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Abstract: The angiogenic potential of mesenchymal stem cells (MSCs) is critical for adult vascular
regeneration and repair, which is regulated by various growth factors and cytokines. In the current
study, we report that knockdown SUMO-specific peptidase 1 (SENP1) stimulated the SUMOylation of
MRTF-A and prevented its translocation into the nucleus, leading to downregulation of the cytokine
and angiogenic factor CCN1, which significantly impacted MSC-mediated angiogenesis and cell
migration. Further studies showed that SENP1 knockdown also suppressed the expression of a
chemokine receptor CXCR4, and overexpression of CXCR4 could partially abrogate MRTF-A SUMOy-
lation and reestablish the CCN1 level. Mutation analysis confirmed that SUMOylation occurred on
three lysine residues (Lys-499, Lys-576, and Lys-624) of MRTF-A. In addition, SENP1 knockdown
abolished the synergistic co-activation of CCN1 between MRTF-A and histone acetyltransferase p300
by suppressing acetylation on histone3K9, histone3K14, and histone4. These results revealed an
important signaling pathway to regulate MSC differentiation and angiogenesis by MRTF-A SUMOyla-
tion involving cytokine/chemokine activities mediated by CCN1 and CXCR4, which may potentially
impact a variety of cellular processes such as revascularization, wound healing, and progression
of cancer.

Keywords: human mesenchymal stem cells (hMSCs); SENP1; CXCR4; CCN1; SUMOylation;
MRTF-A; P300

1. Introduction

Mesenchymal stem cells (MSCs) retain considerable potential for adult vascular repair
and regeneration therapies [1]. Through differentiation and paracrine effects, MSCs can
facilitate angiogenesis and new blood vessel formation [2]. Particularly, MSCs have been
demonstrated that can enhance arteriogenesis, one of the most powerful revascularization
mechanisms in adults initiated under various stress conditions [3].

Cytokines and growth factors play a key role in driving the differentiation of MSCs
into specific tissue types by interacting with cell surface receptors to trigger downstream
signaling pathways [4]. For example, the differentiation of human MSCs (hMSCs) into
arterial cells can be induced by a high concentration of endothelial growth factor (VEGF), a
key cytokine involved in the angiogenic process, via serum response factor (SRF)-dependent
gene transactivation [5,6]. SRF is a transcription factor playing a key role in the transduction
of mechanical signals from the cytoplasm or extracellular environment to the nucleus by
controlling multiple downstream genes [7]. It controls cytoskeletal gene expression and
cell migration and therefore is critically required for VEGF-induced angiogenesis.
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Previous studies suggest that myocardin-related transcription factor (MRTF-A) plays
important and dynamic roles during this process [8]. MRTF-A is a transcriptional coactiva-
tor of the SRF, which forms a complex with SRF to prevent it from binding to the CArG box
promoter element of target genes [9,10]. MRTF-A is normally sequestered in the cytoplasm
by binding to G-actin. When G-actin is occupied upon activation of the Rho signaling
pathway and actin polymerization, free MRTF-A is then translocated to the nucleus and
activates SRF [11,12]. The control of SRF activity by MRTF thus provides an important
regulation for angiogenesis and related cellular functions mediated through SRF signaling
pathways.

MRTFs are highly regulated to shuttle into the nucleus and exert their functions.
Besides being regulated through MRTF-actin interactions, posttranslational modifications
such as phosphorylation have also been shown as important regulatory mechanisms via
Rho- and ERK-dependent pathways [13]. It has also been reported that MRTF-A could
interact with small ubiquitin-related modification 1 (SUMO-1) in vitro based on a yeast
two-hybrid screen [14]. However, the impacts of SUMOylation on the cellular function of
MRTF-A are largely unknown.

SUMOylation is a dynamic process regulated by a family of SUMO-specific proteases
called sentrin-specific protease (SENP), which reversely detaches SUMO molecules from
the target proteins [15,16]. Among the six members of the SENP family, it was reported
that SENP1 plays a critical role in coordinating developmental angiogenesis by affecting
the SUMOylation of VEGFR2 and NOTCH1 [17,18].

The differentiation and angiogenesis of MSC are regulated by a complex signaling
network with the possible involvement of multiple cytokines/chemokines. The CCN1
Protein of the cellular communication network (CCN) family is known to play crucial
roles in angiogenesis, which not only interacts with various cytokines but also serves as
an important proinflammatory cytokine in rheumatoid arthritis (RA) [19–21]. There was
also evidence suggesting that the C-X-C receptor type 4 (CXCR4), a chemokine receptor
for stromal cell-derived factor 1 (SDF-1), also plays crucial roles in angiogenesis and tissue
recovery [22,23]. CXCR4 expression can be upregulated by hypoxia and angiogenic factors
such as VEGF [24]. However, the connections between MRTF-A, CCN1, and CXCR4 in
angiogenesis are yet to be fully elucidated.

To further understand the regulation network of MSC differentiation and artery-related
angiogenesis, the current study investigated the impacts of SENP1 knockdown and the
signaling events underlying the SUMOylation of MRTF-A in this process.

2. Materials and Methods
2.1. Cell Culture

Human bone marrow-derived MSCs (hBM-MSCs) were granted from Union Stem Cell
and Gene Engineering Co. (Tianjin, China). hBM-MSCs were grown in ECs differentiation
medium (EDM) (Lonza) supplemented with 50 ng/mL VEGF (PeproTech, Cranbury, NJ,
USA), 5 ng/mL basic fibroblast growth factor (bFGF) (PeproTech), and 2% fetal bovine
serum (FBS) (PAA) for 7 days. Human aortic endothelial cells (HAECs) were purchased
from Tianjin Medical University, China. The cells were seeded in Dulbecco’s Modified
Eagle Medium-F12 Mixture (DMEM-F12, GIBCO, New York, NY, USA), supplemented
with 10% FBS (Hyclone, Logan, UT, USA), and incubated at 37 ◦C in a fully humidified
atmosphere of 5% CO2 in the air.

2.2. CD31/KDR Double-Positive Cell Sorting and Flow Cytometry

A total of 1 × 106 cells were resuspended in 200 µL PBS for 20 min on ice to block non-
specific antibody binding, followed by the addition of respective fluorochrome-conjugated
antibodies (CD31-FITC and KDR-TRITC, 1–1.5 µg per 1 × 106 cells) as well as Isotype IgG
and negative controls that do not require primary antibodies. The mixture was vortexed
and incubated on ice in the dark. After an hour, 400 µL PBS was added to each staining
reaction and vortexed. Then, centrifuge and the cell pellet were resuspended in 500 µL
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of PBS. The above cell suspension was subject to cell sorting using the cell sorter (Becton
Dickinson Immunocytometry Systems, Mountain View, CA, USA). The sorted CD31/KDR
double-positive cells were resuspended in EDM and in vitro expansion. Flow Cytometry
analysis for CXCR4 was performed using rabbit monoclonal antibodies (Abcam, Waltham,
MA, USA, ab124824). Cells were fixed with 4% paraformaldehyde. A goat anti-rabbit IgG
(Alexa Fluor 488, ab150077) was used as the secondary antibody at 1/2000 dilution.

2.3. Quantitative Real-Time PCR (qRT-PCR)

Total RNA was extracted using TRIzol reagent (Invitrogen, Waltham, MA, USA). RNA
was used as the template for RT using random primers and M-MLV reverse transcriptase.
The Fast SYBR Green Master Mix (Applied Biosystems, Waltham, MA, USA) was used
to detect the mRNA levels of the specific genes by Real-Time PCR (Biosystems StepOne,
Foster City, CA, USA, Applied Biosystems). The thermocycling conditions were as follows:
denaturation for 30 s at 95 ◦C, annealing for 45 s at 48–70 ◦C, and a final extension step
of 30 s at 72 ◦C, 30–32 cycles. Error bars represent the mean ± SE of three independent
experiments that were performed in triplicate. The primers used for the PCR experiments
were listed in Supplementary Information.

2.4. Plasmids and Cell Transfection

For transfection experiments, the lentivirus was prepared according to the manu-
facturer’s instructions (GeneCopoeia, Rockville, MD, USA). After incubation for 6 h, the
medium was replaced by DMEM-F12 supplemented with 10% FBS. Transfection was per-
formed according to the manufacturer’s instructions. PCR, western blotting, and luciferase
analysis assays were then performed as described below.

2.5. SENP1 Knockdown Cells in ECs Differentiation Medium (EDM)

Lentiviral particles PLKO.1 and PLKO.1-shSENP1 were constructed from addgene.
The primers used for the amplification of shSENP1 were shown in Supplementary Table
S1. Viruses were packaged by co-transfection with PLKO.1 and PLKO.1-shSENP1 into
293T cells. The supernatants containing viruses were collected 48 h after transfection.
Then, lentivirus was centrifuged and resuspended for further transduction of hMSCs.
Subsequently, hMSCs were transduced with the lentivirus in Opti-MEM and then were
grown in an Ecs differentiation medium (EDM).

2.6. Uptake of Acetylated Low-Density Lipoprotein (DiI-Ac-LDL)

The cells of every experimental group were washed with PBS. Cells were fixed with 4%
paraformaldehyde and 10 ug/mL DiI-Ac-LDL (Biomedical Technologies Inc., Stoughton,
MA, USA) and incubated at 37 ◦C for 30 min. The samples were visualized using a laser
scanning confocal microscope (Olympus, Tokyo, Japan).

2.7. Cell Migration Assay

hMSCsshCtrl and hMSCsshSENP1 were grown in 6-well plates and wounded using a
sterile pipette tip. The progress of migration was recorded immediately following injury,
and photo-micrographs were taken at zero and 48 h.

2.8. Transwell Chamber Assay

hMSCsshCtrl and hMSCsshSENP1 were seeded into the upper chamber of a transwell
cell culture insert with 1.0 × 104 cells in 200 µL of a 1% FBS-containing medium. The lower
chamber was filled with 600 µL of medium containing 10% FBS. Twenty-four hours later,
cells that had migrated to the lower side of the membrane were fixed in 4% paraformalde-
hyde and stained with DAPI. The migrated cells were counted and photographed in five
fields of view (i.e., the upper, lower, left, right, and middle fields), which was performed in
three independent experiments.
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2.9. Immunocytochemistry Assay

The cells after treatment were fixed in 4% paraformaldehyde for 20 min and then
blocked with normal goat serum for 30 min at room temperature. After incubation with
rabbit anti-KDR (Abcam, ab2349) and anti-MRTF-A (Abcam, ab219981) in a humid chamber
overnight, cells were incubated with appropriate secondary antibodies (FITC conjugated
goat anti-rabbit IgG, Santa Cruz, CA, USA) for 30 min at 37 ◦C. After washing with PBS,
the samples were observed under a confocal laser scanning microscope. DAPI stain (blue)
highlights the total nuclei.

2.10. In Vitro Angiogenesis Assay

hMSCsshCtrl and hMSCsshSENP1 were cultured in EDM for 7 days and capillary tube
formation was induced using basement membrane-like material (EC Matrix TM; BD).
Basement membrane-like material was diluted to 0.5–0.7 mg/mL in EDM. A total of
5 × 104 cells were mixed in 300 µL Matrigel with 50 ng/mL VEGF in each well of a 24-well
plate. The structures were photographed using a phase contrast microscope (Olympus)
after 2 d. Total cord length was quantified using image-Pro Plus v4.5 software.

2.11. Western Blotting

Western immunoblotting was performed as described previously [3]. SDS-PAGE was
used to separate the proteins and the membranes were subsequently incubated with differ-
ent rabbit primary antibodies for CCN1 (Abcam, ab230947), SENP1 (Abcam, ab108981),
CXCR4 (Abcam, ab124824), Hey2 (Abcam, ab86010), EphrinB2 (Abcam, ab131536), Dll4
(Abcam, ab176876), mouse anti-MRTF-A (Abcam, ab219981), and mouse anti-GAPDH
(Santa Cruz, sc-166574) overnight at 4 ◦C. The secondary antibodies were IRDye-800-
conjugated anti-mouse and anti-rabbit immunoglobulin G (Li-COR Biosciences, Lincoln,
NE, USA) (1:200). Immunoreactivity was detected using an Odyssey Infrared Imaging
System (Gene Company Ltd., Chai Wan, Hong Kong). GAPDH expression was used as
an internal control. The relative quantification of protein expression was analyzed using
ImageJ software (version 1.53).

2.12. Co-Immunoprecipitation

The lysates of hMSCsshCtrl and hMSCsshSENP1 treated with EDM were collected. MRTF-
A antibodies and Protein A agarose (Millipore, Burlington, MA, USA) were then used
to precipitate MRTF-A from the whole cell lysate. The resulting mixture was washed,
subjected to SDS-PAGE, transferred to nitrocellulose (NC) membranes, and probed with
SUMO-specific antibodies to visualize SUMO-1-MRTF-A.

2.13. Luciferase Assay

Transfection reporter assays were performed in 24-well plates. Cells were harvested
24 h after transfection and luciferase activity was measured using the Dual luciferase assay
system (Promega, Madison, WI, USA). Unless otherwise indicated, 100 ng of reporter and
400 ng of activator plasmids were used. Results were normalized by dividing the Firefly
luciferase activity with the Renilla luciferase activity of the same sample. Each sample was
examined in duplicate, and it was repeated in 3 different experiments.

2.14. Chromosomal Immunoprecipitation (ChIP) Assay

ChIP analysis was performed in HAECs co-transfected with MRTF-A, P300, and
shSENP1 plasmids, using a commercially available Enzymatic Chromatin IP kit with
magnetic beads (Cell Signalling Technology, Danvers, MA, USA). The proteins were cross-
linked to DNA by formaldehyde at 2% concentration for 30 min at room temperature.
The protein-DNA complexes were immunoprecipitated using primary antibodies against
MRTF-A (1:200; Sigma-Aldrich; Merck KGaA, Darmstadt, Germany). The signals of the
CCN1/MRTF-A/P300/shSENP1 promoter complexes were measured by PCR. The primers
used for the amplification of CCN1 were listed in Supplementary Information (Table S2).



Biomedicines 2023, 11, 914 5 of 15

2.15. Statistical Analysis

Data were expressed as mean ± SE, accompanied by the number of experiments
performed independently, and analyzed by Student’s t-test. Differences at an alpha value
of p < 0.05 were considered statistically significant differences between pairs or groups
of data.

3. Results
3.1. SENP1 Is Involved in the Differentiation of hMSCs into Artery-Specific Endothelial Cells

To study whether post-translational modification by SUMO may be involved in reg-
ulating arterial-specific endothelial differentiation of hMSCs, we first determined the ex-
pression of SUMO1 and SUMO2, the two most distantly related SUMO family paralogues.
Following induction of differentiation in EDM media, CD31- and KDR-positive cells were
separated by magnetic bead sorting and flow cytometry at day 7 with a purity of 98.5%
(Figure 1A). The obtained artery-specific ECs were confirmed based on the expression of
arterial marker genes (EphrinB2, Hey2, Dll4, and Notch1) [25,26], which were significantly
elevated as determined by RT-PCR (Figure 1B). Compared to hSMCs, the expression of
SUMO1 in ECs was significantly reduced while SUMO2 was not much changed, indicating
that SUMO1 may play a role in facilitating the differentiation toward the formation of
artery-specific ECs (Figure 1C). In line with the suppression of SUMO1 transcription, the
transcription of the deSUMOylating enzymes, SUMO-specific peptidase 1 (SENP1), and
2 (SENP2), was both significantly increased after differentiation (Figure 1D). The upregula-
tion of SENP1 was more prevalent, that is over four-fold of SENP2, indicating that it may
be a major modifier of SUMO1 level during differentiation.

Biomedicines 2023, 11, x FOR PEER REVIEW 6 of 16 
 

 
Figure 1. SENP1 participates in arterial-specific endothelial differentiation of hMSCs. (A) MSC-dif-
ferentiated EC cells (CD31- and KDR-positive) were sorted at 7 days and cultured in EDM media 
with a purity of 99.54%. (B) Arterial-specific marker genes (Dll4, EphrinB2, Hey2, and Notch1) were 
examined in obtained ECs by qRT-PCR. (C,D) The expression changes of SUMO1-2 and SENP1-2 
during endothelial differentiation were determined by qRT-PCR. Bar graphs are shown as the mean 
± SD with individual points from three independent experiments (p values were indicated in the 
graph, individual data points were shown as scattered black dots). 

3.2. SENP1 Stable Knockdown Suppresses Endothelial-Specific Differentiation of hMSCs and 
Exhibits Weaker Migration and Angiogenesis Potential 

To understand the role of SUMO posttranslational protein modification during 
hMSC differentiation, we generated SENP1 stable knockdown hMSCs by lentivirus-based 
shRNA (Figure 2A). As determined by the DiI-Ac-LDL uptake assay based on the charac-
teristic property of endothelial cells via their scavenger cell pathway of LDL metabolism, 
results showed that the SENP1-competent hMSCs acquired the ability to incorporate DiI-
Ac-LDL following EDM-induced differentiation, whereas SENP1-knockdown hMSCs lost 
this capability (Figure 2B), giving the first indication that the differentiation toward ECs 
was inhibited. Further analysis of the endothelial-specific gene KDR also showed that it 
was significantly inhibited in hMSCsshSENP1 compared to WT hMSCs (Figure 2C). These 
results demonstrate that SENP1 is indispensable during the differentiation of hMSCs to-
ward endothelial lineage. Interestingly, the knockdown of SENP1 also showed suppress-
ing effects on cell migration and angiogenesis. As determined by the gap-filling assay, the 
gap was significantly less filled in hMSCshSTC1 compared to control hMSCs after 48 h 
(Figure 2D). The inhibitory effect on cell migration was further confirmed by the transwell 
assay. As shown in Figure 2E, significant cell migration and invasion were observed in 
hMSCsshCtrl, whereas there was over four times reduction in the cell numbers migrating 
across the Transwell chamber membrane in hMSCsshSENP1. To assess angiogenesis, mono-
layer cell culture on the surface of 3D gels in three-dimensional in vitro assays was per-
formed after induction with EDM for 48 h. While WT hMSCs can form vessel-like struc-
tures, it was not formed in SENP1-knockdown hMSCs (Figure 2F). In addition, the 

Figure 1. SENP1 participates in arterial-specific endothelial differentiation of hMSCs. (A) MSC-
differentiated EC cells (CD31- and KDR-positive) were sorted at 7 days and cultured in EDM media
with a purity of 99.54%. (B) Arterial-specific marker genes (Dll4, EphrinB2, Hey2, and Notch1) were
examined in obtained ECs by qRT-PCR. (C,D) The expression changes of SUMO1-2 and SENP1-
2 during endothelial differentiation were determined by qRT-PCR. Bar graphs are shown as the
mean ± SD with individual points from three independent experiments (p values were indicated in
the graph, individual data points were shown as scattered black dots).
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3.2. SENP1 Stable Knockdown Suppresses Endothelial-Specific Differentiation of hMSCs and
Exhibits Weaker Migration and Angiogenesis Potential

To understand the role of SUMO posttranslational protein modification during hMSC
differentiation, we generated SENP1 stable knockdown hMSCs by lentivirus-based shRNA
(Figure 2A). As determined by the DiI-Ac-LDL uptake assay based on the characteristic
property of endothelial cells via their scavenger cell pathway of LDL metabolism, results
showed that the SENP1-competent hMSCs acquired the ability to incorporate DiI-Ac-
LDL following EDM-induced differentiation, whereas SENP1-knockdown hMSCs lost this
capability (Figure 2B), giving the first indication that the differentiation toward ECs was
inhibited. Further analysis of the endothelial-specific gene KDR also showed that it was
significantly inhibited in hMSCsshSENP1 compared to WT hMSCs (Figure 2C). These results
demonstrate that SENP1 is indispensable during the differentiation of hMSCs toward
endothelial lineage. Interestingly, the knockdown of SENP1 also showed suppressing effects
on cell migration and angiogenesis. As determined by the gap-filling assay, the gap was
significantly less filled in hMSCshSTC1 compared to control hMSCs after 48 h (Figure 2D).
The inhibitory effect on cell migration was further confirmed by the transwell assay. As
shown in Figure 2E, significant cell migration and invasion were observed in hMSCsshCtrl,
whereas there was over four times reduction in the cell numbers migrating across the
Transwell chamber membrane in hMSCsshSENP1. To assess angiogenesis, monolayer cell
culture on the surface of 3D gels in three-dimensional in vitro assays was performed
after induction with EDM for 48 h. While WT hMSCs can form vessel-like structures, it
was not formed in SENP1-knockdown hMSCs (Figure 2F). In addition, the expression
of arterial-specific genes Dll4, EphrinB2, Hey2, and Notch1 were significantly inhibited in
hMSCsshSENP1 (Figure 2G). Taken together, the above results demonstrated that SENP1
plays an important role not only in the differentiation of hMSCs toward artery-specific ECs
but also in the obtaining of angiogenesis capacity.

3.3. SENP1 Knockdown Led to SUMO1 Modification of MRTF-A

Considering that MRTF-A has been reported that can promote both artery-specific
differentiation and tumor cell metastasis [27], we questioned whether the suppressed an-
giogenesis following SENP1 knockdown may be mediated by its interaction with MRTF-A.
SUMOylation of MRTF-A was determined by western blot in cell lysates using an antibody
for MRTF-A. As shown in Figure 3A, the level of SUMOylation was evidently increased in
hMSCsshSENP1 undergoing differentiation compared to that in the ECs differentiated from
control WT hMSCs, which showed additional slower-migration bands as determined by
western blotting. Further analysis by immunofluorescence imaging indicated that knock-
down of SENP1 suppressed the translocation of MRTF-A to the nucleus (Figure 3B). To con-
firm the slower-migrating protein bands were SUMO-1 conjugate, co-immunoprecipitation
assays were performed. As shown in Figure 3C, the MRTF-A antibody identified a band
that reacted with anti-SUMO1 in the hMSCsshSENP1 group. It is worth mentioning that the
pull-down consisted of an antibody-MRTF-A complex with varying numbers of SUMO
groups. Due to the large size of the complex, SUMOylated proteins were all detected as a
single band. The above data demonstrated that SENP1 knockdown significantly enhanced
the SUMOylation of MRTF-A and prevented its translocation into the nucleus.
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Figure 2. SENP1 stable knockdown suppressed endothelial-specific differentiation of hMSCs and
led to reduced migration and angiogenesis capacity. (A) Stable knockdown cell lines of the SENP1
gene were generated by lentivirus-based RNAi. (B) DiI-Ac-LDL uptake analysis of hMSCsshSENP1

and hMSCsshCtrl. (C) Immunofluorescence detection of endothelial marker KDR in hMSCsshSENP1

and hMSCsshCtrl. (D) Cell migration determined by wound healing assay, and the migration rate was
quantified by measuring the scratch gap width after 24 h of cell culture. (E) The invasion capacity of
hMSCsshSENP1 and hMSCsshCtrl was determined by transwell chamber assay, and the migration rate
was quantified by measuring the percentage of cells that migrated across the membrane after 24 h
of cell culture. (F) Angiogenesis determination by Matrigel based on the formation of capillary-like
structures. (G) The protein expression of arterial-specific genes Dll4, EphrinB2, Hey2, and Notch1
in hMSCsshSENP1 and hMSCsshCtrl and quantification. Experiments were repeated three times, and
quantitation is shown as the means ± SD from three independent experiments (p values were
indicated in the graph, and individual data points were shown as scattered black dots).

3.4. SENP1 Knockdown Suppressed the Expression of CXCR4, Which Was Causatively Related to
SUMO1 Modification of MRTF-A and CCN1 Expression

In an attempt to screen for other factors that may be affected by SENP1 knockdown,
we identified that the expression of the chemokine receptor CXCR4 was significantly sup-
pressed on both mRNA and protein levels as determined by RT-PCR and western blotting
(Figure 3D,E). FACS analysis further confirmed that the percentage of CXCR4 positive
cells was evidently reduced from ~70% in hMSCsshCtrl to less than 10% in MSCsshSENP1

(Figure 3F). To further investigate whether CXCR4 suppression was causatively involved
in the regulation of MRTF-A, we determined its impact on the SUMOylation of MRTF-A.
As shown in Figure 3G, overexpression of CXCR4 in MSCsshSENP1 cells could partially
inhibit MRTF-A SUMOylation level. In addition, CXCR4 overexpression also abrogated
the suppression of CCN1 by MRTF-A SUMOylation. CCN1 is a key angiogenic factor that
will be further discussed below. Furthermore, overexpression of CXCR4 in hMSCsshSENP1

evidently restored the cell invasion capacity (Supplementary Figure S1) and preliminary
results showed that knockdown of SENP1 also suppressed the expression of SDF-1 mRNA
level in hMSCs (Supplementary Figure S2). These data suggest that CXCR4 was likely a
negative regulator of MRTF-A SUMOylation in addition to SENP1.
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(A) MRTF-A SUMOylation analyzed by Western blotting in hMSCsshSENP1 and hMSCsshCtrl after
EDM-induced differentiation. (B) Immunofluorescence detection of MRTF-A cellular localization.
(C) Co-immunoprecipitation analysis to determine the conjugation between MRTF-A and SUMO1.
(D,E) The expression of CXCR4 in hMSCsshSENP1 and hMSCsshCtrl determined by mRNA level and
protein expression. (F) The expression of CXCR4 analyzed by flow cytometry, which was represented
by a green peak for CXCR4- cells and a red-brown peak for CXCR4+ cells. (G) Over-expressing
CXCR4 partially abrogated the impact of SENP1 knockdown on MRTF-A SUMOylation and CCN1
expression. Quantitation is shown as the means ± SD (p values are as indicated, n = 3. Individual
data points were shown as scattered black dots).

3.5. SUMOylation of MRTF-A Occurred on Three Lysine Residues and Played a Critical Role in
Transactivating the Angiogenic Factor CCN1

To investigate the acceptor sites for SUMOylation, a series of MRTF-A missense
mutants on known lysine residues that can form SUMO conjugates were created (Figure 4A).
The expression vectors of the MRTF-A lysine-substitution single mutants (K499R, K576R,
and K624R), double mutants, or triple mutants were transfected into HAECs concomitant
with shSENP1, and their impacts on SUMOylation were tested. As shown in Figure 4B, the
three MRTF-A single mutants could partially suppress the formation of SUMOylation
bands compared to the WT control. Double or triple mutants, on the other hand, almost
completely abolished the formation of SUMOylation. These results indicated that the K499,
K576, and 624R sites all contributed to the formation of SUMO conjugates on MRTF-A, and
mutation on any two sites of them would prevent SUMOylation.

It was reported that the nuclear localization of MRTF-A was associated with the
transactivation of an angiogenic factor CCN1, which is an early response gene critical
for vascular development and repair [28]. To further study the downstream events that
may be impacted by SENP1 knockdown and its regulation on MRTF-A SUMOylation, the
expression and activity of CCN1 were analyzed. As shown in Figure 4D,E. The expression of
CCN1 was in line with the level of SUMOylation of MRTF-A, which increased continuedly
when suppressing SUMOylation with single, double, and triple lysine-substitution mutants.
This suggests that SUMOylation of MRTF-A blocks its interaction or transactivation of
CCN1. The activation of CCN1 was further analyzed by luciferase assay, which confirms
that abolishing MRTF-A SUMOylation could increase the activation of CCN1 (Figure 4F).
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These results not only indicate that the three lysine residues, Lys-499, Lys-576, and Lys-624,
are the major sites for SUMOylation in MRTF-A but also revealed the possible downstream
regulation network to affect angiogenesis through MRTF-A SUMOylation.
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Figure 4. The correlation between CCN1 transactivation and MRTF-A SUMOylation. (A) The three
putative SUMOylation sites of MRTF-A are located within amino acids 471-630. (B) Confirmation
of SUMO-binding sites with specific point mutations (K499, K576, and K624) of MRTF-A together
with shSENP1. The whole cell lysates were subjected to western immunoblotting with an anti-MRTF-
A specific antibody. (C) SUMO-1 specific SUMOylation of MRTF-A was confirmed by transient
transfection with conjugation-defective SUMO-1 (∆GG) HAECs. (D,E) Increased expression of CCN1
following disruption of SUMOylation by the transient introduction of K499/576/624R mutations
examined by qRT-PCR and western blot. (F) Luciferase analysis of CCN1 activation in WT and lysin
mutants of MRTF-A. (G,H) Abolishing SUMOylation with conjugation-defective SUMO-1 (∆GG) led
to increased expression of CCN1 as examined by qRT-PCR and western blot, and transactivation as
determined by luciferase assay. The signs ‘+’ means present and ‘−’ means absent for the conditions
indicated in each graph. Quantitation is shown as the means ± SD (p values are as indicated, n = 3.
Individual data points were shown as scattered black dots).

To further confirm the functional regulation of MRTF-A by SUMO1, a conjugation-
defective mutant form of SUMO1 (∆GG), which deleted the two C-terminal Gly residues
that are required for isopeptide bond formation, was co-transfected with MRTF-A and
shSENP1 into HAECs. As shown in Figure 4C, overexpression of SUMO1(∆GG) abolished
the formation of SUMOylated MRTF (slower migration bands) as determined by western
blot analysis using anti-MRTF-A antibodies. In addition, qRT-PCR and western blot analysis
demonstrated that overexpression of SUMO-1 (∆GG) stimulated the expression of CCN1,
which was related to the reduced SUMOylation of MRTF-A (Figure 4G). The transactivation
of CCN1 by SUMO-1 (∆GG) and MRTF-A was also confirmed by the Luciferase assays
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(Figure 4H). Taken together, these results demonstrated the modification of MRTF-A by
SUMO1 played important regulation roles for its cellular functions.

3.6. SENP1 Knockdown Abolished the Synergetic Induction of CCN1 by the Coordination between
MRTF-A and P300

As a multi-function matricellular protein, the activation of CCN1 is also regulated
by acetylation. Studies showed that the histone acetyltransferase p300 interacted with the
C-terminal TAD domain of MRTF-A, which could synergistically enhance the expression of
CCN1 [29,30]. Here, we further investigated whether SUMOylation and acetylation may
interfere with each other by co-transfection of MRTF-A and P300 in HAECs. As shown
in Figure 5A–C, over-expression of both MRTF-A and P300 significantly enhanced CCN1
transactivation. SENP1 knockdown completely abolished this synergistic effect, suggesting
that SUMOylation could prevent the interaction between MRTF-A and p300. Further study
using ChIP assay to detect the acetylation level surrounding the SRF site of the CCN1
promoter in HAECs showed that SENP1 knockdown inhibited histone3K9, histone3K14,
and histone4 (Figure 5D–F). These results revealed an interesting signaling pathway on
how defective regulation of SUMOylation may impact cell angiogenesis and mitigation.
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Western blot. (C) CCN1 transactivation was analyzed using luciferase assay after 24 h transfection of
MRTF-A, P300, shENP1, and CCN1 promoter-Luc plasmids into HAECs. (D–F) ChIP assays were
performed in HAECs after transfection, and cross-linked chromatin was immunoprecipitated with
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4. Discussion

The angiogenic potential of MSCs plays a crucial role in maintaining vascular in-
tegrity. In the current study, we demonstrated that increased SUMOylation of MRTF-A
and reduced CXCR4 expression, as a result of SENP1 knockdown, significantly impacted
MSC-mediated angiogenesis and cell migration by preventing the translocation of MRTF-A
into the nucleus. We identified the angiogenic factor CCN1 as the key downstream effector
following SUMOylation and revealed the abolished synergistic co-activation of CCN1 by
MRTF-A and histone acetyltransferase p300 is responsible for the above impacts. These
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results revealed an important regulation mechanism in controlling MSC differentiation
toward angiogenesis or arteriogenesis.

Previous studies have shown the importance of MRTF-A in vascular development,
migration, and invasion via Rho and SRF signaling pathways [31–33]. However, the
regulation of MRTF-A function by SUMOylation has not been addressed. Our results in
the current study indicated that modulation of SUMOylation had strong effects on EC
migration and angiogenesis. The identification of the three SUMO-accepting lysine sites on
MRTF-A and mutation analysis of the related gene expression changes confirmed that the
impact on angiogenesis was through SUMOylation of MRTF-A instead of other protein
targets. Unbalanced SUMOylation is known that can result in tumour progression and
other diseases [34–36]. Therefore, it is reasonable to assume that dysregulated SUMOylation
on MRTF-A and MSC-associated angiogenesis may contribute to the occurrence of certain
diseases relating to or relying on angiogenesis and vascular functions.

As one of the major SUMO-specific cysteine proteases, SENP1 knockdown inhibited
the translocation of MRTF-A into the nucleus (Figure 3), indicating that SUMOylation
serves as a mechanism in holding MRTF-A in the cytoplasm in MSCs. SENP1 has been
investigated in many cancers including prostate cancer, breast cancer, and colon cancer,
which played important roles in suppressing cell proliferation and invasion [37,38]. The
present study is consistent with these findings and provided further information that
MRTF-A might be a major mediator downstream.

The present study indicated that the inhibition of angiogenesis following SENP1
knockdown was through the impact of MRTF-A on CCN1, which was confirmed by mu-
tation analysis through disrupting SUMO-conjugation sites. As a matricellular protein
required for angiogenesis and vasculogenesis during embryonic development, the expres-
sion of CCN1 is dynamically controlled [39]. CCN1 promotes endothelial cell growth and
migration partly through cell surface integrins [40]. The proangiogenic property of CCN1
has been demonstrated in different research models, which improved angiogenesis and
collateral blood flow to a greater extent than VEGF [41,42]. It is worth pointing out, SENP2
may also play a role in angiogenesis. A recent study showed that SENP2 regulates the
succinate dehydrogenase (SDH) complex assembly under hypoxia, which affects mitochon-
drial function and angiogenesis [43]. Inhibition of SENP2 has also been reported that can
promote cardiac regeneration via activating the Akt pathway [44]. However, there is no
evidence to suggest a direct connection with either MRTF-A or CCN1.

MRTF-A was shown to bind the CArG box within the CCN1 promoter via SRF to
stimulate the expression of CCN1 [45,46]. As to the mechanism of how MRTF-A SUMOy-
lation affected the activity of CCNs, our data suggest that the lack of interaction between
p300 and MRTF-A played a major role. The synergistic effect between MRTF-A and p300
on CCN1 expression had been demonstrated in earlier studies [29]. The current study
revealed an interesting coordination between different protein modification processes since
SUMOylation of MRTF-A could affect the acetylation mediated by p300.

Interestingly, the chemokine receptor CXCR4 seems to play a regulatory role on
MRTF-A SUMOylation since its overexpression could partially suppress the level of the
latter induced by SENP1 knockdown (Figure 3). Together with the results that CXCR4
overexpression upregulated CCN1 level, and SENP1 knockdown suppressed its expression,
these data indicate that CXCR4 was likely to play a role upstream of MRTF-A. CXCR4 is
a chemokine receptor specific for stromal cell-derived factor-1 (SDF-1), which regulates
numerous activities such as chemotaxis, adhesion, and cell proliferation [47,48]. SDF-
1α/CXCR4 signaling was reported previously that played a crucial role in the process of
pathological neovascularization [49]. While further studies are required to know more
details underlying the interactions and signaling pathways on how SENP1 knockdown
upregulated CXCR4 by what mechanism it affected MRTF-A SUMOylation, the data
presented in the current study suggest that cytokines/chemokines may serve as another
layer of regulation on MSC angiogenesis in addition to SENP1/SUMOylation.
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In conclusion, the current study revealed that SENP1 knockdown led to increased
MRTF-A SUMOylation, which inhibited arterial-specific endothelial angiogenesis of hMSCs
via down-regulating CCN1 (a proposed signaling pathway is presented in Figure 6). The
regulation of MRTF-A function by SUMOylation may potentially impact a variety of cellular
processes such as revascularization, wound healing, and progression of cancer.
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