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Abstract: Obesity has been linked to metabolic syndrome, type 2 diabetes, and non-alcoholic fatty
liver disease (NAFLD). Obesity causes a decrease in growth hormone (GH) levels and an increase in
insulin levels. Long-term GH treatment increased lipolytic activity as opposed to decreasing insulin
sensitivity. Nonetheless, it is possible that short-term GH administration had no impact on insulin
sensitivity. In this study, the effect of short-term GH administration on liver lipid metabolism and
the effector molecules of GH and insulin receptors were investigated in diet-induced obesity (DIO)
rats. Recombinant human GH (1 mg/kg) was then administered for 3 days. Livers were collected
to determine the hepatic mRNA expression and protein levels involved in lipid metabolism. The
expression of GH and insulin receptor effector proteins was investigated. In DIO rats, short-term GH
administration significantly reduced hepatic fatty acid synthase (FASN) and cluster of differentiation
36 (CD36) mRNA expression while increasing carnitine palmitoyltransferase 1A (CPT1A) mRNA
expression. Short-term GH administration reduced hepatic FAS protein levels and downregulated
gene transcription of hepatic fatty acid uptake and lipogenesis, while increasing fatty acid oxidation
in DIO rats. DIO rats had lower hepatic JAK2 protein levels but higher IRS-1 levels than control rats
due to hyperinsulinemia. Our findings suggest that short-term GH supplementation improves liver
lipid metabolism and may slow the progression of NAFLD, where GH acts as the transcriptional
regulator of related genes.

Keywords: GH; DIO rats; hepatic lipid metabolism; NAFLD; insulin resistance

1. Introduction

Obesity is a major global public health issue. The prevalence of obesity has continued
to increase in the past few decades [1,2]. Obesity potentiates multiple negative health
effects, including cardiovascular disease, metabolic syndrome, diabetes mellitus, as well
as non-alcoholic fatty liver disease (NAFLD) [3,4]. Furthermore, changes in hormonal
profiles have been observed in the obesity state, including decreased growth hormone (GH)
levels [5,6], and increased insulin and leptin levels [7,8]. These hormonal changes lead to
remarkable alterations in lipid and glucose metabolism. GH, in particular, has a significant
lipolytic effect and potentiates elevated glucose levels, which appears to counteract the
effects of insulin [9]. Supplementation of GH for long periods, especially longer than
21 days, significantly reduced fat accumulation in rats [10,11]. However, long-term GH
treatment promoted insulin resistance in hypophysectomized animals and GH-deficient
subjects [12,13]. On the other hand, short-term GH treatment (5 days) did not increase
plasma insulin levels in obese animals [14] and did not affect fat accumulation [15]. In
addition, short-term GH treatment (5 days) promoted the anorectic effect of obese rats [14].
This anorectic effect was intriguing since it would offer a useful method of body weight
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management. This treatment mimics the physiological condition of increased GH secretion,
especially during exercise [16,17]. In humans, the effects of GH supplementation on body
adiposity varied depending on the duration of treatment. For instance, patients with GH
deficiency (GHD) were found to benefit from GH supplementation for the first few months,
while long-term supplementation increased subcutaneous fat [18].

Physical inactivity and eating a hypercaloric diet are the primary causes of weight gain,
eventually leading to obesity [19]. Imbalances in energy status that occur in conjunction
with obesity, including insulin resistance and fat accumulation in the liver, contribute to
the development of NAFLD. In addition, the elevation of hepatic triglycerides (TG) is one
of the hallmarks of NAFLD [4,20] and increased lipogenesis has been reported in NAFLD
patients [4]. The imbalance of the genes involved in lipid synthesis and disposal leads to
the progression of NAFLD [4]. To maintain physiologic conditions, it is crucial to regulate
the transcription of genes involved in liver lipid synthesis and storage, including fatty acid
synthase (FASN), acetyl-CoA carboxylase (ACC), and cluster of differentiation 36 (CD36),
and the genes involved in lipid disposals such as carnitine palmitoyltransferase 1A (CPT1A)
and the very low-density lipoprotein receptor (VLDLR). Hepatic lipogenesis is regulated
by hormonal and nutritional status with GH and insulin reported to regulate hepatic gene
transcription [21,22]. Hepatic CD36 mRNA expression was higher in GH receptor (GHR)
knockout mice and liver-specific GHR knockout mice, which was linked to higher levels
of hepatic TG accumulation [23,24]. Additionally, hepatic FASN mRNA expression was
greater in liver-GHR knockdown mice compared to control mice after fasting and refeeding.
These findings confirmed the importance of hepatic GHR in liver lipid metabolism, espe-
cially in de novo lipogenesis [25]. Insulin is involved in hepatic lipogenesis by upregulating
the expression of FASN mRNA in diabetic and transgenic mice [26]. Insulin resistance is
common in patients with NAFLD [27], and it has been established that insulin resistance is
one of the major pathological factors in disease progression [28]. Reduced GH levels may
contribute to the advancement of NAFLD, although the roles of GH in lipid metabolism are
complex. Short-term GH supplements may reduce hepatic insulin resistance by improving
liver lipid metabolism.

To investigate whether short-term GH administration could affect hepatic lipid
metabolism, the diet-induced obesity (DIO) rat model was used. Consuming a hypercaloric
diet induces obesity and NAFLD, which subsequently decreases GH levels and insulin
resistance [29–31]. Lipid accumulation in the liver has been found after feeding with a
hypercaloric diet [29,32–34]. Feeding rats with a high-fat diet decreased circulating GH
levels and the downstream effectors of the hepatic GH signaling pathway, including signal
transducer and activator of transcription-5 (STAT-5) and Janus kinase-2 (JAK2) [31]. Hepatic
JAK2 deletion mice develop a fatty liver that is associated with an elevated level of CD36
gene expression [35]. GHR also plays an important role in liver lipid metabolism. Increased
hepatic lipid uptake, increased hepatic de novo lipogenesis, and severe insulin resistance
were observed in the livers of GHR knockout mice [36]. In addition, increased hepatic
triglyceride content was found in the GHR antagonist transgenic mouse model [37]. Thus,
the regulation of GHR may affect the severity of NAFLD.

Supplementation of GH may have the potential to reduce the progression of NAFLD
in obese rats. We hypothesized that short-term GH administration could provide benefits
for either regulating the hepatic gene transcription related to lipid metabolism or decreas-
ing hepatic lipid uptake and accumulation in the liver. Moreover, we investigated the
underlying mechanisms through which GH affects hepatic lipid metabolism. Our findings
support the potential mechanisms of short-term recombinant human GH for further study
in the treatment of NAFLD.

2. Materials and Methods
2.1. Animals and Diet

Forty-seven male Wistar rats, aged 12 weeks, from the National Laboratory Animal
Center at Mahidol University, were used for this study. The study protocol was approved
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by the Institutional Animal Care and Use Committee (IACUC), Faculty of Veterinary
Science, Chulalongkorn University (approval protocol number #1531026). Animals were
individually housed in conventional hanging cages with stainless steel wire mesh floors
(33 cm × 18 cm × 20 cm) under standard conditions in a temperature-controlled room
(12 h/12 h light/dark cycle, 22 ± 1 ◦C). The rats were allowed to access water ad libitum
and standard rat chow (#082; Perfect Companion Group Ltd., Samutprakarn, Thailand)
containing protein 24 g%, carbohydrate 42 g%, fat 4.5 g%, energy 3.04 kcal/g, and energy
from fat 13%. After acclimatization for 2 weeks, they were divided into two main groups.
The control group was fed with the standard rat chow (n = 12) and the hypercaloric diet
(HC diet) feeding group was given an HC diet (protein 17.52%, carbohydrate 30.66%, fat
30.3%, energy 4.65 kcal/g, energy from fat 60%; n = 35) for 6 weeks. The HC diet was
made by combining melting lard and standard rat chow, with a lard/chow ratio of 27 and
73 g%, respectively. At 20 weeks old, HC-fed rats were arranged by increasing body weight
(BW); the lowest tertile of BW gainers were identified as diet-resistant (DR) rats (n = 10)
which showed a similar final BW as control rats and no obesity was observed. These rats
were represented as the group of HC diet control. Diet-induced obesity (DIO) rats (n = 12)
showed a higher BW gain, final BW, and body fat mass compared to control rats. The
middle BW gainers (n = 13), which did not meet the DR or DIO criteria, were excluded
for this experiment. The timeframe of the experiment and the groups of HC-feeding rats
are represented in Figure 1a,b, respectively. Then an intraperitoneal glucose tolerance test
(IPGTT) was undertaken (see below). The measurements of BW and food intake (FI) (23 h
FI, ±0.1 g corrected for spillage) were recorded during the experimental period.

Figure 1. (a) The experiment timetable. (b) The HC-feeding rat groups after 6-weeks of dietary
intervention.

The control, DIO, and DR rats were randomly assigned to treat with either GH or
normal saline (NSS) as vehicle. The experimental groups were described as follows:

Group 1: Control rats + NSS (n = 6)
Group 2: Control rats + GH (n = 6)
Group 3: DIO rats + NSS (n = 6)
Group 4: DIO rats + GH (n = 6)
Group 5: DR rats + NSS (n = 5)
Group 6: DR rats + GH (n = 5)
The GH-treated rats were subcutaneously (s.c.) injected with GH (GenHeal®; Shanghai

United Cell Biotechnology Co., Ltd., Shanghai, China) at 1 mg/kg twice daily (08:00 h and
16:00 h) for 3 days, whereas other subgroups received NSS injections, as shown in Figure 2.
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Figure 2. The rats in each group were treated with either GH or NSS for 3 days (short-term adminis-
tration). The arrows indicate GH or NSS administration (0800h and 1600h). The black and white bars
show dark and light phases, respectively (12 h/12 h).

After the short-term GH administration, the rats were fasted overnight and sacrificed
using pentobarbital (150 mg/kg, Nembutal®; Ceva Sante Animale, Libourne, France).
Rats were then transcardially perfused with 0.1 M phosphate-buffered saline (PBS). To
determine total body fat, the visceral and subcutaneous adipose tissues, including mesen-
teric, retroperitoneal and perirenal, epididymal, interscapular and inguinal fat pads, were
dissected and weighted. The liver was collected for triglyceride (TG) measurement, hepatic
gene expression, and effector protein determination.

2.2. Intraperitoneal Glucose Tolerance Test

An intraperitoneal glucose tolerance test (IPGTT) was performed to measure systemic
insulin sensitivity. After a 6-week feeding period with HC or a control diet, the rats
were fasted overnight (16 h). Basal blood samples were collected by the tail-clipping
technique and fasting blood glucose was measured using a blood glucose meter (Accu-
Chek® Performa; Roche Diagnostic GmbH, Mannheim, Germany). Glucose administration
(2 g/kg; 50% glucose solution; A.N.B. Laboratories Co., Ltd., Bangkok, Thailand) was
performed via intraperitoneal (i.p.) injection. Blood samples were collected for blood
glucose level measurement after 15, 30, 60, 90, and 120 min following glucose injection.

2.3. Calculation of Homeostasis Model of Insulin Resistance (HOMA-IR)

Blood samples were collected from the ventral tail artery after a 16-h food withdrawal
period. Samples were centrifuged at 3000× g, 4 ◦C for 15 min to obtain the plasma and
stored at −20 ◦C until the analysis was performed. Plasma insulin was measured using an
insulin ELISA kit (EZRMI-13K; Merck Millipore, MA, USA) according to the instructions of
the manufacturer.

The index of HOMA-IR was calculated from fasting glucose and fasting insulin levels
as per formula:

HOMA-IR = (fasting glucose (mg/dL) × fasting insulin (µU/mL))/2430 [38].

2.4. Measurement of Circulating Free Fatty Acids, Total Cholesterol and Triglyceride Levels

Estimation of free fatty acid (FFA) levels was performed from plasma as described
in Section 2.3. A commercially colorimetric FFA assay kit (ab65341; Abcam, Cambridge,
UK) was used to determine FFA levels. Total cholesterol and triglyceride levels were
estimated by using the serum. In this regard, blood samples were collected from the heart
before the transcardial perfusion was made. Then the blood samples were centrifuged at
3000× g, 4 ◦C for 15 min to obtain the serum and stored at −20 ◦C until the analysis was
conducted. A chemistry analyzer system (Beckman Coulter AU400, Brea, CA, USA) was
used to determine serum total cholesterol and triglyceride levels by enzymatic methods.

2.5. Liver Triglyceride (TG) Measurements

Livers were collected after euthanasia with pentobarbital i.p. injection (150 mg/kg,
Nembutal®; Ceva Sante Animale, Libourne, France) and perfusion with 0.1 M PBS. Livers
were immediately frozen on dry ice and kept at −80 ◦C. Liver tissue samples (100 mg) were
homogenized in 1 mL of 5% NonidetTM P40 Substitute (NP40; #74385; Sigma-Aldrich®,
St. Louis, MO, USA) as described by Huang et al., 2020 [39]. Samples were then heated
to 80–100 ◦C for 2–5 min and cooled to room temperature with this step repeated once.



Biomedicines 2023, 11, 1050 5 of 16

TG concentration was measured using a triglyceride quantification kit (#MAK266; Sigma-
Aldrich, St. Louis, MO, USA) following the manufacturer’s instructions.

2.6. RNA Isolation and Quantitative RT-PCR

Liver RNA was extracted using the TRIzol™ reagent (Invitrogen, Carlsbad, CA,
USA). Briefly, liver tissue weighing 80 mg was homogenized in 1 mL of TRIzol™ reagent.
Phase separation was performed using chloroform (200 µL). Following centrifugation at
12,000× g at 4 ◦C for 15 min, the supernatant was collected. Isopropanol (500 µL) was
added to the samples to precipitate the RNA and then centrifuged at 12,000× g for 10 min
at 4 ◦C. The supernatant was discarded and the RNA pellet was washed with ice-cold
75% ethanol. Samples were centrifuged at 7500× g, 4 ◦C for 5 min. The supernatant
was discarded, and the RNA pellet was allowed to air dry. RNA was redissolved in
DNase/RNase-free distilled water (100 µL) (Invitrogen, Carlsbad, CA, USA), and RNA
purity was determined using the Nanodrop 2000C. (Thermo Scientific, Waltham, MA,
USA). Synthesis of cDNA utilized the iScript™ cDNA synthesis kit (Hercules, CA, USA)
according to the manufacturer’s instructions. Target gene amplification was detected using
SYBR Green (Luna® Universal qPCR Master Mix, New England Biolabs, Ipswich, MA,
USA) and specific sequence primers were designed using NCBI/Primer-Blast (Table 1). To
monitor DNA amplification, samples were analyzed using an ABI PRISM7500 Sequence
Detection System with analytical software (Applied Biosystems, Carlsbad, CA, USA). The
expression levels of gene transcription were normalized with β-actin.

Table 1. The sequence primers for quantitative RT-PCR.

Fatty acid synthase (FASN) Forward (5′→3′)
Reverse (5′→3′)

GCATTTCCACAACCCCAACC
AACGAGTTGATGCCCACGAT

Lipoprotein lipase (LPL) Forward (5′→3′)
Reverse (5′→3′)

ATGGCACAGTGGCTGAAAGT
CCGGCTTTCACTCGGATCTT

Cluster of differentiation 36
(CD36)

Forward (5′→3′)
Reverse (5′→3′)

TGGACTTGTACTCTCTCCTCGG
TCGTGCAGCAGAATCAAGGA

Carnitine palmitoyltransferase
1A (CPT1A)

Forward (5′→3′)
Reverse (5′→3′)

TGCAGAGCAATAGGTCCCC
ACACCCACCACCACCACGATAAG

Insulin induced gene 2
(Insig2)

Forward (5′→3′)
Reverse (5′→3′)

GCGTGTTCCTGGCTTTAGTG
CGACTTTAGCACTGGCGTGA

Very low-density lipoprotein
receptor (VLDLR)

Forward (5′→3′)
Reverse (5′→3′)

GTGATGAGCTGGACTGTGCT
GCCACACTGCTCAAGAGACT

β-actin Forward (5′→3′)
Reverse (5′→3′)

CCACCATGTACCCAGGCATT
AGGGTGTAAAACGCAGCTCA

2.7. Western Blotting

Frozen liver tissue was homogenized in an ice-cold RIPA buffer (Cell Signaling Tech-
nology, Danvers, MA, USA) containing protease inhibitors (Cell Signaling Technology,
Danvers, MA, USA) and phosphatase inhibitors (PhosSTOP™, Merck Millipore, Darmstadt,
Germany). Homogenization utilized a Dounce glass tissue homogenizer (Kimble® #D8938;
Sigma-Aldrich®, Munich, Germany). Samples were sonicated and centrifuged at 8000× g at
4 ◦C for 5 min to remove cell debris. The protein concentration of the supernatant (beneath
the lipid layer) was measured using the BCA protein assay kit (Merck Millipore, Darmstadt,
Germany). Proteins were separated using 10% sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) and transferred to a polyvinylidene fluoride (PVDF) mem-
brane. The membrane was blocked from non-specific binding using 5% non-fat dry milk
and incubated overnight at 4 ◦C with primary antibodies: β-actin #4970, phosphatase and
tensin homolog (PTEN #9188), phosphatidylinositol-3-kinase p110 subunit alpha (PI3K
p110 α #4249), JAK2 #3230, STAT5 #94205, AKT #9272, insulin receptor substrate-1 (IRS-1
#2390), fatty acid synthase (FAS #3180) (Cell Signaling Technology®, Danvers, MA, USA).
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After washing, the membrane was incubated with peroxidase-conjugated IgG fraction
monoclonal mouse anti-rabbit IgG (#211-031-171; Jackson Immunoresearch laboratory®,
West Grove, PA, USA). The specific protein bands were developed by incubation for 5 min
with ECL substrate (Immobilon® Crescendo Western HRP Substrate; #WBLUR0500; EMD
Millipore, Burlington, MA, USA). Membranes were imaged with Amersham HyperfilmTM
(GE Healthcare, Buckinghamshire, UK) and the densitometry was analyzed using ImageJ
software (NIH, Bethesda, MA, USA). The results were normalized with the densitometry
of β-actin.

2.8. Statistical Analysis

Data were tested for normality based on the Shapiro–Wilk test. Results are presented
as mean ± standard error of the mean (SEM). Significant different values were considered
as p ≤ 0.05. Analysis of significant mean difference was performed using one-way analysis
of variance (ANOVA) for the difference between groups. Analysis of the effect of GH
administration and the difference among groups was assessed by two-way ANOVA. A
Bonferroni test was used for post hoc analysis. In addition, analysis of the gene between
GH and saline-treated groups utilized an independent T-test. Data analysis was performed
using GraphPad Prism 7.00 (GraphPad Software, San Diego, CA, USA).

3. Results
3.1. Characteristics of Diet-Induced Obesity (DIO) and Diet-Resistant (DR) Rats

After the obesity induction period (6 weeks of HC diet feeding), the HC rats with the
highest tertile of BW gain were selected as DIO rats (n = 12). HC rats with a final BW similar
to control groups were selected as DR rats (n = 10). The BW of each group is presented
in Figure 3a. The FI measurements were used to determine energy consumption per day.
The FI results indicated that DIO rats had higher energy intake relative to DR and control
rats throughout the period of HC feeding. However, energy intake in DR rats was higher
compared to control rats (Figure 3b). The percentage of body fat mass was significantly
different in each group, with the highest fat mass seen in DIO rats, followed by DR and
control rats, respectively (Figure 3c). The results of each specific site of adipose tissue were
shown in the supplementary materials (Figure S1a–c). The DIO rats also exhibited the
highest BW gain, followed by DR and control rats, respectively (Figure 3d). In the IPGTT,
DIO rats demonstrated impaired glucose tolerance, with a higher area under the curve
(AUC) than the control group (Figure 3d,e). In comparison to control and DR rats, the
calculated HOMA-IR revealed insulin resistance in DIO rats (Figure 3g).

DIO rats were characterized by higher BW, BW gain, and body fat mass, while DR rats
presented parameters comparable to control rats. Glucose intolerance was found in DIO
rats and related to impaired insulin sensitivity as the greater HOMA-IR.

3.2. Effects of Short-Term GH Administration on the Circulating Insulin, FFAs, Cholesterol, TG
and Liver TG Levels

Short-term administration of GH significantly increased plasma insulin levels in all
rats (p < 0.05). However, the fasting plasma insulin level of DIO rats was higher than that
of control and DR rats (Figure 4a). As shown in Figure 4b, short-term GH administration
significantly increased FFA levels only in DR rats (p < 0.05). Circulating cholesterol levels as
the percentage of the cholesterol level of the control group were decreased after short-term
GH treatment in DIO and DR rats (p < 0.05) (Figure 4c). For serum TG levels, a significantly
decreased TG level was found in the GH-treated DR rats (p < 0.05) (Figure 4d). In addition,
the short-term GH supplement did not alter the weight of the liver. The percentage of
liver weight per body weight is shown in Figure 4e. For liver TG content and liver weight,
DIO and DR rats had higher liver TG and liver weight than control rats. Short-term GH
administration had no effect on the amount of liver TG (Figure 4f).
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Figure 3. (a) The body weight (BW) of rats during diet manipulation for 6 weeks; *** represents statis-
tical significance compared to other groups (p < 0.001). (b) Energy intake during the 6-week period;
*** represents statistical significance when compared to other groups (p < 0.001), ## represents statisti-
cal significance when compared to DIO rats (p < 0.01), ### represents statistical significance when
compared to DIO rats (p < 0.001). (c) The percentage of body fat mass in each group; * represents sta-
tistical significance when compared to the control group (p < 0.05), # represents statistical significance
when compared to DIO rats (p < 0.05). (d) The body weight gain during 6 weeks of diet manipulation;
* represents statistical significance compared to the control group (p < 0.05), # represents statistical
significance when compared to DIO rats (p < 0.05). (e) Intraperitoneal glucose tolerance test (IPGTT)
in control, DIO and DR rats; *, *** represents statistical significance when compared to the control
group (p < 0.05, p < 0.001, respectively), #, ## represents statistical significance when compared to DIO
rats (p < 0.05, p < 0.01, respectively). (f) Area under the curve (AUC) of IPGTT; * represents statistical
significance when compared to the control group (p < 0.05). (g) The calculated homeostasis model of
insulin resistance (HOMA-IR) in control, DIO and DR rats; * represents statistical significance when
compared to the control group (p < 0.05), # represents statistical significance when compared to DIO
rats (p < 0.05). All results are presented as mean ± SEM; n = 12 per group (control and DIO rats),
n = 10 per group (DR rats).
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Figure 4. (a) Plasma insulin after short-term GH administration; *, ** represent statistical significance
between GH and NSS groups (p < 0.05, p < 0.01, respectively), # represents statistical significance
when compared to the control group (p < 0.05). (b) Plasma free fatty acids after short-term GH
administration; * represents statistical significance between GH and NSS groups (p < 0.05). (c) Serum
cholesterol levels (% change to the control group) after short-term GH treatment; * represents statistical
significance between GH and NSS groups (p < 0.05). (d) Serum triglyceride levels (% change to the
control group) after short-term GH treatment; * represents statistical significance between GH and
NSS groups (p < 0.05). (e) The percentage of liver weight in each group; # represents statistical
significance when compared to the control group (p < 0.05). (f) Liver triglyceride concentration (mg/g
tissue) in each group; ### represents statistical significance when compared to the control group
(p < 0.001). All results are presented as mean ± SEM; n = 6 per experimental group (NSS/GH of
control and DIO rats), n = 5 per experimental group (NSS/GH of DR rats).

These results indicated that short-term GH administration improved the serum lipid
profiles in HC-fed rats, in particular, and serum cholesterol levels in both DIO and DR rats.
The pronounced effect of the decreased serum TG level was demonstrated in only DR rats.
On the other hand, short-term GH treatment did not alter the liver TG level.

3.3. Effects of Short-Term GH Administration on mRNA Expression of Genes Related to Hepatic
Lipid Metabolism and the Hepatic FAS Protein Levels

In the analysis of the mRNA expression data, only the effect of short-term GH ad-
ministration was considered. Thus, measurement of the data set was separated for each
group. After short-term GH treatment, the mRNA expression of genes linked to hepatic
lipid metabolism, particularly FASN and CD36, was significantly reduced in control and
DIO rats (FASN; p < 0.01, p < 0.05, respectively; CD36; p < 0.05 in both groups), (Figure 5a,b).
FASN and CD36 mRNA expressions also tended to decrease after short-term GH treatment
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in DR rats (Figure 5c). In addition, LPL mRNA levels were markedly decreased after
short-term GH administration in control and DR rats (p < 0.01 and p < 0.05, respectively).
After short-term GH treatment, CPT1A mRNA expression was lowered in control rats
(p < 0.05), and tended to decrease in DR rats. In contrast, GH markedly increased CPT1A
mRNA expression in DIO rats (p < 0.05). The VLDLR mRNA expression was significantly
increased after short-term GH treatment only in DIO rats (p < 0.01). GH administration did
not alter the level of Insig2 gene expression in any group. The mRNA expression profiles
were shown in Figure 5a–c. In addition, the protein levels of FAS were decreased in all
groups after short-term GH treatment, as shown in Figure 5d.

Figure 5. (a) The liver mRNA expression in the control group; *, ** represents statistical significance
between GH and NSS groups (p < 0.05, p < 0.01, respectively). (b) The liver mRNA expression in
the DIO group; * represents statistical significance between GH and NSS groups (p < 0.05). (c) The
liver mRNA expression in the DR group; *, ** represents statistical significance between GH and NSS
groups (p < 0.05, p < 0.01, respectively). (d) Liver FAS protein levels; * represent statistical significance
differences between GH and NSS groups (p < 0.05). All results are presented as mean ± SEM; n = 6
per experimental group (NSS/GH of control and DIO rats), n = 5 per experimental group (NSS/GH
of DR rats).

Short-term GH administration downregulated the gene transcription of FASN and
CD36 which were related to de novo lipogenesis and fatty acids uptake. These results were
in accordance with decreased hepatic FAS levels in all groups after short-term GH treatment.
The decreased LPL gene expression reported in control and DR rats after short-term GH
treatment indicated that TG hydrolysis and uptake of the fatty acids into the liver were
decreased. However, the gene expression of CPT1A, which encoded an enzyme that was
responsible for fatty acid oxidation, was upregulated only in DIO rats after GH injection.

3.4. Effects of Short-Term GH Treatment on the Expression of Effectors Involved in the GH and
Insulin Receptor Signaling Pathways in the Liver

In NSS-treated groups, the JAK2 protein levels in the liver of DIO rats were significantly
lower than those of control and DR rats (p < 0.05) (Figure 6a). Short-term GH treatment
significantly increased JAK2 protein levels in the liver of control rats (p < 0.05). In contrast,
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JAK2 protein expression in the liver of DIO and DR rats was significantly decreased by
short-term administration of GH (p < 0.001 and p < 0.01, respectively). The protein content
of STAT5 in DIO rats was significantly lower than that of control and DR rats (p < 0.05)
(Figure 6b), similar to the trend for JAK2. However, short-term GH administration markedly
increased the level of STAT5 only in control rats (p < 0.05). There was no difference in the
amount of PTEN in the liver of DIO or DR rats when compared to control rats. Interestingly,
the concentration of PTEN in DIO rats was significantly higher than in DR rats (p < 0.05).
GH treatment did not affect the level of PTEN in any groups (Figure 6c). DR rats had
significantly higher levels of PI3K p110α protein than control and DIO rats (p < 0.001)
(Figure 6d). Decreased PI3K p110α levels were only observed in DR rats after short-term
GH treatment (p < 0.05) (Figure 6d). Short-term GH administration significantly increased
AKT level in control rats (p < 0.05) (Figure 6e), although a similar trend was seen in DIO
and DR rats but did not reach statistical significance. IRS-1 protein levels were increased in
short-term GH-treated DIO and DR rats (p < 0.001 and p < 0.05, respectively) (Figure 6f);
however, IRS-1 levels were unchanged by GH treatment in control rats.
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differences with the control group (p < 0.05). (b) Liver STAT5 protein levels; * represents statistical
significance differences between GH and NSS groups (p < 0.05), # represents statistical significance
differences with the control group (p < 0.05). (c) Liver PTEN protein levels. (d) Liver PI3K p110α
protein levels; * represents statistical significance differences between GH and NSS groups (p < 0.05),
### represents statistical significance differences with the control group (p < 0.001). (e) Liver AKT
protein levels; * represents statistical significance differences between GH and NSS groups (p < 0.05).
(f) Liver IRS-1 protein levels; *, *** represent statistical significance differences between GH and
NSS groups (p < 0.05, p < 0.001, respectively). All results are presented as mean ± SEM; n = 6 per
experimental group (NSS/GH of control and DIO rats), n = 5 per experimental group (NSS/GH of
DR rats).

These results indicated that impaired GHR signaling pathways were found in HC-fed
rats, especially in DIO rats. A decrease of the GHR effector molecule, JAK2, was demon-
strated after short-term GH administration in DIO rats. For insulin receptor signaling
molecules, increasing IRS-1 was reported in HC-fed rats, both DIO and DR rats. The down-
stream signaling molecules of the insulin receptor, including PI3K/AKT, were increased in
control rats, especially for AKT. As a result, an impaired hepatic insulin receptor signaling
pathway after short-term GH treatment was shown in HC-fed rats.

4. Discussion

The present study demonstrated that short-term GH administration could lead to
increased plasma insulin levels, but not alter the levels of plasma FFAs in DIO and con-
trol rats. Therefore, the increased plasma insulin levels may result from GH-stimulated
pancreatic islet β-cell growth [40,41]. Serum cholesterol and TG levels were decreased
after short-term GH treatment in DIO and DR rats. These effects were due to the upreg-
ulation of hepatic VLDLR mRNA expression. Our results suggested that short-term GH
administration provided the benefit of lipid-lowering in metabolic disturbance conditions.
This effect was similar to fenofibrate, which is the lipid-lowering agent and is approved to
treat dyslipidemia [42]. Short-term GH administration might not alter the liver enzyme
activity, especially for ALT and AST, as shown by previous studies [29,43]. Furthermore,
GH administration has been shown to improve liver enzymes in obese subjects treated
with GH for 6 months [44]. Obesity induction with HC diet in rats resulted in NAFLD with
increased liver weight [45] and TG levels [46], which are consistent with our findings.

Short-term GH supplementation regulates the gene transcription of lipid metabolism
in the liver. Inhibition of hepatic lipogenesis was suggested by the decreased FASN mRNA
expression, which has been reported previously [25,47,48]. The decreased hepatic FAS levels
have been found in a similar way to that of mRNA expression in all groups. Furthermore,
inhibition of CD36 mRNA expression is also consistent with the effect of short-term GH
treatment on lipid uptake. This finding is consistent with a previous report [49]. Our current
results also indicate that short-term GH administration decreased the gene transcription
of hepatic lipid uptake and buildup, as a previous study demonstrated a decrease in LPL
gene expression in non-obese conditions [50]. Furthermore, a previous study found that
10 weeks of long-term GH administration in mice with a low-density lipoprotein (LDL)
receptor deficiency fed a high fat diet (HFD) resulted in lower liver triglyceride levels
and downregulation of CD36 mRNA expression [51]. In our current study, short-term GH
administration (3 days) resulted in decreased FASN, CD36, and LPL mRNA expressions but
not decreased liver TG levels. Further experiments with the long-term GH administration
will be required to confirm the lipid-lowering properties of the liver in DIO rats. VLDLR
mRNA expression is another aspect of the effect of short-term GH administration on
the regulation of hepatic lipid uptake. Our findings demonstrate that the VLDLR mRNA
expression was upregulated in the obese state. There is evidence that VLDLR is upregulated
in response to endoplasmic reticulum (ER) stress [52]. However, this effect was interesting
to further investigate the underlying mechanisms which could be attributed to fenofibrate,
the lipid-lowering agent. Furthermore, the level of CPT1A expression was one of the
key molecules mediating hepatic long-chain fatty acid oxidation. The findings showed
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that GH treatment increased fatty acid oxidation in obese conditions. In non-obese states,
however, GH administration reduced fatty acid oxidation. These results indicated that
short-term GH administration potentiated hepatic fatty acid oxidation in subjects with
metabolic disturbance. It was noted that hepatic CPT1A may be a therapeutic target for
gene therapy in obese and NAFLD subjects. Increased CPT1A expression is expected to
improve metabolic panels of lipid metabolism and liver function [53].

Aside from lipid metabolism in the liver, GH effects are mediated by a GH receptor-
dependent signaling pathway. The GH receptor’s molecular pathways, including JAK2/STAT5,
have been linked to insulin sensitivity [54]. JAK2 levels were lower in HC-fed rats, whereas
STAT5 levels were lower only in DIO rats (Figure 6a,b). It is worth noting that hyperin-
sulinemia has been shown to suppress the JAK2/STAT5 signaling pathway [54,55]. We
investigated how short-term GH administration affected molecular signaling pathways
of GH and insulin receptors. GH increased the hepatic levels of JAK2 and STAT5, which
are the downstream effectors of GH receptor signaling, in insulin-sensitive conditions, as
demonstrated in control rats. In contrast, HC-fed rats with decreased insulin sensitivity
had lower hepatic levels of both JAK2 and STAT5. Furthermore, the effector proteins of
the insulin receptor were investigated in this study. Our findings revealed significantly
increased levels of IRS-1 only in GH-treated HC-fed rats. The hepatic insulin receptor
stimulates the expression of IRS-1 and its downstream effectors, including the PI3K/AKT
signaling pathway, which mediates insulin’s metabolic effects [56–59]. After short-term GH
administration, increased levels of AKT were reported in all test groups, but statistical sig-
nificance was found only in the control group. However, the levels of the catalytic subunit
of PI3K, p110α, were altered only in DR rats. It was noted that p110α levels in DR-NSS rats
exhibited the highest levels compared to control and DIO rats. Although p110α plays an
important role in the metabolic pathways of insulin action in the liver (e.g., maintaining
insulin sensitivity and lowering gluconeogenesis), insulin sensitivity is complex and each
target organ exhibits unique changes in metabolic pathways [59]. Based on the findings
of the higher levels of p110α in the liver of DR rats, it was hypothesized that these p110α
levels were connected with the degree of systemic insulin resistance. For instance, DR rats
had a lower risk for impaired glucose tolerance when compared to DIO rats. The decrease
in liver p110α levels following short-term GH administration in DR rats is consistent with
the development of increased insulin sensitivity. Previous research found that lower p110α
levels were associated with lower fatty acid uptake to the liver [60], which was linked to
higher plasma FFA levels in DR rats. GH primarily affects lipolysis and raises plasma FFA
levels [61], which are then taken up by the liver. However, GH might cause a controversial
effect, depending on nutritional and metabolic status. Furthermore, a negative regulator
of PI3K signaling, PTEN, was unaffected by short-term GH treatment in either HC or
control rats. However, an earlier study discovered that chronic GH administration for
3 weeks increased hepatic PTEN levels and was associated with the development of insulin
resistance [62]. It should be noted that the action of GH depends on whether the treatment
is acute or chronic. We hypothesized that systemic insulin sensitivity was maintained
by an early compensatory mechanism. Figure 7 depicts the overall effects of short-term
GH administration.

The roles of insulin and GH related to the pathophysiology of NAFLD progression
are complex. According to our findings, short-term GH administration may provide
evidence of decreased liver lipid uptake and promote lipid metabolism by altering the
mRNA expression. Furthermore, our findings indicate that the different stages of metabolic
disturbance in DR and DIO rats have a significant impact on the responses to short-term
GH administration. Despite similar hepatic TG levels in NSS and GH treated groups,
GH possesses the ability to improve lipid metabolism by transcriptional regulation. In
conclusion, short-term GH administration in the obese condition promotes beneficial effects
on the hepatic lipid metabolism, which may slow the progression of NAFLD.
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Figure 7. (a) The effect of short-term GH administration on the GHR and IR signaling pathway and
gene transcription of lipid metabolism in hepatocytes of control rats. (b) The effect of short-term GH
administration on the GHR and IR signaling pathway and gene transcription of lipid metabolism in
hepatocytes of DIO rats. ↑ = increase; ↓ = decrease.

5. Conclusions

This study demonstrated that short-term GH treatment affected the gene transcription
of liver lipid metabolism in obese rats. Improving lipid metabolism involved decreasing
lipid acquisition (the gene transcription levels of fatty acid uptake and de novo lipogenesis
and the hepatic FAS protein levels) and increasing lipid elimination (the gene transcription
levels of fatty acids oxidation). These findings supported the transcriptional regulation of
GH for further study in the therapeutic approach to NAFLD.
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