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Abstract: The use of computer-aided detection models to diagnose lesions in images from wireless
capsule endoscopy (WCE) is a topical endoscopic diagnostic solution. We revised our artificial
intelligence (AI) model, RetinaNet, to better diagnose multiple types of lesions, including erosions and
ulcers, vascular lesions, and tumors. RetinaNet was trained using the data of 1234 patients, consisting
of images of 6476 erosions and ulcers, 1916 vascular lesions, 7127 tumors, and 14,014,149 normal
tissues. The mean area under the receiver operating characteristic curve (AUC), sensitivity, and
specificity for each lesion were evaluated using five-fold stratified cross-validation. Each cross-
validation set consisted of between 6,647,148 and 7,267,813 images from 217 patients. The mean AUC
values were 0.997 for erosions and ulcers, 0.998 for vascular lesions, and 0.998 for tumors. The mean
sensitivities were 0.919, 0.878, and 0.876, respectively. The mean specificities were 0.936, 0.969, and
0.937, and the mean accuracies were 0.930, 0.962, and 0.924, respectively. We developed a new version
of an AI-based diagnostic model for the multiclass identification of small bowel lesions in WCE
images to help endoscopists appropriately diagnose small intestine diseases in daily clinical practice.

Keywords: artificial intelligence; small intestine erosions and ulcers; small intestine tumors; small
intestine vascular lesions; wireless capsule endoscopy

1. Introduction

Wireless capsule endoscopy (WCE) is a revolutionary examination method that can
evaluate the entire 6 m long small intestine [1]. The American, European, and Japanese
societies for gastrointestinal endoscopy recommend WCE as the primary examination for
patients with obscure gastrointestinal bleeding, small intestine tumors, and inflammatory
bowel disease. Although a single WCE examination can acquire 10,000–80,000 images,
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only a few abnormal images are required to diagnose small intestine lesions. The most
important issue related to WCE images is low inter- and intra-observer agreement [2].
A recent meta-analysis reported 0.6–0.79 inter-observer agreement in 56% of the WCE
examinations for small intestine lesions. The diagnostic yield of WCE depends on the
examination time [3] and the endoscopist’s skill and experience [4]. Longer examination
times and lack of experience may lead to lower diagnostic yields. Furthermore, there are
currently no standardized diagnostic protocols or reporting systems. Thus, new diagnostic
solutions are required to improve the accuracy of WCE diagnoses.

Artificial intelligence (AI) models can be used to improve the diagnostic accuracy of
diseases of the small intestine [5,6]. We previously reported on the high diagnostic accuracy
of an AI model that we developed, RetinaNet, for identifying small intestine erosions and
ulcers, angioectasias, and tumors [5]. Although the model has high diagnostic yield, it may
at times indicate false positive/negative results from the images. Generally, improvements
in the diagnostic accuracy of AI models require an increase in the data size. Therefore, we
developed a new RetinaNet model using the largest dataset in the world, consisting of
>10,000,000 WCE images obtained from nine hospitals.

2. Materials and Methods
2.1. Study Sample and Preparation of the Image Set

We performed a retrospective study using a WCE database. First, we collected WCE
images acquired between April 2009 and July 2019 from the University of Tokyo Hospital
from patients with obscure gastrointestinal bleeding, possible small intestine tumors, or
abdominal symptoms. We previously used these data to develop the RetinaNet model [5].
We expanded the angioectasia WCE database by adding images acquired between 2009 and
2019 at Ishikawa Prefectural Central Hospital, Fukui Prefectural Hospital, Tonan Hospital,
the University of Okayama Hospital, the University of Kanazawa Hospital, Nagasaki
Medical Center, the University of Osaka Hospital, and Toyonaka Municipal Hospital for
obscure gastrointestinal bleeding, examination for small intestine tumors, or abdominal
symptoms (Table 1). All WCE procedures used the PillCam SB2 or SB3 capsule endoscope
(Medtronic, Minneapolis, MN, USA) and were carried out after patients had fasted for 12 h.
Oral simethicone (40 mg) was administered before the WCE examinations [7].

Table 1. Number of patients from each of the nine institutions.

Hospital Erosions and
Ulcers

Vascular
Lesions Tumors Normal

University of Tokyo Hospital 161 19 73 314
Ishikawa Prefectural Central

Hospital 51 21 20 142

Fukui Prefectural Hospital 6 0 3 0
Tonan Hospital 2 2 0 2

Osaka University Hospital 22 3 16 0
University of Kanazawa Hospital 127 32 26 6

Nagasaki Minato Hospital 11 6 4 13
University of Osaka Hospital 96 28 26 0

Toyonaka Hospital 1 0 1 0
Total 477 111 169 477

From the database, we extracted a case group of 651 patients with erosions and ulcers,
angioectasias, or tumors. We also randomly extracted a control group of 482 patients and
normal images from these patients.

The WCE images were used to develop a dataset, consisting of 6476 images of erosions
and ulcers, 1916 of angioectasias, 7127 of tumors, and 14,014,149 normal images. This
study was approved by all of the participating hospitals (No. 12016-1). A vascular lesion
was defined as angioectasias and venous malformations; a tumor was defined as a polyp,
nodule, mass, and/or submucosal tumor (Figure 1). Four expert WCE endoscopists (AN,
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RN, TA, and AY) manually annotated all lesions with bounding boxes (gold-standard
boxes). All annotations were performed independently, and any disagreement was resolved
by consensus.
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2.2. RetinaNet Algorithm

We used the deep neural network architectures of RetinaNet [8] to develop a new
AI-based diagnostic model. The major RetinaNet network included ResNet, bottom-up
pathway, top-down pathway, classification subnetwork, and box subnetwork (Figure 2).
The RetinaNet network architecture uses a Feature Pyramid Network backbone on top
of a feedforward ResNet architecture to construct a rich, multiscale convolutional feature
pyramid. RetinaNet attaches two subnetworks: one for classifying anchor boxes and
another for regressing from anchor boxes to ground-truth object boxes. We trained the
RetinaNet model to detect areas within the bounding boxes as lesions and those outside of
the boxes as background. The input image size was 512 × 512. Learning was carried out
by penalizing incorrect outputs and iteratively minimizing this penalty. Notably, lesion
detection differs from general object detection in that the boundaries of the detection
targets are ambiguous. The penalty was relaxed to allow some positional shifting of the
output boxes.

Previously, we had developed the RetinaNet model using the data of 398 erosion
and ulceration images, 538 angioectasias images, 4590 tumor images, and 34,437 normal
images from a single hospital [5]. In the current study, we further trained the model
using 6476 erosion and ulcer images, 1916 angioectasias images, 7127 tumor images, and
14,014,149 normal images from nine hospitals.

2.3. Outcome Measures and Statistics

The primary outcome was a per-lesion image diagnosis of small intestine lesions
including erosions and ulcers, vascular lesions, and tumors. The model accuracy was
defined based on the overlap between the AI-drawn bounding boxes and the gold-standard
boxes. We used five-fold stratified cross-validation to balance the lesion ratios to test
the model (Figure 3). When generating the internal and external validation sets, random
sampling was performed to avoid bias that could lead to false readings regarding the
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model’s performance. The trained RetinaNet model drew red bounding boxes (AI boxes)
around lesions detected in the validation set, and output probability scores ranged from
0 to 1 for each erosion, ulceration, vascular lesion, and tumor; the higher the score, the
greater the confidence that the region included a lesion of the specified type. The following
definitions were used to assess model accuracy. First, any overlap between the AI box
and the gold-standard box was considered positive. Second, if several AI boxes were
created in a single image and even one of them detected a lesion, image classification was
considered accurate.
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We plotted receiver operating characteristic (ROC) curves and estimated areas under
the ROC curve (AUC) and 95% confidence intervals (CIs), sensitivity, specificity, and the
accuracy of the AI detection model for each lesion image for each probability score cutoff
of the Youden index. The mean AUC, sensitivity, and specificity were estimated using the
fold data.

The secondary outcomes were the per-intersection over union (IOU) and per-patient
diagnosis of the three lesional types. During per-lesion IOU analyses, we defined the area
of overlap divided by the area of union as the IOU. We calculated the IOUs for all lesions
in each cross-validation set, and then estimated the mean IOU for each lesion. During per-
patient analyses, we estimated the number of affected patients and the rates of AI-detected
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lesions in each cross-validation set. All statistical analyses were performed with Python
(ver. 3).
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3. Results
3.1. Per-Lesion Image Analyses

The number of patients from each of the nine institutions is shown in Table 1. Each
cross-validation set consisted of between 6,647,148 and 7,267,813 images from 217 patients.
The lesion and normal image ratios were well balanced among the cross-validation sets.
Images of small intestine erosions and ulcers, vascular lesions, and tumors diagnosed by
artificial intelligence (AI) are shown in Figure 4. The mean AUC values were 0.997 for
erosions and ulcers, 0.998 for vascular lesions, and 0.998 for tumors (Figure 5). The mean
sensitivity values were 0.919, 0.878, and 0.876; the mean specificities were 0.936, 0.969, and
0.937; and the mean accuracies were 0.930, 0.962, and 0.924, respectively (Table 2).

3.2. Per-Lesion IOU Analyses

The mean IOU of RetinaNet was 0.839 (95% CI = 0.792, 0.886) for erosions and ulcera-
tions, 0.833 (95% CI = 0.780, 0.886) for vascular lesions, and 0.798 (95% CI = 0.750, 0.846) for
tumors. The IOU values for each type of lesion in each cross-validation set are shown in
Table 3.

3.3. Per-Patient Analyses

The per-patient diagnoses in each cross-validation fold are shown in Table 4. The AI
model missed three, three, three, four, and one patient for erosions and ulcers in the first to
fifth cross-validation folds, respectively; one patient for vascular lesions in the fourth fold;
and one, one, and two patients for tumors in the third, fourth, and fifth folds, respectively.
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Figure 5. Receiver operating characteristic (ROC) curves and area under the ROC curve (AUC) values
for small intestine lesions: (A) erosions and ulcers, (B) vascular lesions, and (C) tumors.

Table 2. Per-image analysis of mean sensitivity, specificity, and accuracy.

Sensitivity Specificity Accuracy

Erosions and ulcers 0.919 (0.896–0.942) 0.936 (0.914–0.957) 0.930 (0.912–0.953)
Vascular lesions 0.878 (0.823–0.933) 0.969 (0.958–0.979) 0.962 (0.951–0.973)

Tumors 0.876 (0.840–0.912) 0.937 (0.926–0.948) 0.924 (0.911–0.936)
Parentheses contain 95% confidence intervals.
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Table 3. IOU values for each type of lesion in each cross-validation set.

First Fold Second Fold Third Fold Fourth Fold Fifth Fold

Erosions and ulcers 0.8893 0.8972 0.7792 0.7959 0.8354
Vascular lesions 0.9155 0.8490 0.7913 0.7604 0.8511

Tumors 0.7991 0.8132 0.8455 0.8297 0.7061

Table 4. Number of diagnosed small intestine lesions according to the number of patients analyzed.

First Fold Second Fold Third Fold Fourth Fold Fifth Fold

Erosions and ulcers 64/67 65/68 65/68 63/67 73/74
Vascular lesions 27/27 30/30 25/25 34/35 29/29

Tumors 36/36 29/29 36/37 27/28 26/28

4. Discussion

We improved our AI model RetinaNet to detect all types of small-bowel lesions in
WCE images. We further trained the model using a larger number of WCE images obtained
from nine institutions. Currently, the model shows the highest performance for diagnostic
yield for WCE examination among object-detection AI models [9].

4.1. Improved Specificity and Accuracy of Tumor Detection

Our current RetinaNet model is better than the original in terms of tumor detection.
For the previous RetinaNet model, the mean specificity was 0.918 (95% CI = 0.881–0.955)
and the mean accuracy was 0.914 (95% CI = 0.879–0.950) [5]. For the current model,
the mean specificity was 0.937 (95% CI = 0.926–0.948) and the mean accuracy was 0.924
(95% CI = 0.911–0.936). Small intestine tumors are rare. The increased number of WCE
images from the nine hospitals improved the diagnostic yield.

4.2. High Specificity of the RetinaNet Algorithm for All Types of Lesion

Our RetinaNet model has considerable strength with high specificity, given the ex-
tended AI training on each lesion type. It learns the features of normal images using
weakly supervised learning; this allows for improved accuracy, as the total number of
training images can be easily accommodated. In the current study, more than 10,000,000
normal images were used for training, as a previous meta-analysis reported an association
between higher specificity and a larger number of training images in WCE AI models [9];
moreover, AI models trained using a total number of training images >20,000 show the
lowest false-positive rate in small WCE examinations [9].

4.3. Future Tasks

Further validation analyses are required to evaluate various AI models for WCE image
assessment. Such analysis should ideally use open-source codes and directly compare AI
models using the same dataset. Comparisons using publicly available common datasets or
meta-analyses may also be effective.

We have also planned to use the current version of the RetinaNet model in a clinical
setting. The model can diagnose WCE images, but not videos. Therefore, we have devel-
oped an original, comprehensive, user-interface network system, including video-to-image
conversion, that shows abnormal images classified by the lesion type and identifies their
location in the small intestine. Endoscopists can obtain RetinaNet-detected results using
the web-based system anytime and anywhere. We plan to use this system in hospitals that
may be willing to participate in the research.

4.4. Limitations

First, this study used a retrospective design. Next, the diagnostic yield of our former
RetinaNet model showed good performance, but had reached a plateau level regarding
learning effects. Specifically, the improvement in diagnostic yield, in terms of sensitivity,
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specificity, and accuracy for erosions, ulcers, and vascular lesions, was limited, although
the number of training images increased by twenty-, four-, and two-fold, respectively.
Furthermore, it missed several patients with erosions and ulcers, one patient with a vascular
lesion, and one patient with a tumor. These missed features would be difficult to diagnose,
even for expert endoscopists. The diagnostic yield of small intestine lesions using the
current AI model does not reach that of expert endoscopists; however, in current clinical
practice, we believe that it would be effective as a first screening tool for endoscopists
reading WCE videos or as a means of cross-checking image findings after an endoscopist’s
reading of WCE videos.

5. Conclusions

We developed a new version of the RetinaNet model for the multiclass diagnosis of
lesions in WCE images. The improved version of our model will be especially useful for
endoscopists to appropriately diagnose small intestine disease in daily clinical practice.
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