exposed to
either air or waterpipe smoke (WPS) for 6 months. (A–D) Representative images of air-exposed mice
showing astrocytes with small cell bodies and thin processes in the white matter of the cerebellum.
(E–H) Representative images of WPS-exposed mice showing increased GFAP immunoreactivity in the
white matter of the cerebellum. Scale bars = 50 µm, (n = 5). (I) Bar graph showing the cell counting
of GFAP positive astroglia that revealed a significant increase in the number of astroglia cells in the
cerebellum of mice exposed either to air or waterpipe smoking for 6 months. Data are mean ± SEM
(n = 5).
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showing astrocytes with small cell bodies and thin processes in the granular layer of the cerebellum.
(E–H) Representative images of WPS-exposed mice showing increased GFAP immunoreactivity in
the granular layer of the cerebellum. Scale bars = 50 µm. Data are mean ± SEM (n = 5).
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3.8. Effect of Chronic Exposure to WPS on the NEUN/DAPI Labeling and Quantification of
Neurons in the Cerebellum

The analysis of NEUN/DAPI labeling of the cerebellum revealed no statistical differ-
ence in the number of neurons of mice exposed to WPS compared with the control group
(Figure 10).
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Figure 10. Representative images of double-immunofluorescence staining for anti-neuronal nuclear
antigen antibody (red) and 4, 6-diamidino-2-phenylindole (blue as a nuclei counterstain) of sagittal
sections of the cerebellum of mice exposed to either air or waterpipe smoke (WPS) for 6 months.
(A–C) Representative images of the cerebellum of air-exposed mice. (D–F) Representative images of
the cerebellum of WPS-exposed mice. Scale bars = 100 µm. (G) Bar graph showing neuron counting,
demonstrating no statistical difference in the number of neurons in the cerebellum of mice exposed
either to air or WPS for 6 months. Data are mean ± SEM (n = 5).

4. Discussion

Waterpipe smoking is becoming a popular trend worldwide. Research in this area
has mostly highlighted the cardiovascular and respiratory pathophysiologic effects of
WPS. However, little is known regarding the role of WPS in causing biochemical and
histopathological alterations in the brain and, more specifically, in the cerebellum. This
study is the first of its kind that focused on the effects of WPS on the cerebellum in rodents.
The data of the current study show that long-term exposure to WPS is associated with
inflammation, oxidative stress, DNA damage, apoptosis, microgliosis and astrogliosis in
the cerebellum.
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Several studies have reported a consistent association between smoking and increased
risk of dementia, including Alzheimer’s disease (AD), vascular dementia and cognitive de-
cline [46–48]. In addition, one of the hallmarks of neurodegenerative diseases is the increase
in the concentration of proinflammatory markers in the brain [49]. The present study sup-
ports previous observations on the fact that neuroinflammatory responses are associated
with smoking. Our data show that WPS exposure for 6 mo induced neuroinflammation,
as indicated by the significant augmentation in the concentrations of proinflammatory
cytokines TNFα, IL-6 and IL-1β in the cerebellar homogenate. In agreement with our
results, WPS inhalation in rats was found to cause a significant increase in the expression
of TNFα mRNA in mesocorticolimbic brain regions [28]. Moreover, high expression of
proinflammatory cytokines in the brain was seen following 3–6 weeks of CS exposure in
rats and mice [19,22]. It has been shown that the treatment with one of the most potent
ingredients present in CS [48] and WPS [50], such as Benzo[a]pyrene diol epoxide (BPDE),
led to an augmentation in mRNA and protein levels of the highly inducible inflammation
factor cyclooxygenase-2 in the cortical cells of rats [51]. In support of the latter, treatment
with 4-N-methyl-N-nitrosamino-1-(3-pyridyl)-1-butanone (NNK), a major nitrosamine
formed in tobacco smoke, has been shown to induce a significant increase in the expression
of TNFα, IL-6 and IL-12 both in vivo and in vitro [52].

Oxidative stress is a major trigger of cell damage, and it is well-established that it plays
a role in the pathogenesis of various neurological disorders [53–55]. Our data show that
long-term exposure to WPS caused a substantial increase in the concentrations of markers
of lipid peroxidation TBARS and 8-isporstane. The increase of TBARS and 8-isporstane
is an indication of the development of oxidative stress and the occurrence of lipid per-
oxidation in the cerebellum. Moreover, our results showed an increase in the activity
of SOD. This increase might be considered to be a compensatory mechanism aiming at
counterbalancing the ongoing oxidative injury induced by nose-only WPS inhalation in the
cerebellum. Using whole body exposure system to WPS, Alzoubi et al. [29] reported the
occurrence of oxidative stress in the hippocampus evidenced by a decrease in the activities
of key antioxidant enzymes including glutathione peroxidase, catalase and SOD indicating
a consumption of these antioxidants in the course of combatting WPS-induced oxidative
damage. Inflammation and oxidative stress in cells often target the DNA. It is well known
that repeated oxidative injury of the DNA is implicated in the pathogenesis of numerous
diseases such as chronic pulmonary diseases, atherosclerosis and neurodegenerative disor-
ders [56–58]. Our study showed that WPS-exposed mice had higher levels of the oxidative
DNA damage marker 8-OHdG. The latter is the predominant form of free radical-induced
oxidative lesions in nuclear and mitochondrial DNA [59]. This observation is in agreement
with a previous study that showed high levels of 8-OHdG in the brain of rats exposed
chronically to passive smoking [47].

Inflammation and oxidative stress in the brain are the main causes of DNA damage
and cell death leading to neurodegeneration, which is the predominant phenomenon
that underlies the symptoms of multiple human neurological disorders [60]. Cell death
frequently implies the initiation of apoptosis via caspase activation [60]. Hence, caspase-3
is commonly used as a marker of apoptosis. In this work, we found that WPS-exposed mice
displayed a significant augmentation in cleaved caspase-3. This observation is consistent
with a study that showed that exposure to CS (6 cigarettes/twice a day) for 57 days
significantly increased the immunoreactivity of cleaved caspase-3 in the white matter but
not in the granular layer of the cerebellum of rats [61].

Cytochrome C is involved in both cellular energy and apoptosis [62]. Our data showed
that 6 mo exposure to WPS induced a significant increase in the activity of cytochrome C.
In line with our observation, Hosseini et al. [63] showed that the incubation of rat mito-
chondria with different concentrations of CS extract triggered the collapse of mitochondrial
membrane potential, mitochondrial swelling and outer membrane rupture that resulted
in the release of cytochrome C. We have previously shown that WPS inhalation in mice
caused an elevation of cytochrome C in the kidney and testicular tissues [44,64].
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In an attempt to investigate the underlying mechanism of the increase in oxidative
stress and neuroinflammation observed in the present work, we measured the transcription
factor NF-κB. The latter is commonly known as a critical regulator of both oxidative stress
and inflammatory responses through the regulation of oxidative stress and numerous
proinflammatory genes such as cytokines [65–67]. Our data show that WPS induced
a significant increase in the levels of NF-κB. Consistent with our results, it has recently
been demonstrated that WPS exposure for 4 weeks led to a significant increase in the
expression of mRNA levels of NF-κB in different areas of the brain of rats including the
prefrontal cortex, nucleus accumbens and ventral tegmental area [28]. We have previously
reported that exposure to WPS in mice induced a marked increase in the expression of
NF-κB in various organs including the heart, lungs and testicles [11,64,68]. Additional
studies involving an inhibitory approach through repressing the NF-κB gene and/or the
use of NF-κB knockout mice are needed to establish whether NF-κB plays a critical role in
the observed effects.

Microglia are the smallest cells in the brain, and the resident macrophages in the
brain [69], and continuously monitor the extracellular environment of neurons [70]. In
response to neuronal insults, microglia cells change their morphology and their numbers
increase noticeably, which is termed microgliosis [71]. Our study revealed a marked in-
crease in the number of microglia in the granular layer and more abundantly in the white
matter. It has been demonstrated that CS condensate accelerates the activation of microglia
in the experimental autoimmune model [72]. In support of the latter, immunohistochem-
ical staining revealed a massive microglial and astrocyte activation in the brain of mice
following exposure to the tobacco carcinogen NNK [52].

Astrocytes are the most abundant cell type within the central nervous system [73].
They play a critical role in the health of the central nervous system by maintaining structural
support, formation of the blood-brain barrier, neuronal metabolism and neurotransmitter
synthesis [74]. In order to investigate the activation of astrocytes in response to various
injuries, GFAP has been used as a primary marker for astrocytes [75]. Our results revealed
an activation of the astrocytes all over the cerebellum and, more intensely, at the level of the
white matter where we observed a hypertrophy of astrocytes. This observation is consistent
with a prior study performed on rats demonstrating that gestational maternal exposure of
rats to nicotine induced an elevation in the expression of GFAP in the cerebellum of the off-
spring at puberty [76]. Fuller et al. [77] reported an increase in the GFAP immunoreactivity
in the cerebellum in adult rats exposed to CS for 3 weeks.

It has been shown that activated microglia promote stimulation of astrocytes through
the secretion of IL-1β, which may work to increase the production of other cytokines such
as IL-6, mainly from astrocytes [78]. In addition, it has been suggested that upon activation,
astrocytes might play a potential role in the exacerbation of the neuronal and structural
damage through the release of cytokines, chemokines, nitric oxide and reactive oxygen
species, all of which can induce and potentiate inflammation [79]. The latter can cause DNA
damage and apoptosis [80,81]. Therefore, we can speculate that the cerebellar inflammation
and oxidative stress seen presently could plausibly be linked, at least partly, to the observed
microgliosis and astrogliosis. Further experimental work is required to clarify this point.

In the current work, we did not correlate the observed biochemical and histological
findings with cerebellar motor functions. Therefore, further studies are required to address
this point using behavioral tests such as the rotarod test (to evaluate motor function and
motor coordination) and treadmill gait analysis (to measure motor performance in mice by
assessing quantitatively the gait).

In summary, we can conclude that our findings demonstrate for the first time, that
chronic exposure to WPS triggers inflammatory responses, oxidative stress, DNA damage
and apoptosis through mechanisms associated with NF-κB activation. These biochemical
changes were accompanied with a marked astrogliosis and microgliosis in the cerebel-
lum. Therefore, our data provide supporting evidence that WPS is a major risk factor for
neuropathological alterations.
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