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Abstract: The noninvasive diagnosis of cholangiocarcinoma (CCA) is insufficiently accurate. There-
fore, the discovery of new prognostic markers is vital for the understanding of the CCA mechanism
and related treatment. The information on CCA patients in The Cancer Genome Atlas database
was used for weighted gene co-expression network analysis. Gene Ontology (GO) analysis and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were applied to analyze the
modules of interest. By using receiver operating characteristic (ROC) analysis to analyze the Human
Protein Atlas (HPA), the featured genes were subsequently verified. In addition, clinical samples and
GSE119336 cohort data were also collected for the validation of these hub genes. Using WGCNA,
we identified 61 hub genes that regulated the progression and prognosis of CCA. Eight hub genes
(VSNL1, TH, PCP4, IGDCC3, RAD51AP2, MUC2, BUB1, and BUB1B) were identified which exhibited
significant interactions with the tumorigenic mechanism and prognosis of CCA. In addition, GO and
KEGG clarified that the blue and magenta modules were involved with chromosome segregation,
mitotic and oocyte meiosis, the cell cycle, and sister chromatid segregation. Four hub genes (VSNL1,
PCP4, BUB1, and BUB1B) were also verified as featured genes of progression and prognosis by the
GSE119336 cohort data and five human tissue samples.

Keywords: cholangiocarcinoma; hub gene; tumorigenic mechanism; prognostic biomarkers; weighted
gene co-expression network analysis

1. Introduction

Cholangiocarcinomas (CCAs) are epithelial tumors that arise from the intrahepatic bile
duct or large bile ducts [1]. In addition, CCA is very common in digestive system tumors,
and its incidence is second only to hepatocellular carcinoma [2]. Over the past 40 years, the
global incidence rate of CCA has increased to approximately 18% [3]. Early diagnosis of
CCA remains challenging because most patients have no conspicuous symptoms during the
early stages of disease [4]. Furthermore, highly desmoplastic, paucicellular tumors develop
in the liver or large bile ducts, thereby limiting the sensitivity of pathological diagnosis [5].
Given the intertumoral and intratumoral heterogeneity of CCA, key therapeutic targets
have not been defined for this disease [5,6]. Therefore, reliable biomarkers are needed for
the early diagnosis of CCA, and important prognostic factors should be identified.

With the increasing popularity of next-generation sequencing technology, targeted
or operable molecular changes in transcription levels can be identified [7]. Many cancers
have been analyzed using this technique to detect novel biomarkers for tumor diagnosis,
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as well as to mitigate the recurrence and inhibition of drug resistance [8,9]. Based on
public database findings or sequencing data from clinical samples, Li et al. elucidated nine
hub genes highly related with the pathological T stage of hepatocellular carcinoma [10].
Similarly, utilizing weighted gene co-expression network analysis (WGCNA) to construct
an endogenous competitive RNA regulatory network, Peng et al. identified six possible
pivotal genes in metformin in the treatment of diabetes and colorectal cancer [11].

Common CCA screening indicators, such as carbohydrate antigen 199, cancer antigen
125, and cancer antigen −50, are not sensitive or specific enough [12]. For example, CA199
is also highly expressed in pancreatic cancer, hepatobiliary carcinoma, gastric cancer,
and colorectal cancer [13,14]. Additionally, the levels of CA125 increase in patients with
fallopian tube adenocarcinoma, ovarian cancer, pancreatic cancer, colorectal cancer, and
breast cancer [15–17]. There are obvious genomic changes in the pathogenesis of CCA, and
the study of CCA may be helpful in finding their potential diagnostic and prognostic value.
For example, MRPS18A, CST1, and SCP2 were associated with the pathological stage, liver
function, and overall survival in CCA patients [18]. The inhibition of HER2/neu was
identified as a promising treatment target for patients with CCA [19]. In approximately 60%
of intrahepatic CCAs, the FGFR2 and the genes encoding isocitrate dehydrogenases might
be suitable therapeutic targets [20]. Nevertheless, further research is needed concerning
novel biomarkers for clinical decision making.

Here, patients with CCA in The Cancer Genome Atlas (TCGA) were used to perform
WGCNA. WGCNA was applied to find the correlation between the clinical information
and the genes in the microarray samples [21]. Additionally, correlation networks were
used to analyze the candidate biomarkers with Gene Ontology (GO), Kyoto Encyclopedia
of Genes and Genomes (KEGG) analysis, and protein–protein interaction (PPI) networks.
Overall, the identification of the modules and featured genes in CCA will help to build a
precise approach to diagnosis and treatment.

2. Materials and Methods
2.1. Processing of Gene Expression Data

RNA sequencing data were collected by the Illumina HiSeq 2000 RNA Sequenc-
ing platform and then mean-normalized (per gene) across all TCGA cohorts. Pheno-
type information was also downloaded from UCSC Xena, accessed on 17 January 2021
(https://xenabrowser.net). The following inclusion criteria were used: (1) samples with
RNA sequencing data available and (2) matched samples with adequate clinical data.
Gene matrix profiles were cleaned and normalized using NetworkAnalyst, accessed on
22 February 2021 (https://www.networkanalyst.ca). A |log2fold change| > 1.0 and an
adjusted p-value < 0.05 were set as the threshold for differentially expressed genes (DEGs).
Ultimately, we included 36 bile duct cancer tissues and 9 matched normal tissues. Clinical
characteristics were extracted, including age, albumin value, CA199 expression, cancer
history in first-degree relatives, Child–Pugh grade, creatinine value, fetoprotein value,
fibrosis score, neoadjuvant treatment history, neoplasm histological grade, pathological M,
N, and T scores, perineural invasion, neoplasm cancer, platelet count, prothrombin time,
family cancer history, vascular tumor cell type, survival, sex, ethnicity, vital status, prior
malignancy, prior treatment, tumor stage, body mass index (BMI), height, and weight.

2.2. Gene Co-Expression Network Construction

In order to construct a co-expression network, the “WGCNA” package statistical
software, accessed on 26 February 2021. (version 4.0.2, https://www.r-project.org) was
employed to calculate the similarities between the gene expression profiles [21]. Outlier
samples were identified by the averaging method in the “hclust” function within the
“WGCNA” package. These outliers were then removed. Scale-free networks were con-
structed using the WGCNA method. The scale-free network is defined as a network in
which most nodes in the network connect with a few other nodes, but a few nodes con-
nect with many nodes. These networks are more tolerant of unexpected faults compared
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with networks in which most nodes connect with many other nodes. Using hierarchical
clustering, the adjacency matrix was changed into a topological overlap matrix (TOM); the
dynamic tree cut method was then used to identify different modules. When setting the
parameters, the minimum number of genes contained in the network module was set at
30 (min module size = 30); the threshold value of the gene reclassification between modules
was set at 0 (reassign threshold = 0); and the degree of dissimilarity was set at 0.25 (merge
cut height = 0.25).

2.3. Construction of CCA Modules with Clinical Relationships

Pearson correlation coefficients between the module eigengenes (MEs) and the clinical
information were calculated. Following the calculation of the core modules, gene signifi-
cance (GS) and module membership (MM) were used to measure the association levels of
the genes with clinical traits and the MEs. Module core genes were considered to have MM
> 0.8 and GS > 0.2.

Combined with the hub genes identified by MM and GS, a q-weighted cutoff < 0.01
was settled to find featured genes using the network screening function. The common hub
genes were determined by two methods and then visualized using Venn diagrams.

2.4. Functional Annotations for DEGs

The clusterProfiler package (version: 3.16.1) was adopted for GO biological function
and KEGG signaling pathway analysis for the DEGs. The GO function and KEGG pathway
used the default parameters in the clusterProfiler package, and the cutoff threshold was set
to p < 0.0001.

2.5. Hub Gene Validation

The R package “survival” and Gene Expression Profiling Interactive Analysis
(http://gepia.cancer-pku.cn), accessed on 27 February 2021, were employed to identify the
key prognostic genes by means of Kaplan–Meier analysis. The Human Protein Atlas database
(https://www.proteinatlas.org), accessed on 22 February 2021, was employed to validate the
immunohistochemistry results of the featured prognostic genes [22].

2.6. Identification of Hub Gene Functional Annotations

Using the GO function and KEGG pathway enrichment analysis, we mapped, inte-
grated, and visualized the characteristic genes and related tumor progression mechanisms.
The GOplot R package (version: 1.0.2) was employed for visualization.

2.7. Human Samples

All the patients with CCA gave their informed consent, and the experimental design
met the ethical requirements, which were approved by the Ethics Committee of The First
Affiliated Hospital of Zhejiang University (No. 2014-272). Tissues, including para-tumor
and CCA samples, were sampled immediately in the First Affiliated Hospital, Zhejiang
University School of Medicine.

2.8. Immunohistochemical Staining

Using xylene and alcohol, 5 µm thick human sample tissues were deparaffinized. The
samples were then repaired with 3% H2O2-CH3OH for 10 min. Subsequently, they were
submerged in a pH 9.0 buffer for antigen retrieval and then incubated at 37 ◦C overnight
with primary antibody, BUB1B (Abcam, ab183496, 1:100), BUB1 (Abcam, ab195268, 1:100),
PCP4 (Proteintech, 14705-1-AP, 1:200), or VSNL1 (Proteintech, 67134-1-IG, 1:200). After the
sections had been washed with phosphate-buffered saline three times, they were submerged
with horseradish peroxidase-conjugated IgG, rabbit anti-mouse IgG (Abcam, ab6728), and
goat anti-rabbit IgG (Abcam, ab6721) at 37 ◦C for 40 min. Finally, the sample sections were
developed with a 3,3′-diaminobenzidine tetrahydrochloride detection system kit (Abcam,
ab64238) and hematoxylin staining solution (Servicebio, G1004). Protein expressions in the
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sections were detected via and analyzed by NDP.view2 (version 2.6.8). Five visual fields
were randomly selected to compare the protein expression levels between the CCA and
para-tumor samples. Quantitative analyses were conducted by Image J software. Protein
expressions that were specifically located within cholangiocarcinoma cells or bile duct cells
were compared. Notably, staining areas within normal hepatocytes were excluded. Mean
optical density was chosen as a comparative indicator and could be calculated as follows:
Mean optical density = Integrated option density/Area.

2.9. Construction of PPI Network

Using the Search Tool for the Retrieval of Interacting Genes, we evaluated the corre-
lation and biological function of related genes [23]. The cutoff criterion was regarded as
a confidence score ≥ 0.4. Cytoscape is a visualization software platform (version: 3.7.1;
https://cytoscape.org), accessed on 22 February 2021, which can help to visualize the PPI
network [24].

2.10. Statistical Analysis

R (version 4.0.2) was used for data analysis. Wilcoxon and Kruskal–Wallis tests were
used for gene difference analysis. In this study, overall survival analysis was evaluated by
the Kaplan–Meier method and log-rank testing. In the absence of special labels, p < 0.05
was regarded as significant in all statistical analyses.

3. Results
3.1. Data Collection and Processing

The overall flowchart of the study protocol is shown in Figure 1. The selected clinical
information and mRNA were downloaded from UCSC Xena, including 36 bile duct cancer
tissues and nine matched normal tissues (Figure S1A,B). After data cleaning and normaliza-
tion (removal of samples with repetition or missing information), 544 up-regulated genes
and 1069 down-regulated genes met the screening conditions (Figure 2A,B). t-Distributed
stochastic neighbor embedding of the DEGs demonstrated that the tumor and nontumor
tissues were clearly distinguished (Figure 2C). The threshold of the adjusted p-value was
< 0.05 and the |log2fold change was | > 1.0 for WGCNA and the subsequent analyses
(Figure 2D). The corresponding clinical information is shown in Table S1.

For WGCNA, the ‘hclust’ function clustered 45 samples and removed the outliers. As
shown in Figure 2E, the parameters “cutHigh” and “minSieze” were set at 55 and 10, which
ultimately yielded 28 samples.

3.2. Functional Annotations of Hub Genes

The clusterProfiler and enRichment packages were used to examine the biological func-
tion of the selected modules by GO analysis and KEGG pathway analysis
(Tables S2 and S3). In the GO analysis, the top five GO terms were monooxygenase,
passive transmembrane transporter, metal ion transmembrane transporter, channel activ-
ity, and ion channel (Figure S2A,B). In KEGG analysis, the top five biological pathways
were neuroactive ligand–receptor interaction, chemical carcinogenesis, metabolism of xeno-
biotics by cytochrome P450, drug metabolism–cytochrome P450, and steroid hormone
biosynthesis (Figure S3).

https://cytoscape.org
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Figure 1. Flowchart of data collection and processing.

3.3. Weighting Coefficient β Selection

The most important co-expression networks are scale-free networks, such that
P (k)∼k − 1 (Table S4) [25]. As the soft threshold (β) increases, the correlation coef-
ficient of the network increases (R2 > 0.8) (Figure 3A), and the mean connectivity of
the network subsequently decreases (Figure 3B). Therefore, β = 5 was selected to con-
struct the co-expression network, such that log(k) was correlated with log[P(k)] (R2 = 0.87,
slope = −1.33) (Figure 3C,D).
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Figure 2. Identification of DEGs for analysis. (A) Box plot of 45 samples after normalization (log2-
counts per million, variance filter: 15; low abundance: 4). (B) MSD plot of 45 samples after normal-
ization. (C) t-Distributed stochastic neighbor embedding of DEGs demonstrated that CCA patients
and nontumor tissues would be divided into two groups. (D) Volcano plot of 1613 DEGs in between
CCA patients and normal tissue (adjusted p-value < 0.05; |log2fold change| > 1). (E) Plot of sample
clustering. Set model parameters “cutHigh” and “minSieze” were set at 55 and 10, which ultimately
yielded 28 samples.
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Figure 3. Weighting coefficient β selection. (A) Plot of scale-free fit index. (B) Plot of different
soft-thresholding powers with different mean connectivity. (C) Connectivity distribution of nodes
with β set as 5. (D) The verification of scale-free topology with β set as 5.

3.4. Co-Expression Network Construction

Adjacencies among the DEGs were evaluated, and then, the results were plotted
in a TOM-based hierarchical gene clustering tree (Figure S4A). Initially, the MEs were
determined by principal component analysis. The Dynamic Tree Cut package is a function
used to analyze modules of interest; the parament of the minimum module size was defined
as 30 and the deepSplit was defined as 2 (Figure S4B). Using the Dynamic Tree Cut Merged
Dynamics package, the gene topological matrix was modified (Figure 4A). To reduce the
complexity of the network, the MEs with a similarity > 0.75 were merged, and the numbers
of modules were not changed. The eigengene dendrogram and heatmap were evaluated
using the groups of correlated eigengenes and the dendrogram (Figure 4B).

3.5. Identification of Clinical Modules

As shown in Figure 4C, the clinical modules were clustered, and their correlations
were analyzed with a sample dendrogram. With respect to the clinical data, red represents
a high value, white means a low value, and gray means a missing value. Through the R
value and p-value, the connection between the MEs and the clinical characteristics was
continuously scored, and the 13 modules were related to the clinical characteristics given
above, as shown in Figure 4D. The blue and magenta modules were significantly associated
with tumor stage (R = 0.38, p = 0.05; R = 0.47, p = 0.01). The whole genes of the blue and
magenta modules are shown in Table S5.
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Figure 4. Construction of WGCNA network. (A) Dendrogram of gene topological matrix branch
(MEs with similarity > 0.75 were merged). (B) Dendrogram and heatmap of 13 eigengenes. Dynamic
tree of the merged MEs with similarity greater than 0.75. (C) Clinical modules were clustered,
and correlations were investigated with a sample dendrogram. The color of the heat indicated the
correlation value. With respect to clinical data, red represents a high value, white means a low value,
and gray means a missing value. (D) Heatmap of correlations between MEs and clinical features of
CCA. The correlation coefficient (cor) and corresponding p-value (p-value) between different gene
modules and clinical traits. According to the size of correlation coefficient (cor), the darker red
represents positive correlation, and the darker blue represents negative correlation.
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3.6. Identification of Hub Genes

The GS for the tumor stage and MM values for the genes in each module was calculated
in order to identify the MM values associated with tumor differentiation, as shown in
Figure 5A. The magenta module (correlation coefficient = 0.6, p-value = 5.1 × 10−9) and the
blue module (correlation coefficient = 0.49, p-value = 3.6 × 10−11) were consistent with the
adverse clinical characteristics of the CCA patients (Figure 5B,C). To identify the hub genes
for tumor differentiation, a GS > 0.2 for the tumor stage and an MM > 0.8 were concurrently
satisfied in two modules. This ruled out a total of 73 hub genes. Furthermore, the hub genes
were required to meet the screening criteria (q-weighted < 0.01) of the ‘networkScreening’
function. In total, 61 featured genes were identified, as shown in the Venn plot (Figure 5E).

Figure 5. Functional annotation of hub genes. (A) GS for tumor stage across each module. (B) The
plot of GS for tumor stage with MM in blue modules. (C) The plot of GS for tumor stage with MM in
magenta modules. (D) In the genes of blue and magenta modules represented (Table S5), bubble plot
of top 10 biological process by GO enrichment analysis. (E) Venn plot of 61 screened hub genes (blue
and magenta modules: GS > 0.2, MM > 0.8, and q < 0.01). (F) In 61 screened hub genes, GO chord
plot demonstrated the top 7 GO enrichment analysis and 24 featured genes. (G) In 61 screened hub
genes, bubble diagram of pathway enrichment analysis.
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3.7. Functional Enrichment Analyses of the Hub Genes in Hub Modules

Applying GOplot packages, we investigated the biological significance of selected
modules by using GO terms. In the whole genes of the blue and magenta modules, the top
10 biological processes in the GO analysis mainly focused on mitochondria (Figure 5D). Ap-
plying GOplot packages, we investigated the GO terms of the selected 61 hub genes, as well
as the KEGG pathway analysis. The GO analysis results illustrated that the selected 61 hub
genes were particularly enriched in chromosome segregation, mitotic sister chromatid
segregation, and mitotic nuclear division (Figure 5F). According to the KEGG plot, the most
important pathways were oocyte meiosis, cell cycle, dopaminergic synapse, alcoholism,
and the Rap1 signaling pathway (Figure 5G). A co-expression network analysis was used to
explore the degree of association among the 61 featured genes, with a coefficient of ≥0.53
(Figure S5). Next, we divided the two subgroups according to the correlation degree of the
genes; the subgroups contained 23 and 33 genes, respectively (Figures S6–S8). Among them,
we found that the correlation coefficient between CALML3 and ALPP was the highest at
0.99 (Figure 6A). Based on the pathways enriched, we established connections between the
hub genes and the cell cycles (Figures 6B and S9).

Figure 6. Hub gene analysis. (A) Subgroup of co-expression heatmap of 33 hub genes with coefficients
annotated. (B) Co-expression heatmap of 24 genes with cell cycle. (C,D) Construction PPI network of
co-expression network of 61 hub genes in CCA patients.
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3.8. Construction of PPI Network and Verification of Hub Genes

A PPI network was constructed using 61 featured genes, which had three subgroups.
The denser and bigger the nodes are, the more important the gene is. Additionally, the
thicker the edge, the closer the connection between the genes. The biggest subgroup had
28 nodes and 246 edges (Figure 6C). The remaining two subgroups had three nodes and
four nodes, and two edges and three edges, respectively (Figure 6D).

3.9. Survival Analysis

Survival analysis is one of the most important indicators of prognosis. After analyzing
the survival curve of 61 featured genes, 27 featured genes were related to the overall
survival rate of the CCA patients (p < 0.05) (Figure S10; Table S6).

3.10. Hub Gene Analysis and Validation

In order to further the potential mechanisms and roles of the 61 hub genes in CCA
prognosis and tumor progression, receiver operating characteristic (ROC) analysis was
employed. The results demonstrated that the area under the curve (AUC) of five of the hub
genes in the 61 hub genes was >0.75, which could be used to distinguish CCA tumorigenic
progression and prognosis (Figure 7A; Tables S7 and S8). In addition, five other hub genes
(0.75 > AUC > 0.7) could be used to distinguish CCA tumorigenic progression (Figure S11).

Figure 7. Analysis of hub genes. (A) ROC curve analysis showed that five hub genes could distinguish
tumorigenic progression of CCA. (B) Venn plot of eight hub genes. (C) mRNA expression of 4 hub
genes of 36 patients with CCA, compared to the 9 adjacent tissues, according to the TCGA CCA
database. (D) mRNA expression of 4 hub genes in 15 CCA patients and 15 adjacent tissues, according
to the GSE119336 cohort.
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In Figure 7B, by combining 61 hub genes, the selected 10 hub genes (AUC > 0.7)
in the ROC analysis for tumor progression, and 27 hub genes (p < 0.05) in the Kaplan–
Meier survival curve, a Venn plot was constructed to find the genes which affected tumor
development, as well as the prognosis and survival of the tumor patients. Eight hub genes
were identified: VSNL1, TH, PCP4, IGDCC3, RAD51AP2, MUC2, BUB1, and BUB1B. These
genes affected tumor development, as well as the prognosis and survival of the tumor
patients (Figure 7B). In addition, VSNL1, RAD51AP2, PCP4, and MUC2 were correlated
with tumorigenic progression by staging plot levels in the Gene Expression Profiling
Interactive Analysis database (Figure S12).

We selected VSNL1, PCP4, BUB1, and BUB1B for verification at the mRNA and protein
levels. Compared with nontumor tissues, the mRNA expression levels of PCP4, BUB1, and
BUB1B were strikingly higher in the CCA patients. Additionally, the mRNA expression
level of VSNL1 was strikingly reduced in the CCA tissue (Figure 7C). These results are
similar to those of other GEO datasets (Figure 7D). We then used immunohistochemical
staining to identify protein expression in the human samples. Then, PCP4 was verified by
the HPA database. Furthermore, the experimental results of the immunohistochemistry
showed that BUB1, BUB1B, and PCP4 were darker brown in the CCA tissue than in the
normal tissue, while VSNL1 was the opposite. The mean optical density of the expression
of BUB1, BUB1B, PCP4 and VSNIL1 in the CCA and adjacent tissue samples showed that
the protein levels of BUB1, BUB1B, and PCP4 in the CCA tissue were significantly increased,
but the protein level of VSNL1 in the CCA tissue was significantly decreased (Figure 8).

Figure 8. Verification of hub genes. (A) Immunohistochemical staining of CCA and adjacent tissue
samples. Blue indicates nuclear staining, and brown indicates target protein staining. The darker the
brown, the more the target protein was expressed. The expression of BUB1, BUB1B, and PCP4 were
significantly increased in CCA patient tissue, but the protein level of VSNL1 was significantly lower
in CCA tissue. (B) Mean optical density of the expression of BUB1, BUB1B, PCP4, and VSNIL1 of
cholangiocarcinoma cells in CCA and bile duct cells in adjacent tissue samples. Staining areas within
normal hepatocytes were excluded. **** p < 0.0001.
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4. Discussion

CCA is a highly heterogeneous and rapidly developing disease, which is difficult
to find early and hard to resection [26]. CCA heterogeneity causes poor treatment re-
sponses in most patients; so, surgery remains the primary treatment option [27]. However,
with the development of new immunotherapy and biomarker therapy, the therapeutic
effect on patients with end-stage CCA has also been improved [28]. Biomarkers can be
used for accurate diagnosis, prediction of prognostic effects, and improvement of clinical
efficacy [29].

Our study used personalized bioinformatics to identify the mRNA related to clinical
features; our hope was to find new therapeutic targets or prognostic markers. Thus, we
used the WGCNA method to identify 1613 DEGs from 45 CCA samples and constructed
13 co-expression modules. Furthermore, WGCNA was employed to analyze the rela-
tionships between the co-expression modules and the clinical characteristics by means of
correlation coefficients.

The genes in clinically relevant modules are presumed to be functionally associated
with each other, and this may be helpful for subsequent detection or treatment. In addition,
according to the requirements of WGCNA, the number of multiple samples should be
more than 15 [21]. Therefore, our WGCNA network is reliable. From 13 co-expression
modules, the magenta (cor = 0.6) and blue (cor = 0.49) modules were extracted because of
their associations with tumor-stage diagnosis. Through Venn plot analyses, we selected
61 genes that were highly correlated with CCA progression and prognosis. Subsequently,
GO and KEGG analyses were used to functionally annotate these 61 hub genes. The GO
analysis showed that two modules were particularly focused on chromosome segregation,
mitotic sister chromatid segregation, and mitotic nuclear division. Condensed chromosome
outer kinetochore and protein kinase activity were enriched in the cellular component
and molecular function processes. The related pathways were mainly concentrated in the
oocyte meiosis, cell cycle, dopaminergic synapse, alcoholism, and Rap1 signaling pathways.
Loss of mitotic regulation is an important feature of cell carcinogenesis which leads to
abnormal mitosis and chromosome segregation. [30]. Our results indicated that mitosis,
meiosis, and the cell cycle are key factors that influence the speed of tumor deterioration,
the same as those of Du et al. [31].

Furthermore, we identified eight hub genes (VSNL1, TH, PCP4, IGDCC3, RAD51AP2,
MUC2, BUB1, and BUB1B) that promoted tumor progression and were associated with prog-
nosis according to the Kaplan–Meier and ROC curve analyses. TH, IGDCC3, RAD51AP2,
and MUC2 are genes that were identified by WGCNA and are related to the clinical prog-
nosis and survival of cholangiocarcinoma, but they have already been reported [5,32–34].
Therefore, VSNL1, PCP4, BUB1, and BUB1B were chosen for further verification.

VSNL1 is related to neuronal calcium sensor proteins which are highly expressed in
the cerebellum [35]. The research concerning VSNL1 has mainly focused on neurological
diseases such as Alzheimer’s disease and medulloblastoma [36,37]. VSNL1 has also been
investigated in gastrointestinal tumors, where it promotes the rapid growth and metastasis
of gastric cancer cells [38], lymph node metastasis, and the deterioration of colorectal can-
cer [39]. However, the VSNL1 function in CCA needs to be further analyzed. Considering
that some studies have shown that the high expression of VSNL1 in colorectal cancer is
related to the high degree of tissue differentiation, it is speculated that the function of
VSNL1 may be related to the metastasis of cholangiocarcinoma.

PCP4 encodes a modulator of calmodulin-mediated calcium binding, mainly expressed
in brain, kidney, colon, and thyroid tissue. The main function of PCP4 is believed to be
related to the regulation of the calmodulin-mediated signal [40]. The role of PCP4 is under
investigation in neurological and endocrine diseases, such as polycystic ovary syndrome
and Alzheimer’s disease. In adrenal adenomas, the overexpression of Pcp4 may be related
to DNA methylation and may affect aldosterone secretion [41]. PCP4 is rarely studied in
gastrointestinal tumors. PCP4 participates in the calmodulin-dependent kinase signaling
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pathway to inhibit cell apoptosis, and CCA may promote cancer cell adhesion, migration,
and invasion.

BUB1 and BUB1B encode the serine/threonine–protein kinases that greatly contribute
to mitosis [42,43]. At present, it is believed that the function of BUB1 is to activate the
related genes of the spindle checkpoint by phosphorylating the related members of the
mitotic checkpoint complex so as to affect the process of cell proliferation [44]. BUB1B is a
checkpoint which is similar to BUB1. Additionally, BUB1B triggers polyploid cell apoptosis
and inhibits the activity of PLK1 in the mitotic interphase [45]. Overall, it participates
in two crucial aspects of mitosis: the spindle assembly checkpoint signal and the cell
chromosome arrangement in mitosis. BUB1 is reportedly overexpressed in pancreatic
ductal adenocarcinoma, gastric cancer, and multiple myeloma [46–48]. BUB1B has been
studied in multiple tumors, such as colorectal carcinoma, CCA, and breast cancer [49–51].
Qiu reported that BUB1B may promote the proliferation of liver cancer cells by raising
the mTORC1 signaling pathway [52]. BUB1 and BUB1B mediate apoptosis in response to
chromosomal aberration and inhibit the proliferation and metastasis of tumor cells. BUB1
and BUB1B may accelerate the process of cholangiocarcinoma by promoting the mitosis
of cholangiocytes.

This study also has some shortcomings. First of all, despite the use of clinical samples
and TCGA samples, the number of samples used was still small in general, and the sample
size should be expanded in a follow-up study. Second, the CCA hub genes and their
relationships with tumor progression and prognosis require experimental verification, both
in vitro and in vivo. Third, CCAs are epithelial tumors which can be divided into three
subtypes. Fourth, scoring these genes in the CCA library using the data in the single cell
map or single cell portal will help to explore the changes in these hub genes in the tumor
microenvironment. Therefore, our study results might be more convincing if the samples
were divided into several subgroups. Therefore, additional clinical samples with detailed
clinical data are needed to confirm our findings. Basic research concerning hub genes is
important for accurate identification of the mechanisms underlying tumor progression
and prognosis.

5. Conclusions

Through WGCNA, GO, and KEGG analyses, ROC analysis, and immunohistochemical
staining, we identified eight hub genes (VSNL1, TH, PCP4, IGDCC3, RAD51AP2, MUC2,
BUB1, and BUB1B) that may contribute to CCA progression and prognosis. Of these
eight genes, VSNL1, PCP4, BUB1, and BUB1B may also serve as novel biomarkers for
the determination of disease progression. Additional mechanistic research and clinical
verification may contribute to individualized treatment in the future.
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