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Abstract: Non-alcoholic fatty liver disease (NAFLD) encompasses a broad spectrum of conditions
from simple steatosis (non-alcoholic fatty liver (NAFL)) to non-alcoholic steatohepatitis (NASH),
and its global prevalence continues to rise. NASH, the progressive form of NAFLD, has higher risks
of liver and non-liver related adverse outcomes compared with those patients with NAFL alone.
Therefore, the present study aimed to explore the mechanisms in the progression of NAFLD and
to develop a model to diagnose NASH based on the transcriptome and epigenome. Differentially
expressed genes (DEGs) and differentially methylated genes (DMGs) among the three groups (normal,
NAFL, and NASH) were identified, and the functional analysis revealed that the development of
NAFLD was primarily related to the oxidoreductase-related activity, PPAR signaling pathway, tight
junction, and pathogenic Escherichia coli infection. The logistic regression (LR) model, consisting
of ApoF, THOP1, and BICC1, outperformed the other five models. With the highest AUC (0.8819,
95%CI: 0.8128–0.9511) and a sensitivity of 97.87%, as well as a specificity of 64.71%, the LR model
was determined as the diagnostic model, which can differentiate NASH from NAFL. In conclusion,
several potential mechanisms were screened out based on the transcriptome and epigenome, and a
diagnostic model was built to help patient stratification for NAFLD populations.

Keywords: non-alcoholic fatty liver disease; non-alcoholic steatohepatitis; DNA methylation; logistic
regression; machine learning

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is now recognized as the most common cause
of chronic liver disease, with a global prevalence of 25% [1]. It encompasses a broad spectrum
of conditions, from simple steatosis (non-alcoholic fatty liver (NAFL)) to non-alcoholic steato-
hepatitis (NASH), which is characterized by necroinflammation and faster fibrosis progression
than NAFL. Because of its high prevalence, NAFLD is now the most rapidly growing cause
of liver-related mortality and morbidity worldwide [2]. Furthermore, there is currently no
approved specific therapy for NAFLD, and lifestyle changes such as exercise and dietary modifi-
cations remain the mainstream treatment for NAFLD [3]. Compared with NAFL, patients with
NASH have an increased risk of adverse hepatic outcomes such as cirrhosis, liver failure, and
hepatocellular carcinoma, and also carry a higher risk of non-liver adverse outcomes including
cardiovascular diseases and type 2 diabetes mellitus (T2DM) [4,5]. Thus, the differentiation of
NASH from NAFL is a key issue for patients with NAFLD [6]. To date, liver biopsy remains
the gold standard to differentiate NASH from NAFL. The histopathologic features of NASH
generally include the presence of liver steatosis, inflammation, hepatocellular injury, and differ-
ent degrees of fibrosis [7]. However, these features of NASH are not manifested in equivalent
proportions in every biopsy, and no single feature by itself is diagnostic, making the diagnosis
difficult at times [8]. Furthermore, its well-known limitations such as the dependence on pathol-
ogist experiences and the discrepancy between pathologists have not been solved either. Other
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methods, either relying on a “physical” approach based on the measurement of liver stiffness or
a “biological” approach based on the quantification of biomarkers in the serum samples have
been developed for NASH diagnosis, but none have been widely accepted yet in routine practice
due to their limited sensitivity or specificity [6]. Therefore, novel objective molecular biomarkers
are urgently needed to assist in standardizing and improving the diagnosis of NASH.

Epigenetics is characterized by heritable and reversible changes in gene expression,
and it affects the phenotype by regulating gene transcription, without changing the primary
DNA sequence [9]. DNA methylation, as the most common epigenetic modification, is
closely related to the transcriptional regulation of genes and maintains the stability of the
genome [10]. The function of DNA methylation seems to vary with different genomic
contexts, but the gene expression level is usually inversely associated with the DNA methy-
lation level [11]. The inverse association between methylation and transcription has been
previously reported in NAFLD studies. Tissue repair genes, such as fibroblast growth factor
receptor 2 (FGFR2) and caspase 1 (CASP1), were hypomethylated and high-expressed,
whereas a gene in one-carbon metabolism, methionine adenosyl methyltransferase 1A
(MAT1A), which generates SAM, was hypermethylated and low-expressed in liver biopsies
from patients with advanced NAFLD [12]. In recent years, an ever-increasing number of
high-throughput omics technologies including transcriptomics and epigenomics have been
developed to explore the pathogenesis of NAFLD, as well as the establishment of diagnostic
biomarkers [13]. Differential gene expression and significant alterations in DNA methy-
lation are observed in the progression of NAFLD, including genes involved in glucose,
lipid, or acetyl-coenzyme A (CoA) metabolism; insulin-like signaling; cellular division;
immune function; mitochondrial function; and so on [13]. Several potential diagnostic
biomarkers such as the circulating micro-RNAs and the altered DNA methylation sites in
peripheral blood leukocytes have also been reported [14,15]. However, most previous stud-
ies have merely focused on either gene expression or methylation data, and few diagnostic
biomarkers were based on multi-omics.

In the present study, we systematically analyzed the gene expression and DNA methy-
lation data in the occurrence and development of NAFLD. The molecular mechanisms and
functional pathways in the progression of NAFLD have been explored in transcriptional and
epigenetic aspects, respectively. Using different methods, six diagnostic models based on both
abnormally methylated and differentially expressed genes between NAFL and NASH were
constructed and compared. The workflow diagram is shown in Figure 1. Our study would
further assist in understanding the pathogenesis and patient stratification of NAFLD.
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2. Materials and Methods
2.1. Data Source and Data Processing

The gene expression data and the corresponding DNA methylation data of NAFLD
patients were obtained from the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.
nih.gov/geo/, accessed on 15 March 2022), and four datasets were included (Table 1). For
the RNA transcriptome data, a total of 126 patients (28 normal, 49 NAFL, and 49 NASH)
were retrieved from GSE48452 and GSE31803. DNA methylation data (Infinium Human
Methylation 450 k) were downloaded from GSE48325 and GSE49542, including 118 patients
(34 normal, 45 NAFL, and 39 NASH). Strict criteria were adopted when selecting the
samples: patients without a clear histological diagnosis were excluded, and patients who
received additional clinical treatments such as bariatric surgery were also excluded.

Table 1. The detailed information of the included datasets.

GEO ID Platform Mean Age
(Years)

Sex
(Male/Female)

Viral
Hepatitis

Alcohol
Use *

Sample Type
Sample Number

Normal NAFL NASH

Gene
expression

GSE48452 GPL11532 46 11/43 0 0 liver biopsy 28 9 17
GSE31803 GPL570 N/A N/A 0 0 liver biopsy 0 40 32

DNA
methylation

GSE48325 GPL13534 48 15/44 0 0 liver biopsy 34 10 15
GSE49542 GPL13534 N/A N/A 0 0 liver biopsy 0 35 24

*: >20 g/day for women, >30 g/day for men; N/A: Not applicable.

Considering the impact of different data processing methods, the raw cell files of the
gene expression data were downloaded and processed with the R package oligo v.1.58.0 in
the same way. Meanwhile, the R package ChAMP v.2.24.0 was used for the methylation
analysis. The β value, ranging from 0 (unmethylated) to 1 (fully-methylated), was selected
to represent the methylation level of each probe. In addition, the R package impute
v.1.68.0, with its K-nearest neighbor (KNN) imputation procedure, was applied to impute
the missing values in all datasets. The batch effects between different datasets were also
adjusted by the ComBat function in the R package sva v.3.42.0, which allows users to adjust
for batch effects in datasets using an empirical Bayes framework.

2.2. Identification of DEGs and DMGs in the Progression of NAFLD

To search for critical genes for NAFLD development, we identified differentially
expressed genes (DEGs) and differentially methylated genes (DMGs) among the three
groups (normal, NAFL, and NASH), seperately. The R package limma v. 3.50.0 was applied
to screen DEGs, while DMGs were detected by the ChAMP.DMP function. To improve
the accuracy, significant cut-off values of false discovery rate (FDR) < 0.01 and |log2 fold
change (FC)| > 0.5 were used to identify DEGs, and FDR < 0.01 and |log2 fold change
(FC)| > 0.1 were utilized to determine DMGs.

2.3. Functional Enrichment Analysis

For the sake of exploring the possible mechanisms involved in the progression of
NAFLD, we conducted the following analyses with the R package clusterProfiler v.4.2.2.
Gene ontology analysis (GO) was used for annotating DEGs and DMGs, and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) was used to perform the pathway enrichment
analysis. FDR < 0.05 was set as the threshold value. Moreover, the search tool for the
Retrieval of Interacting Genes (STRING) database (version 11.5) was used to evaluate the
protein-protein interaction (PPI) information. The interaction score was set at 0.7. MCODE
was conducted to screen modules of the PPI network with the degree cutoff, k-core, node
score cutoff, and max depth set at 2, 2, 0.2, and 100, respectively, in Cytoscape software
(version 3.9.1).

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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2.4. Construction and Validation of the Diagnostic Model

The timely identification of high-risk individuals plays a vital role in clinical practice,
so we shifted focus to the construction of the NASH diagnostic model. To provide a
robust model, we combined gene expression and methylation data. Genes that were
reversely correlated (hypomethylated-high expressed or hypermethylated-low expressed)
were identified based on DEGs and DMGs, and were regarded as the input variables
in the succeeding study. To avoid overfitting and to simplify the model, least absolute
shrinkage and selection operator (LASSO) regression was initially utilized to filter the
variables. The key parameter λ was determined by ten-fold cross validation and λ_1se
was selected in this study. In addition to the LASSO regression, another five popular
methods, including logistic regression (LR), random forest (RF), support vector machine
(SVM), extreme gradient boosting (XGBoost), and k-nearest neighbor (KNN), were further
conducted to construct the diagnostic model. All of the models were realized by the
corresponding R packages: glmnet v.4.1-3, randomForest v.4.7-1.1, e1071 v.1.7-9, xgboost
v.1.6.0.1, and kknn v.1.3.1. The hyperparameters of these methods were determined by
grid search or cross validation based on the R package caret v.6.0-90. For each model, the
Youden index was calculated to determine the optimal cut-off values. Area under curve
(AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive
value (NPV) were adopted to evaluate the diagnostic ability of the model. The external
dataset, GSE167523 (51 NAFL and 47 NASH), was used as the testing cohort to further
assess the diagnostic ability of the above models.

2.5. Development and Assessment of the Nomogram

The R package rms v.6.2-0 was applied to build a nomogram to visualize the final
model. Furthermore, calibration curve and decision curve analysis (DCA) were employed
to weigh the calibration and clinical applicability of the nomogram.

2.6. Validation of the Expression Pattern of the Model Genes in the Testing Cohort

The expression pattern of the model genes was further verified in the testing dataset.
The Wilcoxon rank-sum test was used to identify the differential expression levels of the
model genes between the NASH and NAFL groups. A two-sided p < 0.05 was considered
statistically significant.

2.7. Development of NAFL and NASH in Mice

Wild-type male C57BL/6J mice (8 weeks of age) were acquired from Beijing HFK
Bio-Technology. The mice were housed in a specific pathogen free environment with a
stationary temperature at 22 ± 1 ◦C on a 12 h dark/light cycle. After 1 week of adaptive
feeding, the mice were randomly divided into two groups: high-fat diet (HFD, 60% calories
from fat purchased from Research Diet, USA) only and HFD with CCl4 (Sigma-Aldrich,
Saint Louis, MO, USA, 289116). CCl4 at a dose of 0.2 µL (0.32 µg)/g of body weight was
injected intra-peritoneally once per week, starting simultaneously with the diet administra-
tion. After 10 weeks of treatment, liver tissues were collected and processed for histological
analysis. NAFLD activity score (NAS) and disease stage were evaluated by an expert pathol-
ogist according to the NASH CRN scoring system (Table S1). Pictures were taken from
representative areas showing steatosis, lobular inflammation, and hepatocyte ballooning, in
consultation with the pathologist (Figure S1). All of the animal experiments were approved
by the Animal Care and Use Committee of West China Hospital, Sichuan University.

2.8. Exploration of the Model Genes Expression Levels in Mice Using qRT-PCR

The total RNA was extracted from the liver tissues of the mice using the Trizol reagent
(Thermofisher, Singapore, Cat No. 15596026) following the manufacturer’s instructions.
The cDNA reverse transcription kit (Accurate Biology, Cat No. AG11711) was used to
reverse transcribe RNA, and the SYBR Green Premix Pro Taq HS qPCR kit (Accurate
Biology, Cat No. AG11701) was utilized to amplify the resulting cDNA. The samples were
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detected using an ABI 7500 Real-Time PCR System. The 2(−∆∆Ct) method was adopted
to calculate the expression of the genes relative to the housekeeping gene β-Actin. The
primers used for qRT-PCR are shown in Table S2.

3. Results
3.1. Identification of DEGs and DMGs in the Progression of NAFLD

For the gene expression data, the DEGs were regularly observed during the whole
progression of NAFLD: 45 upregulated genes and 52 downregulated genes were identified
in the normal vs. NAFL group, respectively; 135 upregulated genes and 23 downregulated
genes were identified in the NAFL vs. NASH group, respectively; and 78 upregulated genes
and 31 downregulated genes were identified in the normal vs. NASH group, respectively
(Table S3). In contrast, the DMGs were mainly observed in the latter period of NAFLD: no
significant difference was observed in the normal vs. NAFL group; 650 hypermethylated
genes and 377 hypomethylated genes were identified in the NAFL vs. NASH group,
respectively; 195 hypermethylated genes and 99 hypomethylated genes were identified
in the normal vs. NASH group, respectively (Table S4). The volcano plots show the
distribution of DEGs and DMGs (Figure 2a–f).

3.2. Functional Enrichment Analysis of DEGs

Regarding DEGs, the GO analysis showed that a total of 3, 13, and 24 GO terms were
obtained in the normal vs. NAFL group, the NAFL vs. NASH group, and the normal vs.
NASH group, respectively (Table S5). Of note, one overlapping GO term (oxidoreductase
activity, acting on paired donors, with the incorporation or reduction of molecular oxygen)
was identified between the normal vs. NAFL group and the normal vs. NASH group, and
nine overlapping GO terms (extracellular matrix structural constituent, extracellular matrix
structural constituent conferring tensile strength, platelet-derived growth factor binding,
glycosaminoglycan binding, etc.) were observed between the NAFL vs. NASH group and
the normal vs. NASH group (Figure 2g). In addition, the KEGG pathway analysis found
2, 6, and 3 pathways significantly enriched in the normal vs. NAFL group, the NAFL vs.
NASH group, and the normal vs. NASH group (Table S6). Similarly, one overlapping
pathway (PPAR signaling pathway) enriched in both the normal vs. NAFL group and the
normal vs. NASH group, and one overlapping pathway (ECM-receptor interaction) was
identified between the NAFL vs. NASH group and the normal vs. NASH group (Figure 2h).
The PPI network map of the DEGs had 107 nodes and 64 edges, and then the network was
imported into the Cytoscape software to perform module analysis, in which the DEGs were
constructed into four modules (Figure S2a,b).

3.3. Functional Enrichment Analysis of DMGs

Meanwhile, a total of 32 GO terms (22 GO terms in the NAFL vs. NASH group
and 10 GO terms in the normal vs. NASH group) and 15 KEGG pathways (10 pathways
in the NAFL vs. NASH group and 5 pathways in the normal vs. NASH group) were
obtained for the DMGs (Table S7). Both the GO and KEGG results were highly overlapped
between the two groups. The GO terms are mainly related to “GTPase regulator activity”,
“GTPase activator activity”, “nucleoside-triphosphatase regulator activity”, and “guanyl-
nucleotide exchange factor activity”, and the KEGG results indicate that DMGs were mainly
involved in “tight junction”, “regulation of actin cytoskeleton”, “pathogenic Escherichia coli
infection”, and “chemical carcinogenesis-DNA adducts” (Figure 2i,j). The PPI network map
of DMGs had 288 nodes and 124 edges, and the DMGs were constructed into six modules
(Figure S2c,d).
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Figure 2. Identification of DEGs and DMGs in the progression of NAFLD. (a) Identification of
DEGs in the normal vs. NAFL group; (b) identification of DEGs in the NAFL vs. NASH group;
(c) identification of DEGs in the normal vs. NASH group; (d) identification of DMGs in the normal
vs. NAFL group; (e) identification of DMGs in the NAFL vs. NASH group; (f) identification
of DMGs in the normal vs. NASH group; (g) GO results of DEGs; (h) KEGG results of DEGs;
(i) GO results of DMGs; (j) KEGG results of DMGs. Oxidoreductase activity1: oxidoreductase ac-
tivity, acting on paired donors, with oxidation of a pair of donors, resulting in the reduction of
molecular oxygen to two molecules of water; oxidoreductase activity2: oxidoreductase activity,
acting on paired donors, with incorporation or reduction of molecular oxygen; oxidoreductase
activity3: oxidoreductase activity, acting on paired donors, with incorporation or reduction of molec-
ular oxygen, reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen;
oxidoreductase activity4: oxidoreductase activity, acting on paired donors, with incorporation or
reduction of molecular oxygen, NAD(P)H as one donor, and the incorporation of one atom of oxygen.
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3.4. Construction and Validation of the Diagnostic Model

The diagnostic model was generated based on combined gene expression and methy-
lation data. LASSO regression was initially applied to filter the variables, and another
five methods were used to build the diagnostic model. The detailed hyperparameters are
summarized in Table S8.

Based on DEGs and DMGs, a total of 21 genes (16 hypomethylated-high expressed
genes and 5 hypermethylated-low expressed genes) were identified, and four genes
(THOP1, ApoF, BICC1, and CCDC146) were selected as the final input variables by LASSO re-
gression (Figure S2e,f). In the training cohort, all six methods exhibited an extraordinary di-
agnostic performance (Table 2). The highest AUC was found in the RF model and XGBoost
model (AUC = 1.0000, 95%CI: 1.0000–1.0000), followed by the KNN model (AUC = 0.9842,
95%CI: 0.9677–1.0000), the LR model (AUC = 0.9792, 95%CI: 0.9575–1.0000), the SVM
model (AUC = 0.9775, 95%CI: 0.9556–0.9994), and the LASSO model (AUC = 0.9733, 95%CI:
0.9476–0.9991). A reduction in performance was inevitable and was considered acceptable
in the testing cohort, which contained heterogeneous patient data. Despite all of this,
the LR model still reached an AUC of 0.8819 (95%CI: 0.8128–0.9511), higher than the five
other models (SVM: AUC = 0.8623, 95%CI: 0.7868–0.9378; KNN: AUC = 0.8502, 95%CI:
0.7707–0.9298; RF: AUC = 0.8454, 95%CI: 0.7695–0.9214; XGBoost: AUC = 0.8256, 95%CI:
0.7455–0.9058; LASSO: AUC = 0.8052, 95%CI: 0.7192–0.8911) (Figures 3f and S3a–e). There-
fore, the LR model was eventually determined as the optimal model for diagnosing NASH
and was taken into further study.

Table 2. The performance of the six models.

Specificity Sensitivity PPV NPV AUC (95%CI)

LR
Training 93.88% 93.88% 93.88% 93.88% 0.9792

(0.9575–1.0000)

Testing 64.71% 97.87% 71.88% 97.06% 0.8819
(0.8128–0.9511)

SVM
Training 93.88% 89.80% 93.62% 90.20% 0.9775

(0.9556–0.9994)

Testing 66.67% 97.87% 73.02% 97.14% 0.8623
(0.7868–0.9378)

KNN
Training 93.88% 93.88% 93.88% 93.88% 0.9842

(0.9677–1.0000)

Testing 70.59% 95.74% 75.00% 94.74% 0.8502
(0.7707–0.9298)

RF
Training 100.00% 100.00% 100.00% 100.00% 1.0000

(1.0000–1.0000)

Testing 62.75% 93.62% 69.84% 91.43% 0.8454
(0.7695–0.9214)

XGBoost
Training 100.00% 100.00% 100.00% 100.00% 1.0000

(1.0000–1.0000)

Testing 66.67% 89.36% 71.19% 87.18% 0.8256
(0.7455–0.9058)

LASSO
Training 95.92% 89.80% 95.65% 90.38% 0.9733

(0.9476–0.9991)

Testing 72.55% 76.60% 72.00% 77.08% 0.8052
(0.7192–0.8911)

LR: logistic regression; LASSO: least absolute shrinkage and selection operator; KNN: K-nearest neighbor;
RF: random forest; SVM: support vector machine; XGBoost: extreme gradient boosting; PPV: positive predictive
value; NPV: negative predictive value; AUC: area under curve; CI: confidence interval.
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Figure 3. LASSO feature selection and the building process of the LR model. (a) The cross-validation
plot for the optimal λ selection. The x-coordinate is the logarithm function of the penalty coefficient
λ, and the y-coordinate is the misclassification error. (b) Plot for LASSO regression coefficients
over different values of λ. As λ changes, the coefficients of the variables are compressed to zero.
(c) Nomogram of the LR model. (d) Calibration curve of the LR model. The dashed line at 45◦

represents perfect prediction. (e) Decision curve analysis curve of the LR model. The bold red curve
shows the benefit net of the LR model at different risk thresholds, while the curves on both sides
represent its 95% confidence interval. (f) Receiver operating characteristic curve of the LR model.

3.5. Development and Assessment of the Nomogram

Three genes (ApoF, THOP1, and BICC1) were screened out as the model genes by the
LR model (p < 0.05). Diagnostic scores were calculated using the following formula.

logit (P = NASH) = 0.5470 − (1.5909 × THOP1 expression level) − (1.3167 × ApoF
expression level) + (3.9034 × BICC1 expression level)

Based on the LR model, a nomogram was built to predict the risk score of individual
patients, and the three model genes were used as parameters in the nomogram (Figure 3c).
The predicted NASH probability was compared to the actual NASH probability in the
calibration curve, and a high level of consistency was observed (Figure 3d). Moreover,
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the DCA curve showed a net benefit across the whole range of threshold probabilities,
indicating that the nomogram was feasible to make beneficial clinical decisions (Figure 3e).

3.6. Validation of the Expression Pattern of the Model Genes in the Testing Cohort

In the training cohort of NASH patients, significantly high DNA methylation and low
expression levels were noted for ApoF and THOP1, while a low DNA methylation and high
expression level was observed for BICC1 (p < 0.001) (Figure 4e–j). To further validate the
expression pattern of the three model genes, these genes were selected from the GSE167523
testing cohort. As shown in Figure 4k–m, ApoF and THOP1 exhibited a significantly
lower expression in the NASH group than in the NAFL group, whereas BICC1 exhibited a
higher expression in the NASH group than in the NAFL group (p < 0.001). Altogether, the
consistent results between different cohorts demonstrated that the expression levels of the
three genes were reliable and useful for constructing the diagnostic model.
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3.7. Exploration of the Expression Pattern of the Model Genes in the Mouse Model

The model genes selected by the LR model might help in improving the understanding
of the disease pathogenesis. Thus, we preliminarily explored the expression pattern of
the three genes in the mouse model. Our results indicate that the NAFL group exhibited
a higher THOP1 expression level than the NASH group (p < 0.05), which was consistent
with the results we obtained from the human cohorts (Figure 5). However, no meaningful
findings were observed for the other two genes. The original data are provided in Table S9.
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4. Discussion

NAFLD is the hepatic manifestation of the metabolic syndrome, representing a sub-
stantial health and economic burden worldwide. NASH, the progressive form of NAFLD,
may culminate into cirrhosis and hepatocellular carcinoma, and is presently a leading cause
of liver transplant [16]. Because of the poor prognosis of NASH, novel biomarkers or meth-
ods are urgently needed to improve the diagnosis of NASH. Meanwhile, the mechanisms
underlying the development of NAFLD remain unknown. In this study, we systematically
analyzed DEGs and DMGs in the progression of NAFLD. Functional enrichment analysis
was conducted based on DEGs and DMGs. Several pathways were screened out, indicating
the potential mechanisms involved in the development of NAFLD. Subsequently, based on
DEGs, DMGs, and machine learning methods, six models that differentiate NASH from
NAFL were constructed and compared. The LR model outperformed other models and
was determined as the final diagnostic model.

NAFLD is a multifactorial disease, and exploring the molecular mechanisms and
the functional pathways based on the accumulating transcriptional and epigenetic alter-
ations might facilitate the understanding of NAFLD development. In the aspect of DEGs,
the functional enrichment results indicated that oxidoreductase-related activity and the
PPAR signaling pathway might be involved in the whole progression of NAFLD, while
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extracellular-matrix-related activity might only participate in the latter period of NAFLD,
the transition from NAFL to NASH. Oxidative stress is defined as an imbalance between
the production of reactive oxygen species (ROS) and the scavenging capacity of the an-
tioxidant system. Previous studies have suggested a central role of oxidative stress in
the transition from NAFL to NASH mediated by increased ROS production, which could
lead to the reprogramming of hepatic lipid metabolism, changes in insulin sensitivity, and
modulation of inflammation by interacting with innate immune signaling [17]. PPARs are
a group of nuclear regulatory factors that provide fine tuning for key elements of glucose
and fat metabolism and regulate inflammatory cell activation and fibrotic processes, all
of which determine NASH progression [18]. Currently, several PPAR agonists such as
PPARα agonist Wy14643, and PPARβ/δ agonists GW501516, GW0742, and MBX-8025
have been reported to be used in the treatment of NAFLD in experimental and clinical
studies and for developing dual and pan-PPAR agonists, and might have a broader and
more efficacious therapeutic potential in the future [19]. In addition, the extracellular
matrix is a multi-molecule complex structure composed of collagen, elastin fibers, and
structural glycoproteins, and has proven to be closely related to progressive fibrosis and
inflammation in NASH [20]. Of note, oxidative stress and inflammation can lead to the
excessive production of extracellular matrix in liver diseases, which is consistent with our
enriched results in the continuous periods of NAFLD [21].

For DMGs, the functional analysis revealed that the development of NAFLD was
primarily related to tight junction, pathogenic Escherichia coli infection, and GTPase-related
activity. Tight junctions are intercellular adhesion complexes in the epithelia and endothelia
that control paracellular permeability, playing a vital role in architecture and homeostasis
in the liver [22,23]. The disruption of tight junctions can impair intestinal permeability, and
the subsequent increased gut microbial translocation can lead to the inflammatory pathway
involved in NASH development [24]. Previous studies have demonstrated that NAFLD
contains a disease-specific gut microbiome, and alteration of the gut microbiota plays a
significant role in its progression to NASH and cirrhosis [25,26]. An increase in Escherichia
coli was observed in patients with advanced NASH fibrosis, which was consistent with
our enrichment results [27]. Furthermore, the translocation of intestinal E. coli NF73-1 into
the liver was found to be responsible for the high hepatic M1 population in a mice model,
which further aggravated liver injury, leading to disturbance of the hepatic triglyceride
metabolism and, eventually, NAFLD progression [28]. GTPases are conserved regulators of
cell motility, polarity, adhesion, cytoskeletal organization, proliferation, and apoptosis, but
the role of GTPases in the NAFLD progression remains unclear [29].

NAFLD is an umbrella term that comprises a continuum of liver abnormalities, rang-
ing from NAFL to NASH [30]. NASH is defined as a more serious stage of NAFLD and
has higher risks of liver and non-liver related adverse outcomes compared with those
patients with NAFL alone [31]. Thus, the prompt and accurate diagnosis of NASH is
of extreme significance in clinical practice. Several biomarkers have been developed in
the past decades, but their performances vary across studies. The plasma cytokeratin 18
(CK18) fragment level, a marker of hepatocyte apoptosis, has been extensively evaluated
in steatohepatitis, while its limited sensitivity of 58% (51–65%) makes it inadequate as a
screening test for staging NASH [32,33]. Serum metabolomics has identified pyrogluta-
mate as a diagnostic biomarker for NASH, with a sensitivity and specificity of 72% and
85%, respectively [34]. The intrahepatic thrombospondin 2 (THBS2) expression level has
shown an AUROC of 0.915 for diagnosing NASH [35]. Six differentially methylated CpG
sites in peripheral blood leukocytes can be potentially used as diagnostic biomarkers for
differentiating NASH from NAFL, with AUCs ranging from 0.689 to 0.882 [36]. However,
most previous studies have been merely based on a single omics platform. In this study,
we adopted six machine learning methods, including LASSO, LR, RF, SVM, XGBoost, and
KNN, to build a diagnostic model based on inversely related methylation-transcription
genes. The LR model, consisting of ApoF, THOP1, and BICC1, saw the highest AUC (0.8819,
95%CI: 0.8128–0.9511). Although the LR model exhibited a moderate specificity of 64.71%,
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it could distinguish NASH from NAFL with a sensitivity of 97.87%. Furthermore, the
integration of multi-omics data can avoid the randomness of single omics data and improve
the diagnostic capacity of disease phenotypes, and hence aid in patient stratification [37,38].

In addition to the stable diagnostic ability, the LR model generated based on methylation-
transcription data also possessed the following traits. DNA methylation alterations are
highly reversible and change in response to environmental and lifestyle experiences such
as diet, obesity, and physical activities [12]. Likewise, studies have indicated that NASH
may regress to NAFL after treatment. Weight loss has the strongest association with histo-
logic improvement in NASH, and the methylation patterns of NASH are also altered after
bariatric surgery [31,39]. As a result, the LR model could monitor the dynamic disease con-
ditions in real time in terms of the similar reversibility, either during the disease transition
or after treatments. Moreover, the LR model also possesses a potential early predictive
capacity, as DNA methylation alterations are inheritable and can be transferred to the next
generation. A previous study has shown that a high-fat and high-cholesterol Western diet
(WD)-induced maternal hypercholesterolemia increases the male offspring risk for NAFLD
and metabolic diseases, which is related to the decreased ApoB gene expression regulated
by DNA hypermethylation [40].

Furthermore, the underlying mechanism for the progression of NAFLD is complex
and multifactorial, and the model genes selected by the LR model might help in improving
the understanding of disease pathogenesis. Thus, we explored the expression pattern of the
three genes in the mouse model. Apolipoprotein F (ApoF) is a minor apolipoprotein mainly
involved in cholesterol transportation by inhibiting cholesteryl ester transfer protein (CETP)
activity with LDL [41,42]. The gene BicC family RNA-binding protein 1 (BICC1) encodes
an RNA-binding protein that was firstly identified in Drosophila melanogaster and was
later shown to have important roles in vertebrate development and embryogenesis [43].
Unfortunately, no meaningful results were obtained for the two genes in the mouse model.
We speculated that the main reason was the species difference; ApoF and BICC1 may not
have equally important functions in the disease progression in mice. In this study, the
gene ApoF was expressed at lower levels in NASH patients compared with NAFL patients.
Similarly, Liu et al. found that hepatic ApoF mRNA levels were decreased by high fat,
cholesterol-enriched diets, and ApoF was subject to negative regulation by agonist-activated
LXR or PPARα nuclear receptors binding to a regulatory element ~1900 bases 5′ to the
ApoF promoter [44]. The concentration of protein ApoF in serum has also been quantified
to decrease across NAFLD stages in a previous study, which was consistent with our
study [45]. In addition, recent studies have revealed that BICC1 might be involved in the
immune response in the tumor microenvironment by affecting immune cells, especially
macrophages, and the overexpression of BICC1 was closely related to the poor prognosis
in tumors such as gastric cancer and oral cancer, as well as multiple functional pathways
such as focal adhesion and ECM-receptor interaction, which were also enriched in our
study [46,47]. Thus, the similar higher expression pattern of BICC1 in NASH patients
suggests its potential role in the immune response in NAFLD development.

Unlike ApoF and BICC1, a similar different expression pattern of THOP1 across species
was observed, suggesting its potential key role in the development of NAFLD. Thimet
oligopeptidase (THOP1) is a metallopeptidase widely distributed in mammalian tissues,
initially purified from the soluble fraction of rat brain homogenates in 1983 [48]. Apart
from the role in major histocompatibility class I (MHC-I) antigen presentation, THOP1
was recently reported to be involved in energy metabolism regulation [49]. Gewehr et al.
found that the THOP1 null (THOP1−/−) mice gained 75% less body weight and showed
neither insulin resistance nor non-alcoholic fatty liver steatosis (NAFLS) when compared
with wild-type (WT) mice after 24 weeks of being fed a hyperlipidic diet (HD), and also
observed a higher adipose tissue adrenergic-stimulated lipolysis in THOP1−/−mice [50].
Furthermore, specific genes and microRNAs involved in obesity and adipogenesis were
differentially modulated in the liver and adipose tissue of THOP1−/− mice. An in-
creased expression level of PPAR-γ, which was also enriched in our study, was observed in
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THOP1−/−mice fed the HD when compared with either THOP1−/−mice fed a standard
diet (SD) or WT mice fed the HD [50]. Altogether, previous studies have suggested that
THOP1 could be a therapeutic target for controlling obesity and associated diseases such as
insulin resistance and NAFLD.

Potential limitations of the present study should be noted. The biological mechanisms
of THOP1 in the progression of NAFLD remain to be explored. In addition, the study was
based on research data from the public database, which might induce selection bias. Thus,
a multicenter and large-scale study should be conducted to further validate our findings.

5. Conclusions

In conclusion, we systematically explored the potential mechanisms and pathways in
the progression of NAFLD by tracing the flowing information in both the transcriptome
and epigenome, and a diagnostic model based on the combination of gene expression and
methylation data was built to differentiate NASH from NAFL. To the best of our knowledge,
this is the first diagnostic model that employed both transcriptional and epigenetic data that
can provide a robust diagnostic ability. Further studies remain to be implemented to explore
the pathogenesis of NAFLD and refine patient stratification to benefit NAFLD populations.
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