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Abstract: Single nucleotide polymorphisms (SNP) in the RAC1 (Rac family small GTPase 1) gene have
recently been linked to type 2 diabetes (T2D) and hyperglycemia due to their contribution to impaired
redox homeostasis. The present study was designed to determine whether the common SNPs of
the RAC1 gene are associated with diabetic complications such as neuropathy (DN), retinopathy
(DR), nephropathy, angiopathy of the lower extremities (DA), and diabetic foot syndrome. A total
of 1470 DNA samples from T2D patients were genotyped for six common SNPs by the MassArray
Analyzer-4 system. The genotype rs7784465-T/C of RAC1 was associated with an increased risk of
DR (p = 0.016) and DA (p = 0.03) in males, as well as with DR in females (p = 0.01). Furthermore,
the SNP rs836478 showed an association with DR (p = 0.005) and DN (p = 0.025) in males, whereas
the SNP rs10238136 was associated with DA in females (p = 0.002). In total, three RAC1 haplotypes
showed significant associations (FDR < 0.05) with T2D complications in a sex-specific manner. The
study’s findings demonstrate, for the first time, that the RAC1 gene’s polymorphisms represent novel
and sex-specific markers of neuropathy and microvascular complications in type 2 diabetes, and that
the gene could be a new target for the pharmacological inhibition of oxidative stress as a means of
preventing diabetic complications.

Keywords: Rac family small GTPase 1 (RAC1); type 2 diabetes mellitus; diabetic neuropathy;
diabetic retinopathy; diabetic nephropathy; diabetic angiopathy of the lower extremities; diabetic
foot syndrome

1. Introduction

Over 500 million people worldwide are affected by type 2 diabetes (T2D), which, along
with obesity, is the second most frequent endocrinological disease [1]. About 7.8 million
people in the Russian Federation have diabetes, with T2D accounting for the majority
of cases [1]. Type 2 diabetes is associated with a multitude of disorders in lipid, protein,
nucleotide metabolism, and redox homeostasis, leading to long-term complications that
made T2D the ninth cause of mortality in 2020 [2]. In particular, impaired redox homeostasis
is thought to be an important pathological condition underlying oxidative stress that
contributes to the initiation and progression of type 2 diabetes [3–5]. Hyperglycemia, an
increase in reactive oxygen species (ROS) production with cytosolic NADPH oxidase, and
a deficiency in key antioxidants such as reduced glutathione (GSH) are considered to be
the major damaging factors that are responsible for the structural and functional alterations
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in the retina, kidneys, nerves, and vessels in diabetics that ultimately lead to complications
such as diabetic retinopathy (DR), diabetic nephropathy (DF), diabetic neuropathy (DN),
diabetic angiopathy of the lower extremities (DA), and diabetic foot syndrome (DFS) [6–9].

The NADPH oxidase (NOX) enzyme is primarily responsible for the generation of
superoxide anion radicals, which accumulate excessively in the cell and cause oxidative
stress [10]. Once generated, these superoxides are rapidly dismutated into hydrogen
peroxide, either spontaneously or via superoxide dismutase [11]. Other ROS are generated
through the reactions of the superoxide radical with nitric oxide to form peroxynitrite,
the peroxidase-catalyzed formation of hypochlorous acid from hydrogen peroxide, and
the iron-catalyzed Fenton’s reaction which produces hydroxyl radicals [12,13]. Notably,
increased ROS generation was found to interact with the proteins of the insulin signaling
pathway, contributing to insulin resistance [14,15] and triggering the dysfunction and
apoptosis of pancreatic beta-cells [16].

The NOX enzyme represents a multi-subunit complex consisting of several proteins,
among which small GTPases, such as RAC1 and RAC2, are known to activate the holoen-
zyme [17]. A total of two experimental studies [18,19] have shown that the transcriptional
activation of the RAC1 gene in diabetic mice has been found to contribute to mitochondrial
damage and retinopathy, suggesting at least a causal role of this gene in diabetic complica-
tions. We have recently observed that the single nucleotide polymorphisms (SNP) of the
RAC1 gene are tightly associated with impaired redox homeostasis, an increased risk of type
2 diabetes, and hyperglycemia [20]. Pursuing further interests in the role of this gene within
T2D, the purpose of the present study was to investigate whether the polymorphisms of
the RAC1 gene contribute to the development of common diabetic complications, such as
retinopathy, nephropathy, neuropathy, angiopathy of the lower extremities, and diabetic
foot syndrome.

2. Materials and Methods
2.1. Study Participants and Diagnosis of Type 2 Diabetes

The Regional Ethics Review Committee of Kursk State Medical University gave its
approval to the study protocol, which complied with the ethical standards of the Declaration
of Helsinki. Before being enrolled in the study, each subject provided their written informed
consent. A total of 1470 patients with type 2 diabetes were included in the study. Most of the
study participants were Russians from the Kursk region (central Russia). All were patients
that had been admitted to the Endocrinology Division of the Kursk Emergency Hospital
between November 2016 and October 2019. The following WHO criteria [21,22] were
used to verify the T2D diagnosis: a fasting blood glucose (FBG) level of ≥7.0 mmol/L, a
random blood glucose level of ≥11.1 mmol/L, and/or a glycated hemoglobin (HbA1c) level
of ≥6.5%. The criteria for the inclusion of T2D patients in the study were: (1) a physician-
verified diagnosis of T2D, confirmed by clinical, laboratory, and instrumental investigations;
(2) an age of over 35 years old; and (3) written informed consent to participate in the
study. The criteria for excluding patients from the study were the following: (1) an age
of less than 35 years; (2) an absence of written informed consent to participate in the
study; and (3) advanced-stage diabetes or the decompensation of diabetes, diabetic coma,
immune-mediated or idiopathic type 1 diabetes, gestational diabetes, MODY types of
diabetes, diseases of the exocrine pancreas, such as pancreatitis, pancreatic trauma, or
pancreatectomy, pancreatic tumors, hereditary diseases affecting the pancreas, or any other
endocrine disorders. All of the study’s participants completed a questionnaire [23] on the
risk factors of type 2 diabetes.

2.2. Genetic Analysis

Fasted venous blood samples were collected from all the study participants, and
the genomic DNA was purified by a spin column QIAamp Blood Mini Kit with the use
of a robotic workstation QiaCube (QIAGEN, Germany). In total, six commonly tagged
SNPs of the RAC1 gene, such as rs4724800, rs7784465, rs10951982, rs10238136, rs836478,
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and rs9374, were selected for the study, as described previously [20]. The SNP genotyp-
ing was performed using MALDI-TOF mass spectrometry with the MassArray-4 System
(Agena Bioscience Inc., San Diego, CA, USA). The primer sequences that were used for the
genotyping are available upon request. The genotyping analysis was performed blindly,
with regard to the case–control status to ensure quality control. Repeat genotyping was
performed on approximately 10% of the samples, randomly selected from the T2D group,
and the repeatability test yielded a 100% concordance rate.

2.3. Biochemical Analysis

All the biochemical investigations were performed using fasted whole blood sam-
ples that were collected in standard sterile tubes with lithium heparin, and immediately
centrifuged at 3500 rpm, according to the manufacturer’s instructions (Cell Biolabs, San
Diego, CA, USA; Abcam, Waltham, MA, USA). The plasma samples were aliquoted and
stored at −80 ◦C until their further use. For the determination of oxidized glutathione
(GSSG), the plasma was immediately deproteinized with trichloroacetic acid. The plasma
hydrogen peroxide levels were assessed in 489 T2D patients, whereas the GSSG levels
were measured in 258 diabetics that were recruited at the final study phase (between
March 2019 and October 2019). The GSSG levels were determined by a fluorometric as-
say protocol (GSH/GSSG Ratio Detection Assay Kit II, Abcam, Waltham, MA, USA) that
used a proprietary, non-fluorescent, water-soluble dye that became strongly fluorescent
upon reacting with GSH. The levels of ROS were quantified by fluorometric assay using
the OxiSelect™ In Vitro ROS/RNS Assay Kit (Cell Biolabs, San Diego, CA, USA), which
employed a proprietary quenched fluorogenic probe, dichlorodihydrofluorescin DiOxyQ
(DCFH-DiOxyQ), which is a specific ROS/RNS probe. It was first primed with a quench
removal reagent and subsequently stabilized in a highly reactive DCFH form. In this
reactive state, the ROS and RNS species react with the DCFH, which is rapidly oxidized to
the highly fluorescent 2’,7’-dichlorodihydrofluorescein. The standard curve of H2O2 was
used to quantify the ROS concentrations in the plasma samples. Absorbance at 405 nm
and fluorescence at 480 nm excitation/530 nm emission were measured on a microplate
reader Varioscan Flash (Thermo Fisher Scientific, Waltham, MA, USA). The concentrations
of glycated hemoglobin, the fasting blood glucose in blood plasma were determined with
the use of a semi-automatic biochemical analyzer Clima MC-15 (Ral Tecnica para el Lab-
oratorio, S.A., Barcelona, Spain) and the reagents produced by DIAKON-DS, Moscow,
(Russia). These biochemical and genetic analyses were performed at the Research Institute
for Genetic and Molecular Epidemiology of Kursk State Medical University, Kursk (Russia).

2.4. Statistical and Bioinformatics Analysis

Statistical power was estimated using the genetic association study power calculator
(http://csg.sph.umich.edu/abecasis/gas_power_calculator/, accessed on 12 June 2016).
Based on the sample size of 1470 people with T2D, a sub-group association analysis of the
RAC1 polymorphisms with diabetic complications could detect a genotype relative risk of
1.25–1.50, assuming a 79.1–90.0% power and a 5% type I error (0.05). The chi-square test
was used to compare the genotype frequencies in T2D patients to the values predicted by
the Hardy–Weinberg equilibrium assumption. The association between the RAC1 gene
polymorphisms and diabetic combinations was evaluated by a multiple logistic regression
analysis, with the calculation of odds ratios (OR) and 95% confidence intervals (95%CI)
adjusted for age, sex, and body mass index (BMI). The associations were analyzed using
the SNPStats software [24]. A codominant model was used to present the results in tables.
A p-value of ≤0.05 was selected as statistically significant. To control for the multiple
testing of the SNP-phenotype associations, the calculated p-values were adjusted by the
false discovery rate (FDR). A Q-value of ≤0.05 was considered statistically significant to
interpret the genotype–phenotype associations [25].

The Kolmogorov–Smirnov test was used to determine the normality of the biochemical
parameters. Age and BMI were expressed as means with standard deviations and compared
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between the groups by the Student’s t-test. The non-normally distributed traits (glycated
hemoglobin, fasting blood glucose, hydrogen peroxide, and total glutathione) were ex-
pressed as medians with the first and third quartiles (Q1–Q3) and compared between the
groups with the Kruskal–Wallis test. These statistical calculations were performed using
the STATISTICA for Windows v13.0 package (TIBCO, Palo Alto, CA, USA).

3. Results
3.1. Demographic, Clinical and Laboratory Characteristics of Patients

The demographic, clinical, and laboratory characteristics of the study patients are
shown in Table 1. The majority of the T2D patients had diabetic neuropathy (92.3%) and
diabetic retinopathy (71.2%). Other T2D complications included diabetic angiopathy of the
lower extremities (65.9%), diabetic nephropathy (38.4%), diabetic foot syndrome (7.6%),
and coronary artery disease (32.5%). The patients with the above complications had a
significantly longer duration of T2D (p = 0.001). As can be seen from Table 1, there were
no regularities or trends in the quantitative parameters of redox homeostasis, such as
glutathione or hydrogen peroxide, regardless of the type of diabetes complication.

Table 1. Demographic, clinical, and biochemical characteristics of the study patients.

Baseline Characteristics
T2D Patients (n = 1470)

p-Value *
Without Complication With

Complication

Diabetic retinopathy

Sample size, n (%) 407 (28.8) 1007 (71.2) -

Age, mean ± SD 58.50 ± 11.73 62.99 ± 9.37 <0.0001

Males, n (%) 179 (44.0) 279 (27.7)
<0.0001

Females, n (%) 228 (56.0) 728 (72.3)

Body mass index (kg/m2), mean ± SD 31.65 ± 6.91 32.57 ± 6.55 0.18

Duration of diabetes, median (Q1;Q3) 2.0 (1.0; 8.0) 10.0 (6.0; 16.0) 0.001

HbA1C (%), Me (Q1; Q3) 9.3 (7.9; 11.1) 9.0 (7.7; 10.6) 0.033

FBG (mmol/L), Me (Q1; Q3) 12.8 (10.3; 15.8) 12.0 (9.53; 15.0) 0.001

H2O2 (mmol/L), Me(Q1;Q3) 3.94 (2.70; 5.27) 3.66 (2.58; 4.92) 0.11

GSSG/GSH (mmol/L), Me(Q1;Q3) 2.70 (1.29; 3.90) 1.28 (0.50; 3.74) 0.0036

Diabetic nephropathy

Sample size, n (%) 887 (61.6) 553 (38.4) -

Age, mean ± SD 58.86 ± 10.29 66.11 ± 8.60 <0.0001

Males, n (%) 379 (42.7) 101 (18.3)
<0.0001

Females, n (%) 507 (57.3) 452 (81.7)

Body mass index (kg/m2), mean ± SD 31.62 ± 6.88 33.15 ± 6.29 <0.0001

Duration of diabetes, median (Q1;Q3) 7.0 (2.0; 12.0) 11.0 (6.0; 17.0) <0.0001

HbA1C (%), Me (Q1; Q3) 9.0 (7.7; 10.5) 9.2 (7.8; 11.0) 0.09

FBG (mmol/L), Me (Q1; Q3) 12.0 (9.5; 15.0) 12.6 (10.0; 15.9) 0.026

H2O2 (mmol/L), Me(Q1;Q3) 3.73 (2.62; 5.09) 3.74 (2.66; 4.99) 0.93

GSSG/GSH (mmol/L), Me(Q1;Q3) 1.31 (0.56; 3.77) 1.99 (0.56; 3.90) 0.29

Diabetic neuropathy

Sample size, n (%) 109 (7.7) 1309 (92.3) -

Age, mean ± SD 53.66 ± 12.99 62.37 ± 9.76 <0.0001

Males, n (%) 58 (53.21) 401 (30.63)
<0.0001

Females, n (%) 50 (46.79) 908 (69.37)

Body mass index (kg/m2), mean ± SD 29.30 ± 6.24 32.57 ± 6.63 <0.0001

Duration of diabetes, median (Q1;Q3) 1.0 (0.1; 1.0) 10.0 (4.0; 15.0) 0.001

HbA1C (%), Me (Q1; Q3) 9.4 (7.7; 11.3) 9.0 (7.7; 10.8) 0.18

FBG (mmol/L), Me (Q1; Q3) 13.1 (10.0) 12.2 (9.8; 15.2) 0.14

H2O2 (mmol/L), Me(Q1;Q3) 3.98 (3.21; 6.41) 3.72 (2.6; 4.94) 0.013

GSSG/GSH (mmol/L), Me(Q1;Q3) 1.31 (0.29; 3.66) 1.64 (0.57; 3.80) 0.55
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Table 1. Cont.

Baseline Characteristics
T2D Patients (n = 1470)

p-Value *
Without Complication With

Complication

Angiopathy of the lower extremities

Sample size, n (%) 502 (34.1) 968 (65.9) -

Age, mean ± SD 58.33 ± 12.09 63.19 ± 9.27 <0.0001

Males, n (%) 210 (41.8) 272 (28.1)
<0.0001

Females, n (%) 291 (58.2) 696 (71.9)

Body mass index (kg/m2), mean ± SD 31.12 ± 6.51 32.81 ± 6.65 <0.0001

Duration of diabetes, median (Q1;Q3) 5.0 (1.0; 11.0) 10.0 (5.0; 15.0) <0.0001

HbA1C (%), Me (Q1; Q3) 9.2 (7.75; 11.2) 9.0 (7.7; 10.5) 0.054

FBG (mmol/L), Me (Q1; Q3) 12.5 (9.7; 15.6) 12.0 (9.79; 15.0) 0.23

H2O2 (mmol/L), Me(Q1;Q3) 3.70 (2.76; 5.12) 3.72 (2.58; 5.02) 0.58

GSSG/GSH (mmol/L), Me(Q1;Q3) 1.35 (0.56; 3.82) 1.70 (0.51; 3.78) 0.66

Diabetic foot syndrome

Sample size, n (%) 1309 (92.4) 107 (7.6) -

Age, mean ± SD 61.57 ± 10.45 63.35 ± 8.29 0.087

Males, n (%) 424 (32.4) 34 (31.8)
0.89

Females, n (%) 884 (67.6) 73 (68.2)

Body mass index (kg/m2), mean ± SD 32.27 ± 6.67 33.02 ± 6.65 0.26

Duration of diabetes, median (Q1;Q3) 9.0 (3.0; 14.0) 12.0 (6.0; 18.0) 0.0002

HbA1C (%), Me (Q1; Q3) 9.1 (7.7; 10.9) 8.4 (7.5; 10.0) 0.032

FBG (mmol/L), Me (Q1; Q3) 12.4 (9.88; 15.32) 10.9 (8.86; 14.3) 0.012

H2O2 (mmol/L), Me(Q1;Q3) 3.81 (2.73; 5.14) 2.72 (1.95; 4.03) 0.0003

GSSG/GSH (mmol/L), Me(Q1;Q3) 1.41 (0.51; 3.71) 2.83 (1.23; 3.98) 0.051

* Bold is statistically significant p-value.

3.2. Association of RAC1 Gene Polymorphisms with Diabetic Retinopathy

The frequency of the minor allele rs7784465-C was significantly higher in the patients
with DR within the entire group (OR 1.35, 95%CI 1.09–1.68, p = 0.006) and in males (OR 1.52,
95%CI 1.05–2.21, p = 0.032) after a sex-stratified analysis. The alternative allele rs836478-T
was associated with DR in the entire group of patients with DR (OR 1.34, 95%CI 1.14–1.59,
p = 0.0005), in males (OR 1.51, 95%CI 1.15–1.99, p = 0.003), and in females (OR 1.27, 95%CI
1.02–1.57, p = 0.03). The genotype frequencies of the studied SNPs in diabetics with and
without DR are shown in Table 2.

Table 2. Genotype frequencies for the RAC1 gene polymorphisms in T2D patients with and without
diabetic retinopathy (DR).

SNP Genotype
T2D Patients

P (Q) 1 OR (95% CI) 2Without DR
n (%)

With DR
n (%)

Entire Group

rs4724800
A>G

A/A 253 (62.9) 581 (58.2) 0.14
(0.33)

1.00
A/G 127 (31.6) 370 (37.1) 1.28 (0.99–1.65)
G/G 22 (5.5) 47 (4.7) 0.93 (0.54–1.61)

rs7784465
T>C

T/T 280 (70.5) 618 (63.4) 0.034
(0.15)

1.00
T/C 104 (26.2) 317 (32.5) 1.36 (1.04–1.77)
C/C 13 (3.3) 40 (4.1) 1.39 (0.72–2.69)

rs10951982
G>A

G/G 272 (67.5) 624 (62.6) 0.19
(0.38)

1.00
G/A 112 (27.8) 329 (33) 1.27 (0.98–1.66)
A/A 19 (4.7) 43 (4.3) 1.00 (0.56–1.79)

rs10238136
A>T

A/A 374 (95.2) 935 (94.2) 0.51
(0.55)

1.00
A/T 18 (4.6) 57 (5.7) 1.31 (0.75–2.28)
T/T 1 (0.2) 1 (0.1) 0.40 (0.02–6.43)

rs836478
C>T

C/C 144 (35.6) 278 (28.4) 0.0013
(0.023)

1.00
C/T 194 (48) 469 (48) 1.30 (0.99–1.70)
T/T 66 (16.3) 231 (23.6) 1.89 (1.33–2.69)

rs9374
G>A

G/G 275 (67.6) 614 (63) 0.21
(0.38)

1.00
G/A 116 (28.5) 324 (33.3) 1.26 (0.97–1.64)
A/A 16 (3.9) 36 (3.7) 1.02 (0.54–1.92)



Biomedicines 2023, 11, 981 6 of 22

Table 2. Cont.

SNP Genotype
T2D Patients

P (Q) 1 OR (95% CI) 2Without DR
n (%)

With DR
n (%)

Males

rs4724800
A>G

A/A 111 (63.1) 163 (59.5) 0.42
(0.52)

1.00
A/G 53 (30.1) 96 (35) 1.28 (0.84–1.97)
G/G 12 (6.8) 15 (5.5) 0.84 (0.37–1.91)

rs7784465
T>C

T/T 129 (75.4) 167 (63) 0.016
(0.096)

1.00
T/C 37 (21.6) 92 (34.7) 1.93 (1.22–3.06)
C/C 5 (2.9) 6 (2.3) 1.11 (0.32–3.83)

rs10951982
G>A

G/G 121 (68.4) 176 (63.8) 0.28
(0.46)

1.00
G/A 44 (24.9) 87 (31.5) 1.37 (0.88–2.15)
A/A 12 (6.8) 13 (4.7) 0.79 (0.34–1.86)

rs10238136
A>T

A/A 161 (94.7) 257 (93.1) 0.14
(0.34)

1.00
A/T 8 (4.7) 19 (6.9) 1.67 (0.69–4.05)
T/T 1 (0.6) 0 (0) NA

rs836478
C>T

C/C 63 (35.4) 71 (26.4) 0.0051
(0.046)

1.00
C/T 89 (50) 128 (47.6) 1.38 (0.88–2.18)
T/T 26 (14.6) 70 (26) 2.58 (1.43–4.63)

rs9374
G>A

G/G 122 (68.2) 169 (62.8) 0.15
(0.34)

1.00
G/A 46 (25.7) 90 (33.5) 1.43 (0.92–2.22)
A/A 11 (6.2) 10 (3.7) 0.66 (0.26–1.67)

Females

rs4724800
A>G

A/A 142 (62.8) 418 (57.7) 0.31
(0.47)

1.00
A/G 74 (32.7) 274 (37.9) 1.28 (0.93–1.77)
G/G 10 (4.4) 32 (4.4) 1.03 (0.49–2.17)

rs7784465
T>C

T/T 151 (66.8) 451 (63.5) 0.52
(0.55)

1.00
T/C 67 (29.6) 225 (31.7) 1.12 (0.80–1.56)
C/C 8 (3.5) 34 (4.8) 1.49 (0.67–3.32)

rs10951982
G>A

G/G 151 (66.8) 448 (62.2) 0.43
(0.52)

1.00
G/A 68 (30.1) 242 (33.6) 1.22 (0.88–1.69)
A/A 7 (3.1) 30 (4.2) 1.32 (0.56–3.09)

rs10238136
A>T

A/A 213 (95.5) 678 (94.6) 0.70
(0.70)

1.00
A/T 10 (4.5) 38 (5.3) 1.14 (0.56–2.33)
T/T 0 (0) 1 (0.1) NA

rs836478
C>T

C/C 81 (35.8) 207 (29.2) 0.098
(0.34)

1.00
C/T 105 (46.5) 341 (48.1) 1.28 (0.91–1.79)
T/T 40 (17.7) 161 (22.7) 1.59 (1.03–2.46)

rs9374
G>A

G/G 153 (67.1) 445 (63.1) 0.40
(0.52)

1.00
G/A 70 (30.7) 234 (33.2) 1.17 (0.85–1.63)
A/A 5 (2.2) 26 (3.7) 1.65 (0.62–4.39)

1 p-value (FDR-adjusted p-value) adjusted for age, sex, and BMI. 2 Odds ratio with 95% confidence intervals
adjusted for age, sex, and BMI (codominant genetic model). Bold is statistically significant P- and Q-values.

The genotypes rs7784465-T/C and rs836478-T/T were associated with the risk of
diabetic retinopathy in the entire group of diabetics. A sex-stratified association analysis
showed that the polymorphisms rs7784465 and rs836478 were associated with an increased
risk for DR in males, whereas in females, no difference in the genotype frequencies for
these SNPs was seen between the patients with and without DR. The estimated frequencies
of the RAC1 haplotypes in T2D patients with and without DR are shown in Table 3.

Table 3. Estimated common haplotype frequencies of RAC1 gene in T2D patients with and without
diabetic retinopathy.

H
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SNPs
T2D Patients

OR (95% CI) 2 P (Q) 3

rs
47

24
80

0

rs
77

84
46

5

rs
10

95
19

82

rs
10

23
81

36

rs
83

64
78

rs
93

74 Without DR With DR

Haplotype Frequency 1

Entire group
Global haplotype association p-value: 0.077

H1 A T G A C G 0.5215 0.4644 1.00 —
H2 A C G A T G 0.1457 0.1878 1.46 (1.14–1.87) 0.003 (0.034)
H3 G T A A T A 0.1572 0.1755 1.30 (1.02–1.66) 0.036 (0.28)
H4 A T G A T G 0.0733 0.0762 1.25 (0.89–1.77) 0.20 (0.46)
H5 G T G A C G 0.0290 0.0221 0.94 (0.54–1.63) 0.81 (0.93)
H6 G T A A C A 0.0220 0.0202 1.05 (0.55–2.03) 0.88 (0.96)
H7 A T G T T G 0.0181 0.0168 1.30 (0.66–2.56) 0.45 (0.74)
rare * * * * * * 0.0152 0.0063 1.18 (0.70–1.99) 0.54 (0.78)
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Table 3. Cont.
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74 Without DR With DR

Haplotype Frequency 1

Males
Global haplotype association p-value: 0.009

H1 A T G A C G 0.5326 0.4438 1.00 —
H2 A C G A T G 0.111 0.1839 2.32 (1.46–3.67) 0.0004 (0.009)
H3 G T A A T A 0.1732 0.1689 1.14 (0.78–1.66) 0.50 (0.77)
H4 A T G A T G 0.0800 0.1033 1.50 (0.90–2.51) 0.12 (0.39)
H5 G T G A C G 0.0253 0.0213 1.03 (0.41–2.56) 0.95 (0.96)
H6 G T A A C A 0.0138 0.0220 2.08 (0.63–6.90) 0.23 (0.48)
H7 A T G T T G 0.0249 0.0240 1.13 (0.48–2.70) 0.78 (0.93)
H8 A C G A C G 0.0241 0.0056 0.20 (0.04–1.03) 0.06 (0.29)
rare * * * * * * 0.0033 0.0030 2.19 (0.74–6.49) 0.16 (0.46)

Females
Global haplotype association p-value: 0.22

H1 A T G A C G 0.4478 0.4745 1.00 —
H2 A C G A T G 0.1659 0.1791 1.01 (0.74–1.38) 0.96 (0.96)
H3 G T A A T A 0.1956 0.1582 0.75 (0.56–1.02) 0.07 (0.29)
H4 A T G A T G 0.0765 0.0734 0.88 (0.56–1.39) 0.58 (0.78)
H5 G T G A C G 0.0349 0.0203 0.56 (0.29–1.09) 0.09 (0.33)
H6 G T A A C A 0.0244 0.0268 0.85 (0.37–1.92) 0.69 (0.88)
H7 A T G T T G 0.0059 0.0180 0.57 (0.21–1.55) 0.27 (0.52)
H8 A C G A C G 0.0195 0.0135 2.38 (0.63–9.02) 0.20 (0.46)
rare * * * * * * 0.0121 0.0063 1.49 (0.66–3.38) 0.34 (0.60)

1 Rare haplotypes with frequency < 0.01 are not shown and indicated as “*”. 2 Odds ratio with 95% confidence
intervals adjusted for age, sex, and BMI (codominant genetic model). 3 p-value (FDR-adjusted p-value) adjusted
for age, sex, and BMI. Bold is statistically significant P- and Q-values.

The frequency of the haplotypes H2 rs4724800A-rs7784465C-rs10951982G-rs10238136A-
rs836478T-rs9374G and H3 rs4724800G-rs7784465T-rs10951982A-rs10238136A-rs836478T-rs9374A
was significantly higher in the patients with DR. A sex-stratified analysis showed a much
stronger association of the haplotype H2 rs4724800A-rs7784465C-rs10951982G-rs10238136A-
rs836478T-rs9374G with DR in diabetic males (OR 2.32, 95CI 1.46–3.67, p = 0.0004).

3.3. Polymorphisms of the RAC1 Gene and Diabetic Nephropathy

The minor allele rs836478-T was associated with DNF exclusively in males (OR 1.43,
95% CI 1.05–1.96, p = 0.025). The genotype frequencies for the studied SNPs in the diabetics
with and without DNF are shown in Table 4.

Table 4. Genotype frequencies for the studied gene polymorphisms among T2D patients with and
without diabetic nephropathy.

RAC1
SNP ID

Genotype
T2D Patients

P (Q) 1 OR (95% CI) 2Without DNF
n (%)

With DNF
n (%)

Entire group

rs4724800
A>G

A/A 520 (59.5) 322 (58.4) 0.42
(0.74)

1.00
A/G 315 (36) 197 (35.8) 1.04 (0.82–1.33)
G/G 39 (4.5) 32 (5.8) 1.44 (0.84–2.47)

rs7784465
T>C

T/T 565 (65.8) 347 (64.6) 0.99
(0.99)

1.00
T/C 261 (30.4) 169 (31.5) 1.00 (0.78–1.30)
C/C 33 (3.8) 21 (3.9) 1.04 (0.56–1.91)

rs10951982
G>A

G/G 557 (63.7) 346 (63) 0.31
(0.74)

1.00
G/A 284 (32.5) 173 (31.5) 0.99 (0.77–1.27)
A/A 33 (3.8) 30 (5.5) 1.57 (0.88–2.81)

rs10238136
A>T

A/A 818 (94.1) 515 (95) 0.66
(0.85)

1.00
A/T 50 (5.8) 26 (4.8) 0.81 (0.48–1.37)
T/T 1 (0.1) 1 (0.2) 1.84 (0.11–30.29)

rs836478
C>T

C/C 262 (30.5) 162 (29.6) 0.60
(0.83)

1.00
C/T 418 (48.7) 260 (47.5) 1.04 (0.79–1.36)
T/T 179 (20.8) 125 (22.9) 1.18 (0.85–1.63)

rs9374
G>A

G/G 544 (63.5) 352 (64.2) 0.17
(0.74)

1.00
G/A 286 (33.4) 169 (30.8) 0.94 (0.73–1.21)
A/A 27 (3.1) 27 (4.9) 1.74 (0.93–3.25)
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Table 4. Cont.

RAC1
SNP ID

Genotype
T2D Patients

P (Q) 1 OR (95% CI) 2Without DNF
n (%)

With DNF
n (%)

Males

rs4724800
A>G

A/A 218 (58.8) 62 (61.4) 0.91
(0.96)

1.00
A/G 130 (35) 33 (32.7) 0.90 (0.55–1.48)
G/G 23 (6.2) 6 (5.9) 0.91 (0.34–2.43)

rs7784465
T>C

T/T 246 (68.5) 62 (63.3) 0.56
(0.83)

1.00
T/C 103 (28.7) 34 (34.7) 1.32 (0.80–2.16)
C/C 10 (2.8) 2 (2) 1.03 (0.21–5.01)

rs10951982
G>A

G/G 237 (63.4) 66 (66) 0.40
(0.74)

1.00
G/A 118 (31.6) 27 (27) 0.78 (0.47–1.32)
A/A 19 (5.1) 7 (7) 1.50 (0.58–3.90)

rs10238136
A>T

A/A 346 (94) 93 (93) 0.28
(0.74)

1.00
A/T 22 (6) 6 (6) 1.15 (0.44–3.03)
T/T 0 (0) 1 (1) NA

rs836478
C>T

C/C 115 (31.2) 21 (21.2) 0.056
(0.74)

1.00
C/T 179 (48.5) 50 (50.5) 1.70 (0.95–3.04)
T/T 75 (20.3) 28 (28.3) 2.16 (1.12–4.17)

rs9374
G>A

G/G 233 (63) 64 (64.7) 0.29
(0.74)

1.00
G/A 121 (32.7) 28 (28.3) 0.80 (0.47–1.33)
A/A 16 (4.3) 7 (7.1) 1.81 (0.67–4.86)

Females

rs4724800
A>G

A/A 302 (60) 260 (57.8) 0.22
(0.74)

1.00
A/G 185 (36.8) 164 (36.4) 1.10 (0.83–1.46)
G/G 16 (3.2) 26 (5.8) 1.80 (0.91–3.57)

rs7784465
T>C

T/T 319 (63.8) 285 (64.9) 0.82
(0.92)

1.00
T/C 158 (31.6) 135 (30.8) 0.91 (0.68–1.23)
C/C 23 (4.6) 19 (4.3) 1.02 (0.52–1.99)

rs10951982
G>A

G/G 320 (64) 280 (62.4) 0.45
(0.74)

1.00
G/A 166 (33.2) 146 (32.5) 1.07 (0.80–1.44)
A/A 14 (2.8) 23 (5.1) 1.57 (0.76–3.25)

rs10238136
A>T

A/A 472 (94.2) 422 (95.5) 0.32
(0.74)

1.00
A/T 28 (5.6) 20 (4.5) 0.71 (0.38–1.31)
T/T 1 (0.2) 0 (0) NA

rs836478
C>T

C/C 147 (30) 141 (31.5) 0.77
(0.92)

1.00
C/T 239 (48.8) 210 (46.9) 0.90 (0.65–1.23)
T/T 104 (21.2) 97 (21.6) 0.97 (0.66–1.42)

rs9374
G>A

G/G 311 (63.9) 288 (64.1) 0.44
(0.74)

1.00
G/A 165 (33.9) 141 (31.4) 0.99 (0.74–1.33)
A/A 11 (2.3) 20 (4.5) 1.67 (0.75–3.73)

1 p-value (FDR-adjusted p-value) adjusted for age, sex, and BMI. 2 Odds ratio with 95% confidence intervals
adjusted for age, sex, and BMI (codominant genetic model). Bold is statistically significant P- and Q-values.

As can be seen from Table 4, the polymorphism rs836478 was associated with the risk
of DNF in males in the codominant model. However, the rs836478-C/T-T/T genotypes of
RAC1 were found to be associated with an increased risk of diabetic nephropathy in male
diabetics (OR 1.84, 95% CI 1.06–3.19, p = 0.024) in the dominant model. The other SNPs of
the RAC1 gene showed no significant associations with a DNF risk. A haplotype analysis
(Supplementary Table S1) revealed that none of the RAC1 haplotypes were associated with
diabetic nephropathy.

3.4. RAC1 Gene Polymorphisms and the Risk of Diabetic Neuropathy

The frequencies of the minor alleles rs7784465-C (OR 1.80, 95% CI 1.17–2.75, p = 0.007)
and rs836478-T (OR 1.35, 95% CI 1.02–1.80, p = 0.037) were significantly higher in the
patients with DN compared to the patients without DN. The allele rs7784465-C was also
associated with DN in females (OR 2.02, 95% CI 1.08–3.76, p = 0.028). The genotype
frequencies of the RAC1 gene polymorphisms among the T2D patients with and without
diabetic neuropathy are given in Table 5.
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Table 5. Genotype frequencies for the studied gene polymorphisms among T2D patients with and
without diabetic neuropathy.

RAC1
SNP ID Genotype

T2D Patients

P (Q) 1 OR (95% CI) 2Without DN
n (%)

With DN
n (%)

Entire group

rs4724800
A>G

A/A 69 (65.1) 766 (59.1) 0.62
(0.73)

1.00
A/G 33 (31.1) 466 (35.9) 1.20 (0.76–1.87)
G/G 4 (3.8) 65 (5) 1.44 (0.49–4.26)

rs7784465
T>C

T/T 83 (79) 817 (64.3) 0.008
(0.13)

1.00
T/C 19 (18.1) 403 (31.7) 2.16 (1.27–3.67)
C/C 3 (2.9) 50 (3.9) 1.99 (0.57–6.96)

rs10951982
G>A

G/G 74 (69.2) 821 (63.4) 0.49
(0.73)

1.00
G/A 27 (25.2) 418 (32.3) 1.29 (0.80–2.07)
A/A 6 (5.6) 56 (4.3) 0.83 (0.33–2.11)

rs10238136
A>T

A/A 93 (91.2) 1219 (94.7) 0.29
(0.54)

1.00
A/T 9 (8.8) 66 (5.1) 0.53 (0.24–1.14)
T/T 0 (0) 2 (0.2) NA

rs836478
C>T

C/C 40 (37.4) 380 (29.7) 0.097
(0.44)

1.00
C/T 51 (47.7) 616 (48.2) 1.36 (0.86–2.15)
T/T 16 (14.9) 282 (22.1) 1.94 (1.04–3.64)

rs9374
G>A

G/G 75 (69.4) 813 (63.7) 0.65
(0.73)

1.00
G/A 29 (26.9) 415 (32.5) 1.24 (0.78–1.97)
A/A 4 (3.7) 48 (3.8) 1.15 (0.38–3.47)

Males

rs4724800
A>G

A/A 39 (68.4) 235 (59.6) 0.18
(0.46)

1.00
A/G 17 (29.8) 133 (33.8) 1.29 (0.68–2.45)
G/G 1 (1.8) 26 (6.6) 4.76 (0.58–38.95)

rs7784465
T>C

T/T 42 (76.4) 254 (66.5) 0.33
(0.54)

1.00
T/C 12 (21.8) 118 (30.9) 1.61 (0.79–3.29)
C/C 1 (1.8) 10 (2.6) 2.20 (0.26–19.02)

rs10951982
G>A

G/G 40 (70.2) 256 (64.5) 0.57
(0.73)

1.00
G/A 15 (26.3) 118 (29.7) 1.17 (0.60–2.28)
A/A 2 (3.5) 23 (5.8) 2.12 (0.44–10.23)

rs10238136
A>T

A/A 51 (92.7) 368 (93.9) 0.93
(0.93)

1.00
A/T 4 (7.3) 23 (5.9) 0.87 (0.27–2.84)
T/T 0 (0) 1 (0.3) NA

rs836478
C>T

C/C 21 (36.2) 111 (28.5) 0.095
(0.44)

1.00
C/T 30 (51.7) 189 (48.5) 1.39 (0.72–2.66)
T/T 7 (12.1) 90 (23.1) 2.74 (1.05–7.15)

rs9374
G>A

G/G 40 (69) 250 (63.9) 0.32
(0.54)

1.00
G/A 17 (29.3) 121 (30.9) 1.06 (0.56–2.02)
A/A 1 (1.7) 20 (5.1) 3.99 (0.47–33.53)

Females

rs4724800
A>G

A/A 30 (61.2) 531 (58.8) 0.69
(0.73)

1.00
A/G 16 (32.6) 333 (36.9) 1.12 (0.59–2.11)
G/G 3 (6.1) 39 (4.3) 0.62 (0.18–2.17)

rs7784465
T>C

T/T 41 (82) 563 (63.4) 0.014
(0.13)

1.00
T/C 7 (14) 285 (32.1) 3.01 (1.31–6.91)
C/C 2 (4) 40 (4.5) 1.88 (0.41–8.72)

rs10951982
G>A

G/G 34 (68) 565 (62.9) 0.14
(0.46)

1.00
G/A 12 (24) 300 (33.4) 1.44 (0.72–2.85)
A/A 4 (8) 33 (3.7) 0.39 (0.13–1.20)

rs10238136
A>T

A/A 42 (89.4) 851 (95.1) 0.16
(0.46)

1.00
A/T 5 (10.6) 43 (4.8) 0.34 (0.12–0.93)
T/T 0 (0) 1 (0.1) NA

rs836478
C>T

C/C 19 (38.8) 269 (30.3) 0.55
(0.73)

1.00
C/T 21 (42.9) 427 (48.1) 1.38 (0.72–2.66)
T/T 9 (18.4) 192 (21.6) 1.45 (0.63–3.34)

rs9374
G>A

G/G 35 (70) 563 (63.6) 0.23
(0.52)

1.00
G/A 12 (24) 294 (33.2) 1.48 (0.75–2.93)
A/A 3 (6) 28 (3.2) 0.46 (0.13–1.64)

1 p-value (FDR-adjusted p-value) adjusted for age, sex, and BMI. 2 Odds ratio with 95% confidence intervals
adjusted for age, sex, and BMI (codominant genetic model). Bold is statistically significant P- and Q-values.
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The genotype rs7784465-T/C of RAC1 was associated with an increased risk of DN
in the entire group of T2D patients and diabetic females. As can be seen from Table 6,
the haplotype H2 rs4724800A-rs7784465C-rs10951982G-rs10238136A-rs836478T-rs9374G
and the minor alleles rs7784465-C and rs836478-T were associated with an increased risk
of DN in both diabetic males and females. Interestingly, the haplotype H5 rs4724800G-
rs7784465T-rs10951982G-rs10238136A-rs836478C-rs9374G showed an association with an
increased risk of DN only in males. Meanwhile, the haplotype H7 rs4724800A-rs7784465T-
rs10951982G-rs10238136T-rs836478T-rs9374G possessed a protective effect against the DN
risk in diabetic females.

Table 6. Estimated common haplotype frequencies of RAC1 gene in T2D patients with and without
diabetic neuropathy.
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Haplotype Frequency 1

Entire group
Global haplotype association p-value: 0.036

H1 A T G A C G 0.5517 0.4750 1.00 —
H2 A C G A T G 0.0999 0.1815 2.22 (1.34–3.68) 0.0019 (0.02)
H3 G T A A T A 0.1608 0.1713 1.20 (0.78–1.82) 0.41 (0.72)
H4 A T G A T G 0.0889 0.0744 1.11 (0.63–1.94) 0.72 (0.95)
H5 G T G A C G 0.0178 0.0237 1.37 (0.45–4.15) 0.58 (0.81)
H6 G T A A C A 0.0105 0.0220 2.53 (0.59–10.85) 0.21 (0.60)
H7 A T G T T G 0.0344 0.0155 0.58 (0.23–1.42) 0.23 (0.60)
rare * * * * * * 0.0106 0.0085 0.95 (0.40–2.26) 0.90 (0.96)

Males
Global haplotype association p-value: 0.19

H1 A T G A C G 0.5715 0.4628 1.00 —
H2 A C G A T G 0.1015 0.1637 2.32 (1.10–4.92) 0.028 (0.15)
H3 G T A A T A 0.1541 0.1747 1.52 (0.83–2.77) 0.17 (0.60)
H4 A T G A T G 0.0990 0.0941 1.33 (0.62–2.84) 0.47 (0.76)
H5 G T G A C G 0.0000 0.0243 2.41 (1.28–6.18) <0.0001 (0.002)
H6 G T A A C A 0.0097 0.0202 2.49 (0.31–20.32) 0.39 (0.72)
H7 A T G T T G 0.0247 0.0252 1.52 (0.39–5.98) 0.55 (0.81)
rare * * * * * * 0.0106 0.0020 1.23 (0.25–6.07) 0.80 (0.96)

Females
Global haplotype association p-value: 0.047

H1 A T G A C G 0.5290 0.4807 1.00 —
H2 A C G A T G 0.0968 0.1892 2.13 (1.05–4.30) 0.036 (0.15)
H3 G T A A T A 0.1686 0.1702 0.97 (0.53–1.76) 0.91 (0.96)
H4 A T G A T G 0.0759 0.0661 0.94 (0.40–2.21) 0.88 (0.96)
H5 G T G A C G 0.0374 0.0230 0.58 (0.18–1.88) 0.36 (0.72)
H6 G T A A C A 0.0114 0.0222 2.36 (0.30–18.53) 0.41 (0.72)
H7 A T G T T G 0.0477 0.0114 0.20 (0.06–0.66) 0.009 (0.05)
rare * * * * * * 0.0000 0.0069 1.01 (0.29–3.55) 0.99 (0.99)

1 Rare haplotypes with frequency < 0.01 are not shown and indicated as “*”. 2 Odds ratio with 95% confidence
intervals adjusted for age, sex, and BMI (codominant genetic model). 3 p-value (FDR-adjusted p-value) adjusted
for age, sex, and BMI. Bold is statistically significant P- and Q-values.

3.5. The Link between RAC1 Gene Polymorphisms to Diabetic Angiopathy of the Lower Extremities
and Diabetic Foot Syndrome

The minor allele rs10238136-T was found to be associated with diabetic angiopathy
of the lower extremities in females (OR 3.47, 95%CI 1.42–8.46, p = 0.004). The genotype
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frequencies for the RAC1 gene polymorphisms among the T2D patients with and without
diabetic angiopathy of the lower extremities are given in Table 7.

Table 7. Genotype frequencies for the studied RAC1 gene polymorphisms among T2D patients with
and without diabetic angiopathy of lower extremities.

RAC1
SNP ID Genotype

T2D Patients
P (Q) 1 OR (95% CI) 2Without DA

n (%)
With DA

n (%)

Entire group

rs4724800
A>G

A/A 293 (59.4) 552 (57.4) 0.54
(0.94)

1.00
A/G 173 (35.1) 365 (37.9) 1.13 (0.89–1.43)
G/G 27 (5.5) 45 (4.7) 0.93 (0.55–1.56)

rs7784465
T>C

T/T 312 (65) 587 (62.7) 0.08
(0.36)

1.00
T/C 142 (29.6) 316 (33.8) 1.20 (0.93–1.54)
C/C 26 (5.4) 33 (3.5) 0.65 (0.37–1.13)

rs10951982
G>A

G/G 313 (63.2) 596 (62.3) 0.94
(0.94)

1.00
G/A 161 (32.5) 321 (33.5) 1.03 (0.81–1.31)
A/A 21 (4.2) 40 (4.2) 1.09 (0.62–1.94)

rs10238136
A>T

A/A 472 (96.5) 887 (93.8) 0.02
(0.18)

1.00
A/T 16 (3.3) 58 (6.1) 2.16 (1.20–3.87)
T/T 1 (0.2) 1 (0.1) 0.45 (0.03–7.19)

rs836478
C>T

C/C 149 (30.6) 271 (28.6) 0.20
(0.60)

1.00
C/T 243 (49.9) 459 (48.4) 1.03 (0.79–1.34)
T/T 95 (19.5) 218 (23) 1.31 (0.95–1.81)

rs9374
G>A

G/G 311 (63.5) 592 (62.6) 0.88
(0.94)

1.00
G/A 159 (32.5) 322 (34) 1.05 (0.82–1.34)
A/A 20 (4.1) 32 (3.4) 0.93 (0.51–1.70)

Males

rs4724800
A>G

A/A 123 (60) 157 (57.7) 0.87
(0.94)

1.00
A/G 72 (35.1) 102 (37.5) 1.09 (0.74–1.62)
G/G 10 (4.9) 13 (4.8) 1.17 (0.47–2.93)

rs7784465
T>C

T/T 131 (65.5) 160 (60.1) 0.031
(0.19)

1.00
T/C 57 (28.5) 104 (39.1) 1.56 (1.04–2.33)
C/C 12 (6) 2 (0.8) 0.16 (0.03–1.02)

rs10951982
G>A

G/G 130 (62.8) 171 (63.6) 0.91
(0.94)

1.00
G/A 68 (32.9) 86 (32) 0.94 (0.63–1.41)
A/A 9 (4.3) 12 (4.5) 1.15 (0.44–3.02)

rs10238136
A>T

A/A 192 (94.1) 249 (94) 0.27
(0.69)

1.00
A/T 11 (5.4) 16 (6) 1.13 (0.50–2.57)
T/T 1 (0.5) 0 (0) NA

rs836478
C>T

C/C 56 (27.4) 73 (27) 0.94
(0.94)

1.00
C/T 104 (51) 136 (50.4) 0.99 (0.64–1.55)
T/T 44 (21.6) 61 (22.6) 1.08 (0.63–1.86)

rs9374
G>A

G/G 130 (63.1) 172 (63.9) 0.91
(0.94)

1.00
G/A 68 (33) 86 (32) 0.94 (0.63–1.41)
A/A 8 (3.9) 11 (4.1) 1.17 (0.42–3.24)

Females

rs4724800
A>G

A/A 170 (59) 395 (57.2) 0.48
(0.94)

1.00
A/G 101 (35.1) 263 (38.1) 1.16 (0.86–1.56)
G/G 17 (5.9) 32 (4.6) 0.83 (0.45–1.56)

rs7784465
T>C

T/T 181 (64.6) 427 (63.7) 0.92
(0.94)

1.00
T/C 85 (30.4) 212 (31.6) 1.05 (0.77–1.44)
C/C 14 (5) 31 (4.6) 0.93 (0.48–1.83)

rs10951982
G>A

G/G 183 (63.5) 425 (61.8) 0.86
(0.94)

1.00
G/A 93 (32.3) 235 (34.2) 1.09 (0.80–1.47)
A/A 12 (4.2) 28 (4.1) 1.08 (0.53–2.19)

rs10238136
A>T

A/A 280 (98.2) 638 (93.7) 0.0019
(0.034)

1.00
A/T 5 (1.8) 42 (6.2) 4.14 (1.60–10.69)
T/T 0 (0) 1 (0.2) NA

rs836478
C>T

C/C 93 (32.9) 198 (29.2) 0.12
(0.43)

1.00
C/T 139 (49.1) 323 (47.6) 1.04 (0.75–1.44)
T/T 51 (18) 157 (23.2) 1.48 (0.98–2.23)

rs9374
G>A

G/G 181 (63.7) 420 (62) 0.64
(0.94)

1.00
G/A 91 (32) 236 (34.9) 1.12 (0.83–1.53)
A/A 12 (4.2) 21 (3.1) 0.83 (0.40–1.76)

1 p-value (FDR-adjusted p-value) adjusted for age, sex, and BMI. 2 Odds ratio with 95% confidence intervals
adjusted for age, sex, and BMI (codominant genetic model). Bold is statistically significant P- and Q-values.
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The genotype rs10238136-A/T was associated with an increased risk of DA in the
entire group and in diabetic females, whereas the genotype rs7784465-T/C was associated
with DA only in males. Meanwhile, the haplotype H7 rs4724800A-rs7784465T-rs10951982G-
rs10238136T-rs836478T-rs9374G (Table 8) showed an association with an increased risk of
DA in females.

Table 8. Estimated common haplotype frequencies of RAC1 gene in T2D patients with and without
diabetic angiopathy of lower extremities.
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SNPs
T2D Patients

OR (95% CI) 2 P (Q) 3

rs
47

24
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0

rs
77

84
46

5

rs
10

95
19

82

rs
10

23
81

36

rs
83

64
78

rs
93

74
Without DA With

DA

Haplotype Frequency 1

Entire group
Global haplotype association p-value: 0.53

H1 A T G A C G 0.4869 0.4595 1.00 —
H2 A C G A T G 0.1665 0.1831 1.13 (0.89–1.42) 0.31 (0.67)
H3 G T A A T A 0.1601 0.1776 1.20 (0.95–1.52) 0.12 (0.67)
H4 A T G A T G 0.0757 0.0756 1.00 (0.72–1.38) 0.99 (0.99)
H5 G T G A C G 0.0241 0.0238 1.12 (0.63–1.98) 0.70 (0.86)
H6 G T A A C A 0.0212 0.0210 0.78 (0.42–1.43) 0.41 (0.67)
H7 A T G T T G 0.0123 0.0181 1.78 (0.84–3.76) 0.13 (0.67)
H8 A C G A C G 0.0146 0.0115 0.74 (0.33–1.66) 0.46 (0.67)
rare * * * * * * 0.0099 0.0026 0.93 (0.55–1.59) 0.79 (0.86)

Males
Global haplotype association p-value: 0.83

H1 A T G A C G 0.4889 0.4569 1.00 —
H2 A C G A T G 0.1775 0.1808 1.05 (0.71–1.53) 0.82 (0.86)
H3 G T A A T A 0.1736 0.1908 1.16 (0.80–1.70) 0.44 (0.67)
H4 A T G A T G 0.0634 0.0810 1.28 (0.75–2.20) 0.37 (0.67)
H5 G T G A C G 0.0202 0.0260 1.50 (0.58–3.87) 0.40 (0.67)
H6 A T G T T G 0.0209 0.0158 0.67 (0.24–1.82) 0.43 (0.67)
rare * * * * * * 0.0058 0.0121 0.88 (0.46–1.68) 0.70 (0.86)

Females
Global haplotype association p-value: 0.078

H1 A T G A C G 0.4904 0.4615 1.00 —
H2 A C G A T G 0.1576 0.1838 1.15 (0.86–1.53) 0.36 (0.67)
H3 G T A A T A 0.1473 0.1726 1.27 (0.94–1.72) 0.12 (0.67)
H4 A T G A T G 0.0834 0.0731 0.83 (0.55–1.25) 0.38 (0.67)
H5 G T G A C G 0.0285 0.0220 0.83 (0.42–1.63) 0.58 (0.80)
H6 G T A A C A 0.0301 0.0251 0.63 (0.31–1.27) 0.2 (0.67)
H7 A T G T T G 0.0057 0.0186 4.63 (1.27–16.84) 0.02 (0.44)
H8 A C G A C G 0.0186 0.0115 0.65 (0.24–1.71) 0.38 (0.67)
rare * * * * * * 0.0193 0.0034 1.11 (0.56–2.21) 0.76 (0.86)

1 Rare haplotypes with frequency < 0.01 are not shown. 2 Odds ratio with 95% confidence intervals adjusted for
age, sex, and BMI (codominant genetic model). 3 p-value (FDR-adjusted p-value) adjusted for age, sex, and BMI.
Bold is statistically significant P- and Q-values.

As can be seen from Supplementary Table S2, none of the studied SNPs of the RAC1
gene showed an association with the risk of diabetic foot syndrome. However, the minor
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allele rs10238136-T (OR 3.67, 95%CI 1.48–9.10, p = 0.016) and haplotype H6 rs4724800A-
rs7784465T-rs10951982G-rs10238136T-rs836478T-rs9374G (Table 9) were associated with
diabetic foot syndrome in males.

Table 9. Estimated common haplotype frequencies of RAC1 gene in T2D patients with and without
diabetic foot syndrome.
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DFS With DFS

Haplotype Frequency 1

Entire group
Global haplotype association p-value: 0.12

H1 A T G A C G 0.4642 0.4798 1.00 —
H2 A C G A T G 0.1754 0.2227 1.23 (0.85–1.78) 0.26 (0.90)
H3 G T A A T A 0.1739 0.1467 0.82 (0.54–1.25) 0.36 (0.90)
H4 A T G A T G 0.0781 0.0477 0.56 (0.28–1.12) 0.10 (0.55)
H5 G T G A C G 0.0239 0.0188 0.70 (0.24–2.08) 0.52 (0.94)
H6 G T A A C A 0.0205 0.0286 1.25 (0.47–3.35) 0.65 (0.94)
H7 A T G T T G 0.0153 0.0341 2.07 (0.91–4.70) 0.083 (0.55)
H8 A C G A C G 0.0141 NA NA NA
rare * * * * * * 0.0055 0.0022 0.67 (0.23–1.91) 0.45 (0.90)

Males
Global haplotype association p-value: 0.22

H1 A T G A C G 0.4677 0.4379 1.00 —
H2 A C G A T G 0.1819 0.1999 1.19 (0.58–2.43) 0.64 (0.94)
H3 G T A A T A 0.1845 0.1585 1.01 (0.48–2.14) 0.98 (1.0)
H4 A T G A T G 0.0769 0.0750 1.01 (0.36–2.83) 0.98 (1.0)
H5 G T G A C G 0.0252 NA NA NA
H6 A T G T T G 0.0162 0.0632 4.07 (1.20–13.82) 0.025 (0.55)
rare * * * * * * 0.0083 0.0000 1.56 (0.52–4.67) 0.42 (0.90)

Females
Global haplotype association p-value: 0.099

H1 A T G A C G 0.4640 0.4986 1.00 —
H2 A C G A T G 0.1725 0.2325 1.24 (0.81–1.90) 0.33 (0.90)
H3 G T A A T A 0.1688 0.1410 0.80 (0.48–1.35) 0.40 (0.90)
H4 A T G A T G 0.0781 0.0360 0.40 (0.16–1.03) 0.06 (0.55)
H5 G T G A C G 0.0235 0.0274 1.08 (0.37–3.15) 0.89 (1.0)
H6 G T A A C A 0.0261 0.0371 1.24 (0.44–3.51) 0.68 (0.94)
H7 A T G T T G 0.0149 0.0202 1.36 (0.41–4.54) 0.61 (0.94)
H8 A C G A C G 0.0159 NA NA NA
rare * * * * * * 0.0078 0.0000 0.22 (0.03–1.63) 0.14 (0.62)

1 Rare haplotypes with frequency < 0.01 are not shown and indicated as “*”. 2 Odds ratio with 95% confidence
intervals adjusted for age, sex, and BMI (codominant genetic model). 3 p-value (FDR-adjusted p-value) adjusted
for age, sex, and BMI. Bold is statistically significant P- and Q-values.

3.6. The Link between RAC1 Gene Haplotypes and Plasma Parameters of Redox Homeostasis

An analysis of the relationship between the genetic and biochemical parameters of
redox homeostasis (Supplementary Table S3) revealed an association of the haplotype
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rs4724800A-rs7784465T-rs10951982G-rs10238136A-rs836478T-rs9374G with increased levels
of ROS in the plasma of diabetics with DR (Diff = 1.02, 95% CI 0.18–1.85, p = 0.017), DNF
(Diff = 1.14, 95% CI 0.26–2.02, p = 0.011) and DN (Diff = 0.90, 95% CI 0.25–1.55, p = 0.0069).
Moreover, DNF patients carrying the same RAC1 haplotype had a lower concentration of
total plasma glutathione (Diff = −1.72, 95% CI −3.01–−0.44, p = 0.0095) compared with
the carriers of the reference haplotype rs4724800A-rs7784465T-rs10951982G-rs10238136A-
rs836478C-rs9374G.

The haplotype rs4724800A-rs7784465C-rs10951982G-rs10238136A-rs836478C-rs9374G was
associated with higher ROS levels in patients with DNF (Diff = 6.82, 95% CI 4.90–8.73, p < 0.0001),
DN (Diff = 5.73, 95% CI 4.44–7.01, p < 0.0001), and DA (Diff = 7.23, 95% CI 5.83–8.62, p <0.0001). In
patients with DFS, the haplotype rs4724800G-rs7784465C-rs10951982A-rs10238136A-rs836478T-
rs9374A was associated with increased ROS (Diff = 4.10, 95% CI 2.52–5.68, p < 0.0001), whereas
the carriers of the haplotypes rs4724800A-rs7784465C-rs10951982G-rs10238136A-rs836478T-
rs9374G (Diff = 1.09, 95% CI 0.29–1.90, p = 0.012) and rs4724800G-rs7784465T-rs10951982A-
rs10238136A-rs836478T-rs9374A (Diff = 1.03, 95% CI 0.08–1.98, p = 0.039) had higher levels of
total glutathione in their blood plasma (Supplementary Table S3).

4. Discussion
4.1. Summary of the Study Findings

The present study found, for the first time, that the polymorphisms of the gene encod-
ing Rac family small GTPase 1 (RAC1) in type 2 diabetes are associated with complications
such as diabetic retinopathy, neuropathy, and angiopathy of the lower extremities. However,
the observed associations were sex-specific. In particular, the genotype rs7784465-T/C was
associated with an increased risk of retinopathy and angiopathy of the lower extremities in
males, as well as diabetic neuropathy in females. Furthermore, the polymorphism rs836478
of RAC1 was linked to diabetic retinopathy and nephropathy in males, whereas the poly-
morphism rs10238136 was linked to diabetic angiopathy in females. Figure 1 depicts the
structure of the RAC1 gene, the genomic position of the SNPs, and the haplotype structure of
the gene, as well as summarizing the overall research findings. The RAC1 haplotypes were
found to be associated with DR in males and with DN in females. Furthermore, the RAC1
haplotype rs4724800A-rs7784465C-rs10951982G-rs10238136A-rs836478T-rs9374G showed
an association with DR in males and DN regardless of sex. In addition, the haplotype
rs4724800A-rs7784465T-rs10951982G-rs10238136T-rs836478T-rs9374G was associated with
a 4-fold risk of DA in females and DFS in males. The haplotype rs4724800A-rs7784465T-
rs10951982G-rs10238136A-rs836478T-rs9374G showed an association with the increased
plasma levels of ROS in diabetics with DR, DNF, and DN. The patients with DNF who
carried the above haplotype had lower concentrations of total plasma glutathione. More-
over, the haplotype rs4724800A-rs7784465C-rs10951982G-rs10238136A-rs836478C-rs9374G
was associated with higher ROS levels in patients with DNF, DN, and DA. The haplotype
rs4724800G-rs7784465C-rs10951982A-rs10238136A-rs836478T-rs9374A was correlated with
the increased ROS in patients with DFS, whereas the haplotypes rs4724800A-rs7784465C-
rs10951982G-rs10238136A-rs836478T-rs9374G and rs4724800G-rs7784465T-rs10951982A-
rs10238136A-rs836478T-rs9374A were correlated with the increased levels of total glu-
tathione in the plasma. A functional annotation of the studied SNPs [20] showed that
the minor alleles rs7784465-C, rs10951982-A, rs10238136-T, rs836478-T, and rs9374-A were
associated with the increased expression of the RAC1 gene in various tissues and might
be binding sites for transcription factors (TF). For instance, an analysis of the TF-binding
affinity of the rs836478 polymorphism (which was associated with DNF) with the atSNP
tool [26] (http://atsnp.biostat.wisc.edu/search, accessed on 2 November 2020) has shown
that the minor allele rs836478-T was predicted to create binding sites for 34 TFs, including
FOXC1, FOXD1, PBX1, GATA3, and POU3F3, which are enriched with GO terms that are
related to the development of the nephron epithelium and renal tubules, as assessed by the
STRING database [27] (https://string-db.org/, accessed on 14 December 2022).

http://atsnp.biostat.wisc.edu/search
https://string-db.org/
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Although many hypotheses have been proposed to explain the molecular pathways
underlying diabetic complications, it is widely accepted that glutathione deficiency, the
increased production of reactive oxygen species, and its resulting oxidative stress are the ma-
jor pathological processes responsible for the development of diabetic complications [28–32].

4.2. Diabetic Retinopathy

Diabetic retinopathy is one of the most common complications of diabetes mellitus
and is a major global contributor to vision loss and blindness [33,34]. According to a meta-
analysis of large, population-based studies, the prevalence and progression of diabetic
retinopathy have been linked to the serum levels of HbA1c, total cholesterol, and blood
pressure, but only in about 10% of patients with type 2 diabetes [35], suggesting that
other factors exist that explain the development of diabetic retinopathy in the majority of
diabetics. Numerous studies [18,29,31,36] have shown that oxidative stress plays a key role
in the onset of diabetic retinopathy. RAC1 is required for NADPH oxidase 2, an enzyme that
generates reactive oxygen species. The transcriptional activity of the RAC1 gene may be
regulated through epigenetic mechanisms. In particular, Kowluru and co-workers observed
that the histone mark H3K9me3 at the Rac1 promoter assists with active DNA methylation-
hydroxymethylation reactions, activating Rac1 gene transcription in diabetic mice [19].
Cells that were exposed to high glucose concentrations were found to exhibit increased
signaling in the chain Rac1–Nox2–ROS, increased levels of Rac1 transcripts, and increased
5-hydroxymethylcytosine levels at the gene promoter [37]. ROS overproduction has been
shown to speed up the loss of capillary cells and to cause retinal neurodegeneration through
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mitochondrial damage, whereas the inhibition of ROS production was found to inhibit
caspase-3-mediated neuronal apoptosis and to prevent vision loss [38,39].

4.3. Diabetic Nephropathy

Diabetic nephropathy is a clinical syndrome that is characterized by persistent albu-
minuria and a progressive decline in renal function [40]. DNF is thought to be the most
common cause of end-stage renal disease, affecting 20% to 50% of people with diabetes.
The mechanisms of DNF are very complex, and despite decades of intensive research, the
pathogenesis of this complication in type 2 diabetes is still not fully understood [41,42].
Numerous pathways, processes, molecules, and conditions, such as oxidative stress, the
renin-angiotensin-aldosterone system, mitogen-activated protein kinases, the formation of
advanced glycosylation end products (AGE), connective tissue growth factor, transforming
growth factor beta-1 (TGF-β), and inflammatory cytokines, are known to contribute to the
onset and progression of DNF [43–45]. The pathways and mediators that are involved
in kidney damage in type 2 diabetes share a lot of overlaps. For instance, it has been
discovered that oxidative stress damages the kidneys through the activation of the renin-
angiotensin-aldosterone system, whereas angiotensin-II itself is capable of causing renal
injury through oxidative stress [42]. Another example is NADPH oxidase stimulating the
production of TGF-β, which stimulates the production of ROS via NADPH oxidase activa-
tion [41]. The experimental observation that the inhibition of oxidative stress improved
a renal feature associated with streptozotocin-induced DNF has highlighted the role of
oxidative stress in the induction and progression of DNF [46,47]. Meanwhile, oxidative
stress can damage cells indirectly by activating other pathological pathways which damage
the renal cells through unknown mechanisms [48]. Metabolic and hemodynamic alterations
in the kidneys are also linked to oxidative stress, and both have additive detrimental effects
on the organ [49].

The direct and indirect mechanisms by which oxidative stress causes kidney damage in
diabetes have been proposed. ROS were found to cause direct damage to podocytes, mesan-
gial cells, and endothelial cells, leading to proteinuria and tubule-interstitial fibrosis [50].
The mechanism of this damage was argued to be that the glomerulus, the filtering unit of
the kidney, is more sensitive to oxidative injury than the other parts of the nephron [51]. Hy-
perglycemia is known to induce ROS production and oxidative damage to DNA, lipids, and
proteins [52]. Chronic hyperglycemia can cause oxidative stress by increasing angiotensin-
II levels, activating protein kinases, and increasing TGF-β expression [53]. For instance,
increased angiotensin-II levels induce ROS production in the kidneys through the activa-
tion of NADPH oxidase [54]. It is observed that the ROS-associated activation of TGF-β
causes the excessive remodeling of the extracellular matrix in the mesangium and promotes
fibrotic processes in the kidneys [55]. As mentioned above, the increased production of
ROS via NADPH oxidase in diabetes is attributed to the activation of the NF-κB pathway,
which also promotes the transcriptional activation of the genes encoding inflammatory
cytokines, thereby contributing to kidney injury and leading to renal fibrosis and a decline
in renal function [56–58]. The activation of the α and β isoforms of protein kinases C is also
known to induce oxidative damage to the kidneys through the increased production of
NADPH-dependent superoxide anion radicals [59]. There are many other redox-sensitive
signal transduction pathways, such as c-Jun N-terminal kinase (JNK), p38 MAP kinase,
and the transcription factor activator protein 1 (AP-1), determining a vicious cycle between
inflammation and oxidative stress [60,61].

We have established, for the first time, an association between the minor allele rs836478-T and
an increased risk of diabetic nephropathy. According to the GTEx portal (https://gtexportal.org,
accessed on 24 February 2023), the RAC1 gene is expressed at a relatively high level in the
kidneys, suggesting an important role of the Rac family small GTPase 1 in this organ. There
have been no studies on humans or animals that have investigated the expression level of
the RAC1 gene in diabetic nephropathy, but there are studies that have investigated other
NOX enzymes. In particular, an increased NOX-4 expression in renal cells was discovered

https://gtexportal.org
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in streptozotocin-induced diabetic rats [62], and subsequent studies have argued that up-
regulated NOX-4 is the primary source of the increased ROS production in the kidneys
that contributes to renal fibrosis and DNF [63]. Both the deletion and the inhibition of
the NOX4 and NOX1 genes have been shown to be renoprotective [64]. Finally, Ying
and co-workers have recently observed that the binding of RAC1 to the pyrin domain
containing 3 (NLRP3) activates the NLRP3 inflammasome in the kidney and accelerates
the pathological processes underlying diabetic nephropathy [65]. The above studies clearly
demonstrate the importance of RAC1-mediated oxidative stress for the development of
diabetic nephropathy.

4.4. Diabetic Angiopathy of Lower Extremities

Diabetic angiopathy of the lower extremities is a change in the structure of the vessels
of the legs in patients with diabetes mellitus, in the form of a decrease in the elasticity of
the vascular wall and its thickening, leading to the narrowing of the lumen or the complete
obliteration of the arteries. Increased oxidative stress is implicated in the pathogenesis of the
various vascular complications of diabetes, including in diabetic angiopathy of the lower
extremities [66–68]. It is well-known that abnormal endothelial-dependent vasodilation
in diabetic patients is at least partially attributed to the reactive oxygen species that are
primarily generated by up-regulated NOXs and downregulated endothelial nitric oxide
synthase [69,70]. The increase in ROS levels and the decrease in nitric oxide are known
to cause irreversible damage to the vascular endothelial cells through apoptosis [68]. The
increased expression of NOX subunits, such as p22phox, p47phox, and p67phox, and the
associated increased production of vascular superoxide anion radicals have been identified
in diabetic subjects [71].

4.5. Diabetic Neuropathy

Diabetic neuropathy is a unique neurodegenerative disorder of the peripheral nervous
system that preferentially targets sensory axons, autonomic axons, and later, to a lesser
extent, motor axons [72]. The peripheral neurons that supply the feet are the longest
cells in the body and require a properly functioning vascular supply, mitochondria, and
glucose and lipid metabolism [73]. The duration of the diabetes and the plasma levels of
the HBA1c are considered to be major predictors of diabetic neuropathy [74]. We revealed
an association of the genotype rs7784465-T/C of the RAC1 gene with an increased risk
of diabetic neuropathy in females. Female sex was found to be a risk factor for painful
diabetic neuropathy, which is consistent with our findings [75]. The overproduction of
superoxide anions has even been implicated in diabetic microvascular complications [76].
ROS production inhibits the GAPDH enzyme (glyceraldehyde-3-phosphate dehydroge-
nase) activity, causing upstream glycolytic metabolites to be diverted into the molecular
pathways of glucose overutilization [77]. It is known that ROS production overwhelms
the endogenous antioxidant defense in diabetic peripheral neuropathy, impairing the
neural blood flow, nerve conduction, neurotrophic support, and neuronal mitochondrial
function [78,79]. Hyperglycemia-induced oxidative and/or nitrosative stress causes DNA
damage and the subsequent hyperactivation of poly(ADP-ribose) polymerases (PARP),
which are the enzymes involved in DNA repair, cellular proliferation, and programmed
cell death [80]. Overactivated PARPs consume NAD+, slowing glycolysis and impairing
ATP function, as well as inhibiting GAPDH. PARP activation also promotes the formation
of excess amounts of the superoxide anions and peroxynitrites that are associated with
endothelial dysfunction, decreased nerve blood flow, neuronal energy deficit, a loss of
nerve fiber density, and nerve conduction slowing [81,82].

4.6. Diabetic Foot Syndrome

Diabetic foot syndrome is a long-term complication of type 2 diabetes that is caused
by a combination of vascular and neurological deterioration [83]. Epidemiological studies
have shown that neuropathy is responsible for about 50% of the cases of diabetic foot
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syndrome [84]. Our study revealed that the RAC1 haplotype rs4724800A-rs7784465T-
rs10951982G-rs10238136T-rs836478T-rs9374G was associated with a four-fold risk of DFS
in males. The study of Rossboth S. and co-workers found a positive association of DFS
with the male sex [85]. The pathogenesis of DFS has been linked to a variety of conditions,
including oxidative stress, the malfunction of polyol and inositol metabolism, increased
Na/K-ATPase activity, endoneural microvascular deficits and ischemia, defective axonal
transport, and the non-enzymatic glycosylation of proteins in peripheral neurons [86,87].

The study has some limitations. Because the sample size of the patients with a
specific diabetic complication was relatively small, the statistical power of the association
analysis that was performed in the subgroups was decreased. A limited number of patients
undergoing biochemical investigations of their redox homeostasis did not allow for the
obtainment of more reliable estimates of the effects of the studied SNPs on these parameters
in subgroups with particular diabetic complications. This limitation made it difficult to
interpret the revealed associations between the RAC1 haplotypes and the plasma levels of
the ROS and total glutathione. Furthermore, there may be other unexplored confounding
variables in the diabetics that contribute to the development of diabetic complications.

5. Conclusions

The present study demonstrated, for the first time, that the genetic variants in the
RAC1 gene represent novel susceptibility markers for diabetic retinopathy, nephropathy,
angiopathy of the lower extremities, and neuropathy, with the potential to influence the
risk of diabetic complications through perturbations in redox homeostasis. The sexual
dimorphism of the associations between the RAC1 gene polymorphisms and the risk of
diabetic retinopathy, particularly in men, appears to be due to the male sex itself being a
known risk factor for this complication [85,88]. The mechanisms underlying the sex-specific
associations of these genetic polymorphisms with a susceptibility for common diseases are a
hallmark of research and continue to pique the interest of scientists [89,90]. The associations
of the RAC1 gene haplotypes with the elevated concentrations of reactive oxygen species
in patients with diabetic retinopathy, nephropathy, neuropathy, angiopathy, and diabetic
foot syndrome may be intermediate damaging factors underlying the development of
microvascular and nerve tissue diabetic complications. Because this is the first study to
look into the role of the RAC1 gene polymorphisms in diabetic complications, there are
no comparable studies to compare our findings to. Further studies into other populations
of the world are required to validate these associations between the polymorphisms of
the RAC1 gene and diabetic complications. However, our findings can already be applied
to the development of new pharmacological agents that inhibit the RAC1 expression in
specific tissues and thus reduce the ROS production.
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(DFS); Table S3: Associations of RAC1 haplotypes with plasma redox homeostasis parameters.
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