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Abstract: Severe inflammatory responses are associated with the misbalance of innate and adaptive
immunity. TLRs, NLRs, and cytokine receptors play an important role in pathogen sensing and intra-
cellular control, which remains unclear in COVID-19. This study aimed to evaluate IL-8 production in
blood cells from COVID-19 patients in a two-week follow-up evaluation. Blood samples were taken
at admission (t1) and after 14 days of hospitalization (t2). The functionality of TLR2, TLR4, TLR7/8,
TLR9, NOD1, and NOD2 innate receptors and IL-12 and IFN-γ cytokine receptors was evaluated
by whole blood stimulation with specific synthetic receptor agonists through the quantification of
IL-8, TNF-α, or IFN-γ. At admission, ligand-dependent IL-8 secretion was 6.4, 13, and 2.5 times
lower for TLR2, TLR4, and endosomal TLR7/8 receptors, respectively, in patients than in healthy
controls. Additionally, IL-12 receptor-induced IFN-γ secretion was lower in COVID-19 patients than
in healthy subjects. We evaluated the same parameters after 14 days and observed significantly higher
responses for TLR2, TLR4, TLR7/8, TLR9, and NOD1, NOD2, and IFN-γ receptors. In conclusion, the
low secretion of IL-8 through stimulation with agonists of TLR2, TLR4, TLR7/8, TLR9, and NOD2
at t1 suggests their possible contribution to immunosuppression following hyperinflammation in
COVID-19 disease.

Keywords: COVID-19; agonist; TLRs function; NLRs function

1. Introduction

In December 2019, a novel coronavirus was reported in Wuhan, Hubei, China, causing
several cases of atypical pneumonia [1]. During this pandemic, Mexico has been one of the
most affected countries [2]. The distribution of COVID-19 cases in the Mexican population
was similar in females and males. The most common comorbidities of this disease were
hypertension, obesity, and diabetes mellitus [2].

Like SARS-CoV and MERS-CoV, the SARS-CoV-2 infection showed a hyperinflamma-
tory state associated with COVID-19 pathogenesis, in which the innate immune system
activation and lymphopenia are involved [3–5]. A meta-analysis reported increased neu-
trophil counts predictive for severity and mortality outcomes in COVID-19 patients [6];
moreover, neutrophil counts correlated to excessive oxidative stress [7]. The interaction of
SARS-CoV-2 with the host cells induces the accumulation of reactive oxygen species (ROS),
leading to progressive inflammation in severe COVID-19 [8]. Thiols (-SH-containing com-
pounds) play an essential role in neutralizing free oxygen radicals, and glutathionylation of
proteins increases during excessive ROS generation (reviewed in [9]). In COVID-19 patients
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with mild to moderate disease, low levels of thiol-disulfide have been reported [10], and
the total thiol levels are inversely proportional to the severity of symptoms [11]. However,
the imbalance among neutrophils and lymphocytes, its association with inflammation, and
its evolution are unclear in COVID-19 patients.

Inflammation occurs in response to viral recognition by innate receptors [12]. Pathogen-
associated molecular patterns (PAMPS), such as viral RNA, are released by infected epithe-
lial cells. In silico analyses of SARS-CoV-2 mRNA interactions suggest an essential role of
intracellular Toll-like receptors (TLRs) TLR3, TLR7, TLR8, and TLR9 in activating the in-
flammatory responses against the virus, mainly through the production of IL-8, TNF-α, and
IL-1β via nuclear factor-κB (NF-κB) transcription activation [13]. In patients with COVID-
19, neutrophils increase while lymphocytes decrease, thus modifying the N/L ratio [14].
Neutrophils express TLR and NOD-like receptors (NLR) in their cell surface; TLR2 and
TLR4 recognize bacterial lipopeptides and lipopolysaccharides, whereas the intracellular
TLR7 and TLR8 recognize viral single-stranded RNA, and TLR9 detects unmethylated
CpG dinucleotides from bacterial DNA [15]. The NLR family includes cytosolic innate
immune sensors NOD1 and NOD2; NOD1 recognizes γ-d-glutamyl-meso-diaminopimelic
acid (iE-DAP), and NOD2 recognizes MurNAc-L-Ala-D-isoGln (MDP) [16]. TLR and NLR
agonists induce IL-8 and other proinflammatory cytokines, via NF-kB-related pathways.

Cytokines modulate innate and adaptive immune responses. IL-12 mediates a broad
range of effects on both innate and acquired immunity. IL-12 and IL-12 receptor (IL-12R)
engagement induces IFN-γ production, which triggers T cell proliferation and stimulates
NK and CD8 T cell responses against viruses [17]. IFN-γ signals through the IFN-γ
receptor (IFN-γR), leading to the activation of JAK1, JAK2, and NF-kB to induce TNF-α
release [18]. Type I and II interferons are essential and nonredundant for antiviral immune
responses [19]. In mice, during SARS-CoV-2 infection, TNF-α and IFN-γ cause a lethal
cytokine shock with tissue damage and exacerbated inflammation in COVID-19 [20].

The excessive inflammation induced by TLRs/NLRs ligation may cause tolerance
and cross-tolerance to other innate receptor ligands, rendering the innate receptors re-
fractory to subsequent pathogen recognition, leading to defective activation, chemotaxis,
phagocytosis, and intracellular killing of other pathogens that result in susceptibility to
opportunistic infections and pneumonia [21–23]. Hallmarks of the acute respiratory dis-
tress syndrome induced by MERS and SARS include a paradoxical hyperinflammation and
immunosuppression state characterized by overactivation of the complement system, a lack
of adequate adaptive immune responses, and an exaggerated innate immune response in
predisposed individuals [24], yet the specific pathways are poorly understood. Since innate
and adaptive responses are crucial to respond to SARS-CoV-2 infection, this study aimed
at the assessment of the function of TLR and NOD agonists, as well as IL-12 and IFN-γ
receptors, in a neutrophil-dominant cellular imbalance at the time of patient admission and
two weeks later, when patient improvement was observed.

2. Materials and Methods
2.1. Study Group

We enrolled 30 hospitalized patients diagnosed with COVID-19 and 12 healthy subjects
(without previous COVID-19 infection) at the National Institute for Respiratory Diseases
(INER) in Mexico City, Mexico. All participants or their next of kin gave written informed
consent for this study under the Declaration of Helsinki. The Institutional Review Board
approved this study (C57-20). All patients received medication with steroids during their
hospitalization, according to the international COVID-19 treatment guidelines developed
from the RECOVERY trial [25]. We obtained ten milliliters of whole venous blood by
standard phlebotomy at admission (t1) and two weeks after that (t2). Four milliliters of the
whole blood were used for functional receptor evaluation, and from the centrifugation of
six milliliters, we obtained the serum for total thiols determination.
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2.2. Total Thiol Quantification

To assess the oxidation state, we quantified the total thiol serum levels using Cell
Biolabs’ Total Thiol Assay Kit (San Diego, CA, USA), which includes a colorimetric probe
that covalently reacts with the sulfhydryl group to release a chromophore; the absorbance
of the plate was read at 450 nm. The thiol content in the samples was compared with a
predetermined reduced glutathione standard curve. The assay was performed according to
the manufacturer’s specifications, and the results were reported in µM. Reagent information
is available in the Supplementary Table S1.

2.3. Innate Receptors Functionality

The functionality of innate TLRs and NLRs is crucial to sense pathogens and induce
an immunologic response. Per well, we added 400 µL of whole blood diluted 1:1 with
RPMI 1640 culture medium supplemented with 2 mM L-glutamine (Lonza, Walkersville,
MD, USA) (RPMIc), in 24-well culture plates (Corning Costar Co., Corning, NY, USA).
The diluted whole blood was stimulated with NLR ligands: NOD1-TriDAP (10 µg/mL)
and NOD2-MDP (10 µg/mL), and TLR ligands: TLR4-LPS (100 ng/mL), TLR2-Pam-3-
Cys (20 ng/mL), TLR7/8-Gardiquimod (5 µg/mL), and TLR9-CpGDNA (5 µg/mL) and
incubated for 24 h at 37 ◦C and 5% CO2 atmosphere. The supernatants were harvested
and stored at −70 ◦C until quantification of IL-8 production by ELISA, according to the
manufacturer’s instructions of the reagent kit (Mabtech, Nacka Strand, Sweden); results
were reported in pg/mL. Reagent information is available in the Supplementary Table S1.

2.4. Cytokine Receptors Functionality

Cytokine receptors of IFN-γ and IL-12 are essential in viral infections. For the evalua-
tion of IL-12 receptor (IL-12R) function, 400 µL of the whole blood diluted 1:1 in RPMIc
per well was stimulated with PMA (25 ng/mL), rhIL-12 (25 ng/mL), and PMA (25 ng/mL)
plus rhIL-12 (25 ng/mL) and incubated for 24 h at 37 ◦C and 5% CO2 atmosphere; culture
supernatants were harvested and stored at −70 ◦C until IFN-γ quantification by ELISA.
Increases in the IFN-γ production after rhIL-12 plus PMA stimulation, relative to PMA
alone, were expected. For IFN-γ receptor (IFN-γR), 400 µL of the whole blood diluted
1:1 in RPMI per well was stimulated with LPS (100 ng/mL) and LPS (100 ng/mL) plus
rhIFN-γ (1000 IU/mL). After incubation for 24 h at 37 ◦C and 5% CO2 atmosphere, cul-
ture supernatants were harvested and stored at −70 ◦C until TNF-α quantification by
ELISA; increases in TNF-α production after rhIFN-γ plus LPS stimulation, relative to LPS
alone, were expected. IFN-γ and TNF-α production was measured by ELISA. Results
were reported in pg/mL. Patients’ IL-12R and IFN-γR responses were defined in terms of
the 95% CI of the healthy control median values. Reagent information is available in the
Supplementary Table S1.

2.5. Statistical Analyses

Comparisons between COVID-19 patients and healthy controls were performed using
the non-parametric Mann–Whitney’s U test, and the non-parametric Wilcoxon’s ranks
sum test was used to analyze paired samples. Results are presented as medians and
ranks. Categorical data are presented as numbers and percentages, and laboratory findings
are presented as medians with an interquartile range (IQR). Statistical significance was
considered with p ≤ 0.05. All statistical analyses were performed with GraphPad Prism
version 9.3.1 for Mac (San Diego CA, USA).

3. Results
3.1. Study Groups

The characteristics of the patients were consistent with those reported for patients
with the severe form of the disease. Most patients were male (76.6%) and presented with
a severe disease (86.7%) that required mechanical ventilation during hospitalization. The
median age was 52 years. The population was predominantly obese, with a median body
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mass index of 29.9. The most frequent comorbidities were obesity, hypertension, diabetes,
smoking, and cardiac disease. COVID-19 patients had increased leukocyte and neutrophil
counts and reduced lymphocyte counts. In addition, the patients had high serum glucose,
fibrinogen, troponin A, ferritin, LDH, and C-reactive protein (Table 1). The healthy controls
were selected because they had a negative COVID-19 test, and their laboratory findings
were within the normal range.

Table 1. Baseline characteristics of the studied population.

Characteristics Patients, n = 30 Normal Range

Male, n (%) 23 (76.6%)
Age, median (IQR) 52 (10.5)
Body Mass Index, median (IQR) 29.9 (6.2) 18.5–24.9
Deaths, n (%) 10 (33.3%)

Chronic comorbidities
Diabetes, n (%) 5 (16.7%)
Hypertension, n (%) 9 (30%)
Chronic cough, n (%) 1 (3.3%)
Cardiac disease *, n (%) 2 (6.7%)
Lung disease **, n (%) 1 (3.7%)
Obesity, n (%) 15 (50%)
Alcoholism, n (%) 1 (3.3%)
Smoking 3 (10%)
Others ***, n (%) 7 (23.3%)

Laboratory findings
Cell blood counts

Hematocrit (%), median (IQR) 46.6 (4.9) 43.5–52.5
Hemoglobin (g/dL), median (IQR) 16 (1.7) 14.5–17.5
Leucocytes (103/mm3), median (IQR) 12.5 (5.4) 4.5–11.0
Neutrophils (103/mm3), median (IQR) 10.8 (5.15) 1.8–7.7
Lymphocytes (103/mm3), median (IQR) 0.5 (0.5) 1.0–4.8
Monocytes (103/mm3), median (IQR) 0.4 (0.2) 0–0.8
Eosinophils (103/mm3), median (IQR) 0 (0) 0.02–0.45
Basophils (103/mm3), median (IQR) 0 (0) 0.02–0.1
Platelets, median (IQR) 223,000 (106,250) 140,000–400,000

Serum levels
Glucose (mg/dL), median (IQR) 140 (55) 74–118
Creatinine (mg/dL), median (IQR) 0.83 (0.28) 0.7–1.2
CPK (IU/L), median (IQR) 113.5 (199.7) 38–234
D dimer (µg/mL), median (IQR) 0.95 (5.42) <0.5
PT (s), median (IQR) 15.75 (1.67) 12.8–17.4
PTT (s), median (IQR) 38.1 (10.72) 30–44
Fibrinogen (mg/dL), median (IQR) 696 (143.5) 238–498
High Sensitivity Troponin A (pg/mL), median (IQR) 21.1 (97) Women: 13.8–17.5

Men: 28.9–39.9
Ferritin (ng/mL), median (IQR) 978.5 (1424.20) 20–250
Blood Natriuretic Peptide (pg/mL), median (IQR) 47.15 (81.05) <125
LDH (IU/L), median (IQR) 550 (231) 98–192
Alkaline phosphatase (IU/L), median (IQR) 90 (46.5) 38–126
C-reactive protein (mg/L), median (IQR) 13.48 (11.95) <1
Procalcitonin (ng/L), median (IQR) 0.235 (0.38) <0.5

Severity
Mechanical ventilation at hospitalization, n (%) 26 (86.7%)
Shock Index, median (IQR) 0.79 (0.28) 0.5–0.7

CPK: creatine phosphokinase; PT: prothrombin time; PTT: partial thromboplastin time; LDH: lactate dehydroge-
nase. * One patient had heart failure, and the other had angina pectoris. ** One patient had Chronic Obstructive
Pulmonary Disease. *** Two patients presented with obstructive sleep apnea, three with allergic diseases, one
with diabetic neuropathy, and one with sinusitis.
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3.2. Neutrophil/Lymphocyte Ratio in the COVID-19 Patients

An increased neutrophil/lymphocyte (N/L) ratio and hyperinflammatory responses
have been associated with COVID-19 [6,26]. We analyzed the N/L ratio in the COVID-19
patients at admission (t1) and after 14 days of inpatient treatment (t2). At t1, we found an
N/L ratio of 20.4, meaning that the overall immune response of the patients was associated
with a predominant neutrophil population [27]. However, at t2, we found a significant
decrease in the N/L ratio to 3.8 (Figure 1a). The 5.4-fold N/L ratio reduction represents a
recovery of the lymphocyte population.
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Figure 1. N/L ratio and thiol levels. (a) The N/L ratio before–after plots with the patients’ values at
admission (t1) and two weeks later, during inpatient treatment (t2). (b) Total thiol levels in the sera of
COVID-19 patients and healthy subjects at t1 and t2 using a commercial colorimetric assay. Box plots
depict medians and quartiles. (c) Individual total thiol levels at t1 and t2; shaded areas flanked by
dotted lines indicate the upper and lower limits of the 95% CI of the healthy subjects’ median thiol
levels. * p < 0.05, **** p < 0.0001.

3.3. Thiol-Disulfide Levels in the COVID-19 Patients

Low levels of thiol-disulfide and a correlation between high levels of ROS and the
neutrophil count have been reported in COVID-19 patients [7], suggesting an oxidative
imbalance state. Here, we analyzed the total thiol levels in patients at admission and at
two-week follow-up during hospitalization (t2) to pursue the redox state. While total thiol
levels were similar at t1 and t2 in the healthy subjects (thiols µM, median = t1: 164 vs. t2:
185), COVID-19 patients had a significant total thiols reduction at t2 (thiols µM, median = t1:
181 vs. t2: 117, Figure 1b). Only three patients recovered their thiol levels at t2 (Figure 1c).
Half of the subjects exhibited thiol levels within the median 95% CI upper and lower limits
of the healthy controls’ median (shaded area).

3.4. Functionality of Innate and Cytokine Immune Receptors in COVID-19 Patients at Admission

The activation of most innate receptors by their cognate ligand triggers the production
of IL-8 [28]. We used this feature to evaluate whether innate receptors were functional
at admission (t1) compared with healthy subjects. IL-8 secretion at t1 and t2 after 24 h
without stimulation from COVID19 patients is shown in Supplementary Table S2. We
found a significant production of IL-8 after specific ligand stimulation of innate membrane
receptors TLR2 and TLR4 (Pam-3-Cys and LPS, respectively) in patients. A similar response
was observed in the healthy controls (Figure 2). Although the receptors responded to the
TLR agonists, the observed response was lower in patients with COVID-19. In the patients,
the stimulation of innate cell surface receptors with Pam-3-Cys resulted in a 6.4 times
reduction in IL-8 secretion, while LPS stimulation ensued 13 times lower than in the healthy
subjects (median, pg/mL: TLR2/Pam-3-Cys: 1951 vs. 12,422, TLR4/LPS: 1259 vs. 16,440,
patients vs. healthy controls) (Figure 2a). Regarding the stimulation of innate endosomal
receptors, Gardiquimod elicited 2.2 times lower and CpG 5.1 times lower IL-8 secretion in
patients than in healthy subjects (median, pg/mL: TLR7/8/Gardiquimod: 285 vs. 642, and
TLR9/CpG: 95 vs. 486, patients vs. healthy controls) (Figure 2b). Stimulating the innate
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cytoplasmic receptor NOD1 with Tri-DAP did not induce IL-8 secretion in either group.
NOD2 stimulated with MDP induced 9.2 times lower IL-8 secretion in COVID-19 patients
than in healthy subjects (median, pg/mL: MDP: 177 vs. 1634) (Figure 2c).
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patients and healthy subjects at admission. Whole blood diluted 1:1 with culture medium was
stimulated with specific ligands of innate immunity receptors (a–c): TLR2 (Pam-3-Cys, 2 µg/mL),
TLR4 (LPS, 100 ng/mL), TLR7/8 (Gardiquimod, 5 µg/mL), TLR9 (CpG ODN, 10 µg/mL), NOD1
(Tri-DAP, 10 µg/mL), and NOD2 (MDP, 10 µg/mL), as well as specific ligands of cytokine receptors
(d,e): IFN-γR (LPS, 100 ng/mL and rhIFN-γ, 1000 U/mL) and IL-12R (PMA, 25 ng/mL and rhIL-12,
25 ng/mL). Plasma levels of IL-8, TNF-α, and IFN-γ were measured as readout of ligand-dependent
responses, by ELISA. Box plots indicate medians and quartiles. * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001.

In addition, cytokine receptors from IL-12 and IFN-γ axes have been reported to play a
role against viruses [29]. The stimulation of the IL-12R induced a significant IFN-γ secretion
in both groups (Figure 2d). However, COVID-19 patients induced 1.7 times lower IFN-γ
secretion with rhIL-12 plus PMA and 2.1 times lower with PMA stimulation alone than
healthy subjects (IFN-γ pg/mL, median = PMA: 76 vs. 157, rhIL-12: 35 vs. 40, and rhIL-
12+PMA: 65 vs. 110, patients vs. healthy controls) (Figure 2d). Because IFN-γ potentiates
the effects of LPS [30], we stimulated the IFN-γR with IFN-γ plus LPS and measured the
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TNF-α secretion in COVID-19 patients and healthy controls. COVID-19 patients produced
lower TNF-α, 62 times lower with LPS and 83 times lower with LPS + rhIFN-γ than healthy
subjects (TNF-α pg/mL, median = LPS: 27 vs. 1671, and LPS + rhIFN-γ: 20 vs. 165, patients
vs. healthy controls) (Figure 2e).

3.5. Follow-Up of the Immune Receptors’ Functionality in COVID-19 Patients

The response of innate receptors during hospitalization has yet to be investigated
thoroughly. We compared the immune receptor functionality of critically ill COVID-19
patients at admission (t1) and after 14 days of hospitalization (t2). A significant increase
in IL-8 levels was observed at t2 after agonist stimulation of TLR2, TLR4, TLR7/8, TLR9,
NOD1, and NOD2 (Figures 2a–c and 3a–c). We did not find a significant change in
the IL-12R functionality (Figures 2d and 3d); however, the cytokine receptor IFN-γR
significantly increased TNF-α production at t2 after LPS or LPS plus rhIFN-γ stimulation
(Figures 2e and 3e), suggesting that blood immune cells from COVID-19 patients recovered
their capacity to produce IL-8 and TNF-α after 14 days.
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Figure 3. Immune receptors are functional in critically ill COVID-19 patients two weeks after
admission. Whole blood diluted 1:1 with culture medium was stimulated with specific ligands of
innate (a–c) and adaptive (d,e) immune receptors, as described in Materials and Methods. Depicted
are box plots and pairwise comparisons between t1 (at admission) and t2 (two weeks later during
hospitalization). * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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Although, as a group, the patients recovered their ability to respond to agonist chal-
lenges, some remained unresponsive. We analyzed individual responses at t1 and t2 and
observed the median 95% CI of the healthy controls (grey shaded areas in the plots of
Figure 4 denote upper and lower limits). We found that most patients recovered TLR2,
TLR4, TLR7/8, TLR9, NOD1, and NOD2 functionality (Figures 2 and 4a–f). Regarding
the cytokine receptors, while the IL-12R function remained low (Figures 2d and 4g), half
of the patients increased IFN-γ production after rhIFN-γR plus PMA stimulation at t2
(Figures 2e and 4h).
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3.6. Correlation between the N/L Ratio and TLRs, NLRs, and Cytokine Receptors in
COVID-19 Patients

To identify whether innate and adaptive immune receptor dysfunction is due to an
imbalance of neutrophil and lymphocyte counts at admission, we examined the correlation
between the N/L ratio and the response of each innate or cytokine receptor. We found a
moderate positive correlation between the N/L ratio and the dysfunction of TLR7/8 and
TLR9 intracellular receptors (Figure 5a,b) and a moderate negative correlation between the
N/L ratio and the dysfunction of IFN-γR (Figure 5c). The other receptors did not show a
significant correlation. These data suggest that receptor dysfunction is due to an intrinsic
cell response but not the cell count per se.

Other parameters, such as underlying infections, total lymphocyte count, and ox-
idative stress, could affect the response of the receptors. We compared subjects with
dysfunctional receptors vs. subjects without dysfunctional receptors and we did not find
a significant association between receptor dysfunction and the occurrence of healthcare-
associated infections, total leukocyte counts, or total thiol levels, suggesting that receptor
dysfunction is independent of other clinical factors.
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4. Discussion

This study evaluated how the immune receptors’ response modified during SARS-
CoV-2 infection after two weeks of inpatient care. We evaluated the function of innate and
cytokine immune receptors and the N/L ratio and thiol production contribution to the
IL-8-induction.

Even though the neutrophil/lymphocyte (N/L) ratio has been reported as a risk factor
for COVID-19 [31], the biological mechanisms contributing to the IL-8 induction are not
fully understood. The increased N/L ratio is due to an increase in the neutrophil count
and a decrease in the lymphocyte count. Here, we found a high N/L ratio in critically ill
patients with COVID-19 at admission; however, the N/L ratio decreased in most patients
after two weeks of hospitalization, regardless of their clinical outcome. Despite this, IL-8
secretion increased, suggesting a mechanism independent of the number of neutrophils.
Neutrophils are the primary ROS producers, and the balance between ROS and antioxidants
such as thiols indicates oxidative stress. We found no difference between thiol levels in
severe COVID-19 patients at admission and healthy subjects. Unlike patients with mild to
moderate COVID-19 [10], severe COVID-19 patients had lower levels of thiol-disulfide after
two weeks of inpatient care when neutrophil counts also decreased; thus, this reduction in
thiols in critically ill patients may be associated with an increase in oxidative stress, since a
high ROS production has been reported in ICU patients [32]. Moreover, the thiol-disulfide
reduction in COVID-19 patients might be related to an enhanced inflammation via NF-κB
activation [33]; however, only a weak correlation with Tri-DAP inducing IL-8 secretion
and total thiols was observed, suggesting that the primary pathway is through receptor
agonists. Further studies are required to elucidate the molecular pathways responsible for
this phenomenon.

The activation of TLRs elicits antiviral and inflammatory responses during coronaviral
infection [34]. However, to avoid hyperinflammation and consequent host tissue damage,
the down-activation of TLR signaling by prolonged or repeated exposure to TLR ligands
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leads to no or low receptor response (tolerization) [35]. Tolerance is a protective mechanism
that limits hyperinflammation and prevents septic shock and tissue damage. Here, we
observed that, at admission, COVID-19 patients had a low response to the agonist of TLR2,
TLR4, TLR7/8, and TLR9, suggesting a TLR cross-tolerance. SARS-CoV-2 components,
such as the envelope protein recognized by TLR2, probably induce TLR tolerance [36]. In
addition, COVID-19 patients had a lower response to the agonist of NOD2; this innate
receptor has been previously reported to recognize viruses through their ssRNA [37], and
NLRs and other members of the inflammasomes are activated during severe COVID-19 and
in SARS-CoV-2-infected human monocytes [38]. In addition, in vitro studies showed that
SARS-CoV-2 ORF3a, ORF7a, M, and N proteins induce inflammatory cytokine expression
by activating NF-κB in HeLa cells [39]. Although tolerization has not been reported for
NOD2, the inhibitory effects of Erbin are downstream after its ligand recognition, inhibiting
NF-κB-dependent NOD2 and the inflammatory response [40]. The interaction between
Erbin and viral proteins has been described for HIV and some coronaviruses [41]; however,
the specific interaction with SARS-CoV-2 proteins with NOD-like receptors remains unclear.

The TNF-α and IFN-γ are related to cytokine storm-induced mortality in patients
with COVID-19 [20]. We observed that COVID-19 patients had a lower response to the
agonists of IL-12R and IFN-γR at admission, as previously reported in SARS-CoV and
MERS infections, where this event diminishes T cell activation [24], probably related to
cytokine receptor signaling.

Two weeks after admission, while COVID-19 patients were still hospitalized, we
evaluated the innate and cytokine receptors’ response again, finding a recovery of their
functionality in most of the patients, also associated with a decrease in the N/L ratio, despite
the treatment with steroids. These findings are relevant to patients who did not recover
their innate receptors’ functionality and might be at greater risk of defective recognition of
subsequent viral or bacterial infections. However, the mechanisms are yet to be elucidated
through further analyses.

The limitations of the present investigation include the sample size, lack of viral load
assessment in COVID-19 patients, lack of moderate and mild COVID-19 patients to compare
receptor responses, and SARS-CoV2 molecular patterns specific receptor responses.

In conclusion, low secretion of IL-8 was observed upon stimulation with TLR2, TLR4,
TLR7/8, TLR9, and NOD2 agonists by the blood cells of COVID-19 patients at hospital
admission and was restored after two weeks of hospitalization, which may be a contributing
factor to immunosuppression.
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