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Abstract: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to
morbidity and mortality, with several clinical manifestations, and has caused a widespread pandemic.
It has been found that type 2 diabetes is a risk factor for severe coronavirus disease 2019 (COVID-19)
illness. Moreover, accumulating evidence has shown that SARS-CoV-2 infection can increase the
risk of hyperglycemia and diabetes, though the underlying mechanism remains unclear because of
a lack of authentic disease models to recapitulate the abnormalities involved in the development,
regeneration, and function of human pancreatic islets under SARS-CoV-2 infection. Stem-cell-derived
islet organoids have been valued as a model to study islets’ development and function, and thus
provide a promising model for unraveling the mechanisms underlying the onset of diabetes under
SARS-CoV-2 infection. This review summarized the latest results from clinical and basic research
on SARS-CoV-2-induced pancreatic islet damage and impaired glycemic control. Furthermore, we
discuss the potential and perspectives of using human ES/iPS cell-derived islet organoids to unravel
the bidirectional relationship between glycemic control and SARS-CoV-2 infection.
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1. Introduction

The storm of coronavirus disease 2019 (COVID-19) has been sweeping the globe since
the end of 2019. Infection with the new coronavirus, severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), leads to morbidity and mortality, with several clinical mani-
festations such as pulmonary failure, cardiovascular disorder, pancreatic and other organ
dysfunctions, and has caused a widespread pandemic at an unanticipated level [1–4]. Se-
vere outcomes can include respiratory failure and even death induced by viral pneumonia,
although there is a large population that manifests with asymptomatic infections or mild
upper respiratory tract disease. Infection with the virus occurs through several receptors,
mainly the angiotensin-converting enzyme-II receptor (ACE2) [5–7], with the help of other
cofactors such as TMPRSS2, NRP1 [8,9], transferrin receptor [10], and FURIN [5,11]. Fol-
lowing viral proliferation after infection, the immune responses are triggered to defend
against the infection. Through multiple infection pathways by binding different recep-
tors, the infection can cause damage to different organs, leading to various consequences.
These include pneumonia and acute respiratory distress syndrome caused by lung damage,
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arrhythmia caused by cardiac damage, acute pancreatitis and diarrhea caused by gastroin-
testinal damage, hyperglycemia caused by pancreatic islet damage, and many long-term
complications [12]. Although the majority of people with a normal immune system are
able to defend against this viral infection, there are often complications accompanied by
tissue damage. Notably, it has been shown that elderly people with chronic diseases have a
higher risk of severe clinical symptoms and a higher mortality rate than younger people [4].

A bidirectional link between COVID-19 and diabetes mellitus has extensively been
noted. On one hand, substantial clinical data have reported the increased severity and
mortality in COVID-19 patients with new-onset diabetes since 2020 [13–17]. One-third
of deaths that occurred in individuals with pre-existing type 1 diabetes (T1D) and type 2
diabetes (T2D) were caused by COVID-19 from 1 March to 11 May 2020 [18]. On the other
hand, an increasing amount of evidence has shown that SARS-CoV-2 infection can induce
the development of hyperglycemia and new-onset diabetes [19–22]. It is therefore of great
importance to focus on the long-term influence of COVID-19 on glycemic control.

2. Method

The authors reviewed the state of knowledge of using islet organoid models to study
the bidirectional relationship between SARS-CoV-2 infection and glycemic control. The
keywords used for the search were “diabetes and SARS-CoV-2”, or “organoid models and
SARS-CoV-2”, or “pancreatic islet and SARS-CoV-2”. More than 100 papers were identified
using PubMed as primary source for the literature review.

3. Human Infection and Organ Injury
3.1. Virus Entry

In the early 21st century, a coronavirus named SARS-CoV caused a worldwide pan-
demic. As a beta-coronavirus, SARS-CoV-2 is highly similar to SARS-CoV. Both of them
bind the ACE2 receptor and require other virus entry factors or proteases to facilitate the cell
entry of these viruses [23,24]. Briefly, the S protein of SARS-CoV-2 is cleaved by proprotein
convertases such as furin in the virus-producing cells to generate the S1 and S2 subunits.
The S1 subunit then binds the receptor and the S2 subunit facilitates the attachment of the
S protein to the virion membrane, thereby mediating membrane fusion. TMPRSS2 and
cathepsin L are the two major proteases involved in the activation of the S protein and
further enhance the attachment and endocytosis through which the viruses then invade the
host cell [10].

3.2. Organ damage

The poor outcomes of COVID-19 are caused by not only damage to the lungs but
also multi-organ damage, including to the lung, kidney, heart, liver, intestines, eyes, and
skin [25]. Among these, the lungs have been thought to be the nidus and niche for viral
proliferation. The spillage of the virus enters the bloodstream and then leads to the
failure of other organs [25,26], although several studies have reported viral RNA reads
in these non-lung tissues [27,28]. Early infection activates the immune system [29] and
the acute phase always results in respiratory tract symptoms, fever, and other respiratory
manifestations caused by uncontrolled inflammation, which is referred to as “cytokine
storm syndrome” (SCC) [30,31]. To focus on this hyper-stimulated immune response, a
large amount of cytokines and chemokines such as interferon γ [32], IL-1α, IL-1β, IL-2,
IL-6, IL-10 [33], and ferritin [34] are involved in the resistance against the bacterial and
viral infection, ultimately resulting in severe tissue damage and multi-organ failure, as
well as predisposing the patient to complications of the disease [35]. COVID-19, at the
level of pulmonary damage, can involve interstitial inflammation; diffuse alveolar damage
(DAD), mostly bilateral DAD; and necrotizing bronchitis/bronchiolitis [36]. It has to be
mentioned that COVID-19 patients can also suffer from acute fibrinous and organizing
pneumonia, although the proportion is low [37]. Widespread manifestations have been
shown to be a peculiarity of COVID-19, including those in gastrointestinal tissues [38].
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Chai et al. demonstrated that not only the hepatocytes but also the intra-hepatic bile duct
can express ACE2 receptors [39].

Moreover, the spread of SARS-CoV-2 from the site of the lung to the kidney through
blood circulation can induce acute kidney injury because of the wide distribution of ACE2
receptors in the proximal tubules and podocytes [40]. In the case of cardiac disease in
COVID-19, similarly to the aforementioned organs, the presence of ACE2 receptors on
the cardiac myocytes facilitates infection with the virus [41]. Delorey et al. reported that
both cell composition and gene programs have changed in the hearts of COVID-19 patients
compared with those of healthy subjects. However, the extent of myocardial involvement
might not be as severe as in other organs damaged by SARS-CoV-2 [28]. Nonetheless,
there are recent clinical data that reveal the development of post-COVID-19 syndrome,
the morbidity of which commonly includes anxiety, intermittent fever, headache, sleep
disturbances, cognitive dysfunction, and other neurological illness [42,43].

3.3. SARS-CoV-2 Infection Leading to Islet Damage

The pancreas is composed of alpha, beta, delta, polypeptide (PP), mesenchymal, acinar,
ductal, and endothelial cells, together with immune cells. Each of these has specific marker
genes, for example, glucagon (GCG) for alpha cells, insulin (INS) for beta cells, PRSS1 for
acinar cells, and somatostatin for delta cells, which play robust roles in the classification of
pancreatic cells. ACE2 receptor and TMPRSS2 effector protease are the two acknowledged
proteins participating in the entry of SARS-CoV-2 [32,38], and have been shown to be
present in alpha, beta, delta, mesenchymal, acinar, and ductal cells [44–46]. Recent studies
using pancreases from deceased patients and human pluripotent-stem-cell-derived islet
organoids have both demonstrated that SARS-CoV-2 is able to infect both alpha and beta
cells [47]. Müller et al. reported the existence of SARS-CoV-2 spike proteins in pancreatic
alpha and beta cells from SARS-CoV-2-infected patients [48,49]. ACE2 was also detected
in hPSC-derived beta cells and alpha that had been transplanted into SCID beige mice
for 2 months [48]. Nonetheless, there are contradictions about the expression of ACE2 in
pancreatic islets, especially beta cells. For example, ACE2 and TMPRSS2 were not enriched
in single beta cells when human islet cells were analyzed [46], whereas a moderate signal
of ACE2 was detected in endocrine cells, including beta cells [48]. A low expression level
of N-protein in the beta cells from islets of the infected patients has been reported [48].
Thus, more research is needed to clarify the molecular mechanism underlying whether the
SARS-CoV-2 infection of the islets would trigger diabetes [50].

The damage to beta cells caused by SARS-CoV-2 infection includes the depression
of the beta cells’ insulin secretion and the induction of beta cell apoptosis, with a similar
signaling pathway to T1D, as demonstrated from phosphoproteomic pathway analysis.
Therefore, SARS-CoV-2 is thought to directly kill beta cells [10]. Single-cell RNA-seq further
revealed that the expression of INS was downregulated in SARS-CoV-2-infected islets,
while the expression of other marker genes such as GCG, TM4SF4, and RFX6 in alpha
cells, and PRSS2 in acinar cells, were increased in infected islets [10]. As well as cell
death, the de-differentiation or trans-differentiation of beta cells may be other mechanisms
for the damage induced by SARS-CoV-2 infection; for example, the trans-differentiation
of beta cells to alpha cells may elicit another cell fate induced by SARS-CoV-2 infection,
resulting in abnormal glucose control [51]. As suggested by Shin, the impairment of the
insulin/IGF signaling pathway may contribute to COVID-19 pathology through interferon
regulatory factor 1 (IRF1) [52]. Although clinical evidence has shown that SARS-CoV-2
infection impairs pancreatic islet function, more research should be conducted to reveal the
molecular and biochemical relationships between glucose metabolism and SARS-CoV-2
infection.
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4. The Bidirectional Relationship between SARS-CoV-2 Infection and
Glucose Metabolism
4.1. Diabetic Patients Are Prone to Infection by SARS-CoV-2 and Have Increased
COVID-19 Severity

Increasing evidence has suggested that patients with pre-existing diabetes are prone
to be infected by SARS-CoV-2, with a higher severity of COVID-19. For instance, Guan et al.
reported that people with poor glycemic control caused by diabetes are more susceptible to
SARS-CoV-2 infection, and that individuals with diabetes were shown to have a higher risk
of severe COVID-19 [53]. To investigate the reasons why people with diabetes are more
prone to infection, it is necessary to elucidate the relationship between glycol metabolism
and the immune response. People with T2D and obesity are characterized by metabolic dis-
orders combined with immune dysfunction, resulting in the accumulation and activation of
immune cells located in different tissues, such as T cells, dendritic cells, macrophages, neu-
trophils, and B cells, which then enhance the production of chemokines and cytokines [54].
Other metabolic factors including lipokines, adipokines, and branched-chain amino acids
are at an abnormal level in patients with T2D and obesity, which also contribute to inflam-
mation [54,55]. The dysfunctional immune system is probably responsible for the higher
risk of viral infection through the activation of the NLRP3 inflammasome [56].

A number of studies have reported that diabetes increases the risk of many infec-
tions. Interestingly, the more dysregulated the glycemic control in infected people, the
higher the mortality and morbidity [57,58]. Since the outbreak of the pandemic, it has
transpired that there is a higher risk of severe COVID-19 outcomes and higher rates of
mortality in people with metabolic disorders, as suggested by case series from different
areas [13–17]. A retrospective analysis from the USA has reported that 58% of the patients
with COVID-19 who were admitted to ICUs had diabetes mellitus before being infected [59].
Case series in England also reported increased COVID-19 mortality in people admitted
to the intensive care unit (ICU) or high dependency unit (HDU) who had T2D than in
those without diabetes [60]. Alongside the severity and mortality, the risk of reinfections,
vaccine breakthrough infections, and long COVID appear to be higher in patients with dia-
betes [55]. Lim proposed several mechanisms that link clinical severity and T2D, including
inflammatory cytokine production, endothelial damage, insulin resistance mediated by the
renin–angiotensin–aldosterone system, and so on, thus leading to series of complications
such as thrombosis and other organ damage [61]. In addition, SARS-CoV-2 infection may
result in the aggravation of metabolic diseases [16].

4.2. SARS-CoV-2 Infection Predisposes COVID-19 Patients to Hyperglycemia

Regardless of pre-existing diabetes before SARS-CoV-2 infection, it has been sug-
gested that hyperglycemia is a characteristic clinical manifestation for people with severe
COVID-19 [17,62,63]. An analysis of the Glytec database suggested a close association be-
tween hyperglycemia/hypoglycemia and poor outcomes of COVID-19 [64,65]. In the report
by Bode et al., 257 of 1122 people with COVID-19 were diagnosed with poorly controlled
hyperglycemia, with glucose readings higher than 10 mM. The risk of hyperglycemia and
hypoglycemia, long COVID-19, and even death was shown to be higher in people with
uncontrolled glucose levels [66]. Furthermore, the drug therapy for COVID-19 such as RNA
polymerase inhibitors and chloroquine also appears to contribute to hyperglycemia [67,68].
New-onset diabetes has been reported in several studies, suggesting possible links between
the onset of T1D, T2D, severe diabetic ketoacidosis, and SARS-CoV-2 infection [69,70]. More
clinical evidence linking SARS-CoV-2 and glucose metabolism disorder is shown in Table 1,
and the possible mechanism of this could be the aggravated inflammation leading to beta
cell dysfunction, the impairment of the action of insulin, and a deterioration in insulin
resistance [54]. Furthermore, the expression of ACE2 is downregulated after SARS-CoV-2
infection, and this plays a critical role in the renin–angiotensin system (RAS), thus leading
to more severe symptoms [71–73]. An understanding of these mechanisms would help to
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investigate promising therapeutic approaches such as blocking the binding of ACE2 to the
S protein of SARS-CoV-2.

Table 1. Clinical studies showing the bidirectional relationship between glycemic control and SARS-
CoV-2 infection.

Region Source of Data Main Findings Reference

STUDY 1 England

13,809 patients admitted for
COVID-19 to the HDU/5447 admitted

to the ICU
Mean age: 70/58

34.7% mortality with T2D;
25.5% mortality without T2D [60]

STUDY 2 England 23,698 COVID-19-related deaths (with
and without diabetes)

31.4% mortality with T2D;
1.5% mortality with T1D [18]

STUDY 3 Korea 5307 people with COVID-19 Increased severity and higher mortality in
14.5% individuals with T2D [74]

STUDY 4 USA 395 patients with COVID-19
Age: 18–35

3.8% mortality without comorbidity;
13.6% mortality with diabetes (deceased);
18.5% mortality with diabetes (diagnosed)

[75]

STUDY 5 Mexico 757,210 patients with COVID-19

Patients with diabetes had a 49% risk of
death higher than those without diabetes;

Diagnosis of T2D as COVID-19 outcome in
both young and old

[76]

STUDY 6 USA 1544 patients with COVID-19 Hyperglycemia and hypoglycemia both
contribute to poor outcomes of COVID-19 [64]

STUDY 7 China 7337 with COVID-19
Ages: 18–75

13% of patients with T2D;
Death rate is 1.49-fold higher in the T2D

cohort
[77]

STUDY 8 China
1099 patients

639 male/460 female
Mean age: 47

Individuals with diabetes are more
susceptible to SARS-CoV-2 and more easily

develop a severe course of COVID-19
[53]

STUDY 9 England Population-based cohort study
COVID-19-related mortality increases in

people with a higher glycosylated
hemoglobin level

[78]

STUDY 10 France 2,608 patients with COVID-19
Age: 56.0 (±16.4)

Patients with T1D (age > 65–75) had higher
rates of COVID-19-related mortality [79]

STUDY 11 China 92 patients with COVID-19 without
metabolic-related diseases

New-onset insulin resistance,
hyperglycemia, and decreased HDL-C in

these patients
[80]

STUDY 12 Italy
551 patients with COVID-19

344 male/207 female
Age: 61 ± 0.7

46% overt hyperglycemia;
12% new-onset diabetes;

glycemic abnormalities last for 2 months
after recovery

[81]

STUDY 13 UK 30 children with new-onset T1D
Age: 23 months–16 years

The number of children with new-onset
T1D increased since the COVID-19

pandemic. Some of these patients had been
infected/exposed to SARS-CoV-2

[20]

STUDY 14 France
1 woman with COVID-19 and a

history of gastric bypass
Age 29

The COVID-19 patient was diagnosed with
new-onset diabetes after 1.5 months [82]

STUDY 15 Italy 413 patients with COVID-19

21 of 413 (5.1%) had new-onset diabetes;
Patients with new-onset diabetes reported
higher severity and mortality than those

with pre-existing diabetes

[63]
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5. Remaining Questions

Clinical data and basic research have established the bidirectional relationship between
glycemic control and COVID-19. However, the details and the underlying mechanisms are
largely unknown (Table 2). ACE2 is expressed in the pancreas, with evidence showing that
both the endocrine and exocrine function of the pancreas can be affected by SARS-CoV-2
infection [83], but its distribution and abundance in endocrine and non-endocrine cells is
yet to be clarified. To address this question, multiple pancreatic cell types including delta
cells, PP cells, acinar cells, and ductal cells should be generated from hPSCs, followed by
cell sorting strategies to further investigate the distribution and abundance of ACE2 in
each cell type. The dynamics of ACE2 during pancreas development are still unknown.
To date, there is poor knowledge about the expression of ACE2 during the development
of the human pancreas. Current islet organoid differentiation methods could mimic the
natural development of the human pancreas and thus allow us to monitor the expression
of ACE2 across the development of the pancreas. Addressing this question would help
us understand the impact of SARS-CoV-2 infection on the development of the pancreas.
Another remaining question is how the SARS-CoV-2 infection influences the pancreatic
endocrine cells’ function and plasticity, and what the underlying mechanisms are. Clinical
evidence has suggested that beta cell de-differentiation and trans-differentiation occur upon
infection with SARS-CoV-2, but the details and mechanisms are not clear. An investigation
into the molecular mechanisms of pancreatic dysfunction is in progress, for example,
the activation of the Na+/H+ exchanger in the pancreas, leading to cell damage [84,85].
Moreover, inflammatory cytokines and molecular mimicry may also be correlated with
pancreatic cell damage [85,86]. Clinical data have shown that SARS-CoV-2 infection can
result in hyperglycemia and/or diabetes (Table 1). It is not clear whether the infection
resulted in T1D or T2D, and, if so, whether the effect is reversible or not. Although a
connection between T1D and viral infections has been reported [87], more cohort studies
and experimental research based on a disease model are expected to solve this question.
It remains to be discovered whether the severity of impaired glycemic control correlates
with the virulence of SARS-CoV-2 variants. There has been poor evidence showing this
correlation, and thus islet organoids could be an unlimited source for investigating this
question. Monitoring the function of organoids and their glucose sensitivity as affected by
different SARS-CoV-2 variants may be a practical solution. Moreover, we need to clarify
multi-organ interactions in the context of SARS-CoV-2 infection and whether islet damage
would also affect other organs. Furthermore, it would be valuable to investigate whether
beta cells are infected by SARS-CoV-2 simultaneously with the lungs, or whether they
are affected following damage and inflammation to other tissues. Figure 1 presents the
applications of multi-organoid systems for addressing this question. Recent progress was
made by Tao et al. in the successful establishment of a human liver–islet system [88], and
further attempts in this field will help to address these unsolved questions.

Table 2. Remaining questions and proposed solutions (* indicates progresses that have been made by
researchers).

Remaining Questions Proposed Solutions/Progress *

1 The distribution and abundance of ACE2 in endocrine and
non-endocrine cells Generating missing pancreatic cell types, biochemical analyses

2 The dynamics of ACE2 during the development of the pancreas Biochemical analyses

3 The mechanisms of how SARS-CoV-2 infection influences the
pancreatic endocrine cells’ function

Transplantation of islet organoids
Activation of the Na+/H+ exchanger *

Inflammatory cytokines *

4 Whether infection results in T1D or T2D More cohort studies and experimental research based on
disease models

5 The correlation between impaired glycemic control and the
virulence of SARS-CoV-2 variants Infection model of islet organoids

6 Multi-organ interactions after infection? Multi-organoid systems, co-culture systems
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Figure 1. Islet organoids for unraveling the relationship between glycemic control and SARS-CoV-2
infection. The generation and purification of pancreatic cell types would help clarify the distribution
and abundance of ACE2 and other related factors in the pancreas. They would also allow the
engineering of human islet organoids that are physiologically similar to primary human islets.
Mature human islet organoids can be used for studies of viral infections and multi-organ chip
assessments. The identification of islet dysfunction and glycemic control in SARS-CoV-2-infected
normal islet organoids in healthy or diabetic mouse models would help unravel the bidirectional
relationship between glycemic control and SARS-CoV-2-infection.

6. Strengths and Challenges of Using Islet Organoid Models

As mentioned above, it has been reported in numerous studies that diabetes is a
high-risk factor for SARS-CoV-2 infection (Table 1). Severe symptoms, increased comor-
bidities, and higher mortality in people with COVID-19 were shown to be associated with
pre-existing T1D and T2D [77]. SARS-CoV-2 infection, on the other hand, can induce
hyperglycemia, although the mechanism is still unclear [66].

In order to investigate the impacts of SARS-CoV-2 infection on the pancreas, hu-
man pluripotent stem cell (hPSC)-derived islet organoids have been used as a valuable
model. Organoids are typically 3D tissue models derived from hPSCs or expanded islets
extracted from human samples. These are self-arranged and characterized with a measure
of complexity and organ-like cellularity as well as functions to a certain extent [89,90]. The
advantages of organoids include their tissue-like structures and the involvement of cell–cell
interactions; hence, they are thought to have authenticity for modeling viral infections
and accelerating the discovery of antiviral therapeutics. The islet organoids derived from
stem cells in vitro have been instrumental sources for understanding the pathogenesis of
diabetes and pancreatic dysfunction [91,92]. By using this model, researchers have found
the implications of transcription factor GATA6 for diabetes [93]. Moreover, studies using
this model reported the acquirement of mature function in iPSC-derived beta cells in vivo
and validated the capacity of therapies for diabetes through the transplantation of islet
organoids under the kidney capsule [92] or in macro-device implants [94]. Consistent with
human primary beta and alpha cells, hPSC-derived beta and alpha cells also express the
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SARS-CoV-2 spike protein receptor ACE2 and permit viral invasion and robust replication,
suggesting the potentiality of islet organoids to represent viral infections [95]. As a proof-
of-concept experiment, islet organoids and several other organoids were used to model
SARS-CoV-2 infection in various human organs [90,95]. Firstly, the islet organoid model
of SARS-CoV-2 infection showed increased insulin resistance and chemokine expression,
and decreased endocrine functional pathways caused by increased apoptosis, resulting in
insulin deficiency and even the onset of diabetes in some COVID-19 patients [95]. Moreover,
by using human liver ductal organoids as models, Zhao et al. recapitulated the infection,
transmission, and evolution of SARS-CoV-2 [96]. In addition, drugs, such as mycophenolic
acid, can be identified by inhibiting the entry of SARS-CoV-2 in lung organoids derived
from pluripotent stem cells as models [97]. Moreover, Lai et al. modeled SARS-CoV-2
infection with hiPSC-derived retinal organoids and found the expression of ACE2 and
TMPRSS2 [9]. Moreover, a recent study modeled SARS-CoV-2 infections in hiPSC-derived
kidney organoids and reported the direct kidney cell infection and subsequent kidney
injury induced by SARS-CoV-2 infection [98]. To promote a further understanding of SARS-
CoV-2 infection and the development of novel therapeutics using organoids as models,
omics/proteomics analyses could first be performed to investigate the effects of viral infec-
tion on the expression profile. Western blot, immunocytochemistry, and other molecular
techniques could help to identify the distribution of the entry factors of the virus. Glycemic
control and islet cell damage in SARS-CoV-2-infected islet organoids could then be assessed
both in vitro and in vivo, which would help us to further understand the mechanism of
infection and define a road map for new therapeutics (Figure 1). The intravital imaging and
microscopic techniques of islet organoids also allow the exploration of dynamic changes
after transplantation into mouse models [99].

Nevertheless, our understanding of the relationship between glycemic control and
COVID-19 is still elusive, partly because of the limitations of the current islet organoid
models. There are still several obstacles to establishing an authentic islet organoid model
that could best mimic the primary human islets. First, the human pancreas contains
multiple cell types, while the current islet organoids mainly contain alpha and beta cells,
and the ratio and distribution and cell–cell interactions are random. Second, because
of the incomplete developmental systems, the cells of organoids are immature and may
be characterized by different cell properties. Third, the lack of blood vessels as well as
sympathetic nerves could also lead to disordered cell arrangements and intra-islet signal
transduction. In addition, high heterogeneity is another limitation in the field of stem
cell regeneration, which has been reduced by the construction of micro-well platforms
and bio-printing, as well as by robust differentiation [100]. Furthermore, relatively low
levels of oxygen and nutrients, and physiological and physical support lead to cell death,
necrosis, and apoptosis. Lastly, the use of islet organoid models is also restricted by
the lack of an immune system. Moreover, the expression of ACE2 is relatively low in
endocrine compartments compared with exocrine compartments. Evidence has shown that
the pancreatic ducts and microvasculature are more likely to be targeted in SARS-CoV-2
infection [5,46]. Therefore, whether islet organoids are an ideal SARS-CoV-2 infection
model remains to be observed and determined.

Although there are plenty of advantages of using islet organoids, the existing differen-
tiation methods are not advanced enough to induce the full range of cell types. Incomplete
cell types, unstable induced differentiation, organoids that are not fully functional, erro-
neous cell proportions, and the lack of blood vessels, an immune system, and sympathetic
nerves are regarded as the challenges, which are worth overcoming so that hESC-derived
organoids could function better when modeling SARS-CoV-2 infection and COVID-19-
related dysfunction. For instance, as a safe and convenient system, organ-on-a-chip technol-
ogy can identify the cross-talk between different SARS-CoV-2-infected organs and elucidate
the mechanisms underlying the elevated mortality in diabetic COVID-19 patients. More
detailed improvements will be discussed in the next section.
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7. Conclusions and Prospects

Since the outbreak of COVID-19, the application of organoids for modeling of the
disease has rapidly progressed. Nevertheless, islet organoid models should be further
optimized by additional explorations to better unravel the relationships between glycemic
control and infectious diseases [89].

The prospective solutions for the improvement of islet models are recapitulated in
Figure 1. Firstly, differentiation methods should be improved for the directed generation
of other pancreatic cell types, including both endocrine and exocrine cells. FGF family
member 7 (FGF7) not only enhances the expression of PDX1, thereby promoting the differ-
entiation of beta cells [101], but may also regulate the differentiation of pancreatic exocrine
cells [102,103]. As well as FGF7, other FGFs may have a different potential to induce other
pancreatic cell types, so they need to be surveyed. Moreover, hepatocyte nuclear factor
6 (Hnf6) promotes the differentiation of duct cells and also regulates acinar cell develop-
ment [104–106]. Furthermore, histone deacetylase (DHAC) inhibitors also play essential
roles in amplifying the endocrine progenitors of NGN3+ and ductal differentiation, but
abolish the differentiation of acinar cells [107,108]. In addition, cell purification can be used
to reconstruct islet organoids with the affiliated vessels and nerves. CD49a and DPP4 have
been identified as surface markers for beta cells and alpha cells, respectively [103,109,110].
Hence, they can be used to efficiently purify beta cells and alpha cells after the elimination
of irrelevant cells through a magnetic sorting strategy [103,109]. In this regard, one task
would be to identify the cell surface biomarkers for other pancreatic cell types. The purified
cell types can be used to clarify the presence of ACE2 and other related factors in the pan-
creas. They can also be further used to study the transcriptomics and proteomics related to
viral entry and infection. Analyses of the transcriptome profile, multi-omics, and organoids
with genome editing can further reveal the viral pathogenesis involving alterations in a
series of molecular and cellular events, for example the up- or downregulation mechanism
of ACE2 after infection, and the investigation of other virus entry factors [73].

Moreover, animal models should be established in order to study the long-term
effects of infection and/or impacts on diabetic subjects. For example, hACE2 transgenic
mice [111,112] can be used to induce a T1D model with streptozotocin (STZ) [113] or a
T2D model with a high-fat diet (HFD) [114]. After hACE2 mice that have been implanted
with islet organoids are infected with SARS-CoV-2, the physiological and pathological
changes in the pancreas can be observed to investigate the damage and dysfunction of
pancreatic cells caused by viral infection. The transcriptomic profile and omics would
help in analyzing the modification of genetic transcription after infection, which would
lead to a further understanding of the mechanism of how the infection causes impaired
glycemic control. Moreover, strengthening the techniques of multi-organ chips, with
the layout/interaction of multiple organs such as islets, lungs, intestines, livers, and
immune cells, will more closely resemble human physiology and accelerate the resolution
of unsolved problems [88,115]. For example, Tao et al. successfully developed a novel
microfluidic multi-organoid system replicating the human liver–islet axis in both healthy
and diseased states [88]. This technology would allow the remaining questions such
as multi-organ interactions after SARS-CoV-2 infection and future drug discovery to be
resolved.

Islet organoids enable us to investigate the mechanisms of the association between
diabetes and the poor outcomes of COVID-19. Considered as an unlimited platform, islet
organoids are expected to have high potential for the study of viral infections, COVID-19
disease therapy, and therapy for other diseases such as diabetes. We believe that the use
of islet organoids would be a breakthrough in the study of SARS-CoV-2 infection and
COVID-19 treatments.
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