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Abstract: Lower airway dysbiosis contributes to disease pathogenesis in respiratory diseases. How-
ever, little is known regarding the microbiota of lower airways or the oral cavity of healthy young
persons. To address this gap, 25 healthy persons (24.3 ± 3.3 years; 52% females; no current smok-
ers) underwent bronchoscopy during which bronchial brushing (BB) and bronchoalveolar lavage
(BAL) fluid were collected. Prior to the procedure, an oral wash (OW) sample was also obtained.
Microbiome analyses (16S rRNA locus) were performed (alpha- and beta-diversity, taxa annotations,
and predicted functional metagenomic profiles) according to the airway compartment (BB, BAL,
and OW). The greatest microbial richness was observed in OW and the lowest in BB (p < 0.001).
Microbial communities differed significantly across compartments (p < 0.001), especially between
BB and OW. Taxa analyses showed a significantly higher abundance of Firmicutes (BB: 32.7%; BAL:
31.4%) compared to OW (20.9%) (p < 0.001). Conversely, Proteobacteria predominated in OW (27.9%)
as opposed to BB (7.0%) and BAL (12.5%) (p < 0.001), mostly due to a greater abundance of the
bacteria in the Haemophilus genus in the OW (p < 0.001). The lower airway microbiota (BB and BAL)
is significantly different from the OW microbiota in healthy young persons with respect to microbial
diversity, taxa profiles, and predicted function.

Keywords: 16S rRNA gene sequencing; healthy subjects; oral wash; bronchial brushing; bronchoalveolar
lavage; microbiota; microbiome

1. Introduction

Currently, approximately 70% of bacterial species cannot be cultured using traditional
culture-based methods [1]. These limitations have largely been overcome with the devel-
opment of culture-independent methods, such as those that sequence the bacterial 16S
ribosomal RNA (rRNA) locus [2]. Using these high-throughput methods, it has been shown
that large and complex microbial ecosystems reside in different habitats along the human
body, including the oral cavity and human airways. These ecosystems are known as the
oral and lung microbiotas, respectively [3]. In health, there is a direct link between the oral
and lung microbiota composition, as the oropharynx, through microaspiration, is the main
source of the bacterial species commonly found in the airways [4,5].

A healthy resident microbiota in both the oral cavity and airway is important to prevent
diseases. Possible mechanisms of this phenomenon include colonization resistance (in
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which the local microbiota prevents colonization of the mucosal surfaces by pathogens) [4],
and regulation, in part, of the immune system [6]. Conversely, the loss of microbiota
homeostasis and the subsequent development of microbial dysbiosis (i.e., a reduction
in symbiotic bacteria in concert with a concomitant increase in pathogenic bacteria) [7]
has been implicated in the pathogenesis of several diseases. Consistent with this notion,
lung dysbiosis, reflected, for instance, by an increased abundance of Pseudomonas and
Moraxella spp., has been linked with asthma [8], chronic obstructive pulmonary disease
(COPD) [9], pulmonary fibrosis [10], and lung cancer [11]. Oral dysbiosis, on the other hand,
which is mostly characterized by the appearance of Porphyromonas gingivalis, contributes
to the development of dental caries, periodontal diseases, and oral cancer [12]. There is
also a growing body of evidence supporting a link between oral and lung dysbiosis in
different diseases [13,14]. Using a systematic and meta-analysis approach, Molina A et al.
identified that periodontitis was significantly associated with a higher risk of COPD and
obstructive sleep apnea and worse outcomes (need of assisted ventilation and mortality)
following infection by SARS-CoV-2 [14]. Moreover, the local microbiota, depending on the
microbial resident signatures, can also have prognostic implications. In keeping with this,
we have shown previously that a higher relative abundance of Staphylococcus in the sputum
of hospitalized patients for a COPD exacerbation was associated with a higher 1-year
mortality risk [15]. Similarly, severe influenza infection was more common in children who
demonstrated decreased microbial diversity and increased abundance, among others, of
Prevotella species in the nasopharynx [16].

The majority of studies evaluating dysbiosis in lungs or oropharynx largely have
recruited patients with specific diseases or those undergoing a clinical procedure (e.g.,
surgery). However, there is paucity of data on the “normal” oral and lung microbiota
of healthy young persons [12,17]. Such information is essential for defining a microbial
dysbiotic state within these habitats and serving as a crucial reference for comparative
lung microbiome studies between “diseased” and healthy conditions. Here, we present the
findings from the largest microbiome study of oral and lower airway microbiota in healthy
young persons using oral wash and bronchoscopy samples.

2. Materials & Methods
2.1. Subjects

This prospective study was conducted at the University of British Columbia (UBC,
Vancouver, Canada). Eligible participants were male and female healthy volunteers, aged
18 years and older, with no previous diagnosis of any chronic medical conditions (except
mild childhood asthma not requiring any maintenance inhalers) and normal lung func-
tion based on predicted values [18]. This study was approved by the Clinical Research
Ethics Board at UBC (approval number: H14-00724), and all participants provided written
informed consent.

2.2. Procedures

Lower airway samples from subjects were obtained using bronchoscopy. Prior to the
procedure, oral (OW) and bronchoscope channel (BCW) washes were collected. For the
OW samples, participants were instructed to gargle with 10 mL of sterile 0.9% saline and
then to spit into a sterile specimen cup. The BCW samples were retrieved by flushing
40 mL of sterile 0.9% saline through the bronchoscope channel into a similar specimen
cup. After obtaining the OW and BCW samples, the participants were sedated, and topical
lidocaine was administered to anesthetize the airways. Next, an Olympus® bronchoscope
was gently inserted, without any suctioning, into the oropharynx and subsequently into
the left upper lobe. The bronchoscope was then wedged into a subsegmental bronchus
(LB1 + 2 segment), after which a bronchial brush (BB) sample was collected from the
6–8th generation airways using a steel-tipped cytology brush (HOBBS Medical Inc.®,
Stafford Springs, CT, USA). Upon collection, the BB sample was immediately immersed
into an Eppendorf tube containing CytoLyt® (Hologic®, Marlborough, MA, USA) for DNA
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preservation. A bronchoalveolar lavage (BAL) sample was then retrieved from the right
upper lobe (RB3 segment). For this step, the first return was discarded (after instilling
20 mL of sterile 0.9% saline), and additional aliquots of 20–60 mL of sterile saline were
instilled (up to a maximum of 200 mL) and then gradually suctioned up into a sterile cup
(targeting 30 mL of lavage fluid).

2.3. Microbiome Profiling

PCR amplification was performed targeting the 16S rRNA gene V4 region using the
Illumina MiSeq® platform to generate 250-bp paired-end reads [19]. Additional details are
provided in the online supplement. All samples were sequenced in a single sequencing run
(batch) at the UBC Sequencing and Bioinformatics Consortium (Vancouver, Canada). Along
with the clinical samples (BB, BAL, and OW), several control specimens were also included
in our analyses to address any potential sources of contamination: extraction negatives
(EN; contained only DNA extraction reagents), non-template controls (NTC; consisted of
ultra-purified water used during the PCR reaction), CytoLyt controls (CC; contained only
CytoLyt® solution), and BCW samples (as described above).

The raw sequence data were analyzed using the QIIME 2™ (Quantitative Insights
into Microbial Ecology) pipeline [20], version 2022.8, during which the Divisive Amplicon
Denoising Algorithm (DADA2) [21] was applied to denoise the sequencing data, merge
paired-end reads, and to cluster them into amplicon sequence variants (ASVs) [22]. To
remove any potential non-bacterial DNA, the qiime quality-control exclude-seqs plugin
function was applied to discard any sequences which did not align (percent identity of at
least 80%) against the SILVA bacterial rRNA database (v138.1, Ref NR 99) [23]. Additionally,
ASVs identified as potential contaminants by the Decontam R package [24] were also
removed for downstream analyses. ASVs, which were not identified in at least two samples
(across all samples, including controls) and whose taxa annotation (based on the SILVA
database) was not available at the phylum level, were also discarded as those are likely due
to sequencing errors.

2.4. Microbiome Analyses

Oral (OW) and lower airway (BB and BAL) compartments were compared according
to microbiome diversity and taxa analyses using customized in-house R scripts (version
4.1.1), based on functions provided by the Vegan (version 2.6.2) [25] and Phyloseq (version
1.38) [26] packages.

Alpha-diversity analyses (microbiome diversity within each sample) were performed
using three different, yet complementary, metrics (microbial richness, the Shannon index,
and the Pielou’s evenness). Briefly, richness relates to the number of different (unique)
ASVs, whereas evenness reflects differences in the relative abundance of ASVs within each
sample. Lastly, the Shannon index considers both microbial richness and evenness in its
formula. Beta-diversity analyses (microbial diversity between samples) were also carried
out using the Permutational Multivariate Analysis of Variance (PERMANOVA) test [27]
using a generalized Unifrac distance matrix (alpha = 0.5) [28] in conjunction with principal
coordinate analysis (PCoA) plots. All alpha- and beta-diversity analyses were performed
in a rarefied feature table (13,834 reads across all clinical samples).

The relative abundance of the most common taxa at the phylum and genus levels
according to specimen type was also determined. A Naive Bayes classifier trained on the
SILVA rRNA database [23] was applied for taxonomic assignments. This was comple-
mented by differential taxonomic analyses using LEfSe, which combines Kruskal–Wallis
tests in association with a linear discriminant analysis (LDA) effect size to identify taxa
differences between samples of interest [29]. LEfSe was also applied to compare the taxa
annotations in bronchial brushings from our study (healthy participants) with similar sam-
ples from the British Columbia Cancer Agency (BCCA) cohort. Briefly, the BCCA cohort
consisted primarily of older current or ex-smokers with or without COPD, who underwent
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bronchoscopy to investigate pulmonary nodules and masses (UBC approval ethics number:
H14–03267) [11].

All sequencing data used in this study have been deposited to the National Cen-
ter for Biotechnology Information’s Sequence Read Archive (SRA) under the BioProject
number PRJNA918386.

2.5. Predicted Functional Metagenomics Analyses

PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unob-
served States, version 2.4.3) was applied to predict the functional metagenomics profiles
based on the 16s rRNA gene sequencing data [30]. The PICRUSt2-inferred metagenome
results were then expressed using the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways [31] and visualized and compared across airway compartments using LEfSe [29].

2.6. Statistical Analysis

Demographic data are expressed as mean ± standard deviation (SD) or numbers and
percentages as appropriate. Conversely, alpha-diversity metrics and relative abundance
data are expressed as median and interquartile ranges and were compared between mi-
crobiome compartments using a Kruskal–Wallis test. Adjusted p-values were determined
using the Benjamini–Hochberg method [32]. The level of statistical significance was set at
p < 0.05 (two-tailed) for all tests.

3. Results
3.1. Study Population

We prospectively evaluated 25 healthy subjects. The mean age of participants was
24.3 ± 3.3 years, and 13/25 were females (52%). Only one participant was a casual smoker,
and two reported a previous history of mild asthma but were asymptomatic, had normal
lung function, and did not use any medications at the time of bronchoscopy. Seven subjects
(28%) were current or previous competitive swimmers. All participants showed normal
spirometry values with regards to FVC (forced vital capacity), FEV1 (forced expiratory
volume in one second), and FEV1/FVC ratio based on their predicted values [18]. Table 1
summarizes the baseline characteristics of the study population. All 25 participants un-
derwent bronchoscopy without any complications. All bronchoscopy procedures were
performed in a bronchoscopy unit located at the Vancouver General Hospital (Vancouver,
BC, Canada).

Table 1. Baseline characteristics of healthy young participants.

Variables Participants (n = 25)

Age, years 24.3 ± 3.3

Sex, female 13 (52)

Current/previous smoker 1 (4)

Swimmers 7 (28)

BMI, kg/m2 22.57 ± 1.96

FVC, liters 5.4 ± 0.94

FVC, % of predicted 111.43 ± 11.86

FEV1, liters 4.39 ± 0.77

FEV1, % of predicted 106.09 ± 11.38

FEV1/FVC, % 81.47 ± 6.53
Values are expressed as mean ± SD or n (%) unless otherwise noted. Definition of abbreviations: BMI = body
mass index; FVC = forced vital capacity; FEV1 = forced expiratory volume in one second.
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3.2. 16S rRNA Gene Sequencing Data

The raw sequencing data contained a total of 12,116,921 reads across clinical and
control samples. After denoising, chimera removal, ASV clustering, and filtering steps,
3,769,462 reads were retained for further analysis across 75 clinical samples (n = 25 for BB,
BAL, and OW samples) (Figure 1 and Table S1). The microbial structures (beta-diversity)
of clinical samples were significantly distinct compared to those of controls (p < 0.001;
Figure S1 and Table S2). For subsequent microbiome analyses, we only considered se-
quencing data related to the clinical samples (BB, BAL, and OW).
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Figure 1. Flowchart showing the number of reads and amplicon sequence variants retained across
clinical samples for microbiome analyses after denoising, filtering steps, and removal of controls.
Control samples included extraction negatives (contained only DNA extraction reagents), non-
template controls (consisted of ultra-purified water used during the PCR reaction), CytoLyt controls
(contained only CytoLyt® solution), and bronchoscope channel wash samples (retrieved by flushing
40 mL of sterile 0.9% saline through the bronchoscope into a specimen cup before bronchoscopy).
Definition of abbreviations: ASV = amplicon sequence variant.
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3.3. Oral and Lower Airway Microbiome Composition in Health

At the phylum level, in healthy young subjects, the majority of the reads in both
oral and lower airway compartments belonged to Bacteroidota, Firmicutes, Proteobacteria,
Fusobacteriota, and Actinobacteriota. These five phyla accounted for ~97%, ~96%, and
~98% of all reads across OW, BB, and BAL samples, respectively. At the genus level, the
most abundant ones were Prevotella-7, followed by Veillonella and Prevotella. These three
genera were responsible for ~50% of all the reads: 46% (OW), 50% (BB), and 48% (BAL).
Figures 2–4 show the mean relative abundances of the most common phyla and genera
for each microbiome compartment using Krona plots [33] (pie charts in which different
taxonomic levels are shown in sectors according to an embedded hierarchy). Overall, at
the species level, the most abundant ASVs were identified as Veillonella dispar, Haemophilus
parainfluenzae, followed by several Prevotella species (P. jejuni, P. melaninogenica, P. pallens,
P. salivae, P. intermedia, and P. nigrescens) (Table S3).
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Figure 2. Krona plot showing the mean taxa relative abundances at the phylum and genus levels in
bronchial brushings of healthy young subjects (n = 25). Only the phylum (inner layer) and genus
(outer layer) levels are displayed for better visualization. Only the top 15 genera are shown (based on
their mean relative abundance across all clinical samples, n = 75). Less abundant phyla and genera
were included in the “Others” group.
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Figure 3. Krona plot showing the mean taxa relative abundances at the phylum and genus levels in
bronchoalveolar lavage samples of healthy young subjects (n = 25). Only the phylum (inner layer)
and genus (outer layer) levels are displayed for better visualization. Only the top 15 genera are shown
(based on their mean relative abundance across all clinical samples, n = 75). Less abundant phyla and
genera were included in the “Others” group.

Interestingly, although our samples had been collected from healthy participants,
ASVs corresponding to the typically pathogenic genera, such as Moraxella, Pseudomonas,
Staphylococcus, and Acinetobacter, were also detected, albeit at a low relative abundance
(Table S4). These pathogenic genera were identified primarily in BB samples. For instance,
the Staphylococcus and Acinetobacter genera were only observed in BBs, with each of these
genera being detected in 5/25 of those samples (20.0%).

3.4. Microbial Diversity Analyses

We detected several differences in the microbial diversity between BB, BAL, and OW
samples. Overall, alpha-diversity analyses (Figure 5A–C) showed that the OW samples had
the highest microbial richness, whereas the BB samples had the lowest (p < 0.001). Similar
results, though in an opposing direction, were observed for evenness as the highest and
lowest values were observed in the BB and OW samples, respectively (p < 0.001). For both
microbial richness and evenness, BB and BAL samples differed significantly from each
other (adj. p = 0.017 and adj. p = 0.034, respectively). No differences in the Shannon index
were found across the sample types (p = 0.26).
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Figure 4. Krona plot showing the mean taxa relative abundances at the phylum and genus levels
in oral washes of healthy young subjects (n = 25). Only the phylum (inner layer) and genus (outer
layer) levels are displayed for better visualization. Only the top 15 genera are shown (based on their
mean relative abundance across all clinical samples, n = 75). Less abundant phyla and genera were
included in the “Others” group.

Beta-diversity analyses revealed significant differences in the microbial composition
between airway compartments (Figure 5D, p < 0.001). The lowest overlap in microbial
communities was observed between the oral microbiota samples (OW) and the lower
airway samples (BB and BAL; adj. p-value = 0.002 for both comparisons). Interestingly,
the microbial communities were also significantly different between the BB and BAL
compartments (adj. p-value = 0.004).

3.5. Differential Taxonomic Analyses

Several taxa-level differences were observed between microbiome compartments.
At the phylum level (Table 2), both BB and BAL samples showed a significantly higher
median relative abundance of Firmicutes (32.7% and 31.4%, respectively) compared to the
OW samples (20.9%) (adj. p = 0.001 for both comparisons). Conversely, the Proteobacteria
phylum predominated in the OW samples (median relative abundance: 27.9%) as opposed
to the BB (7.0%) and BAL (12.5%) counterparts (adj. p < 0.001 for both comparisons). Among
the top 15 genera (Table 3), the most striking difference was observed in the Haemophilus
genus, which belongs to the Proteobacteria phylum. For this particular genus, the median
relative abundance was 16.3% in the OW samples compared to 3.1% and 5.5% in the BB
and BAL samples, respectively (adj. p < 0.001 for both comparisons).
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Figure 5. Alpha- and beta-diversity analyses across oral and lower airway compartments of healthy
young subjects (n = 25). Panels (A–C): Alpha-diversity analyses using three different metrics between
bronchial brushings (BB), bronchoalveolar lavage (BAL), and oral wash (OW) samples (n = 25 for each
microbiome compartment). p-values were calculated using a Kruskal–Wallis test; adjusted p-values
were obtained according to the Benjamini–Hochberg method. Panel (D): Principal Coordinates Anal-
ysis (PCoA) plot showing a comparison of microbial structures (beta-diversity) across microbiome
compartments based on a generalized Unifrac distance matrix. p-value was calculated using the
Permutational analysis of variance (PERMANOVA) method based on the adonis function of the vegan
R package; pairwise PERMANOVA results (according to the Benjamini–Hochberg procedure): BB
vs. BAL: adj. p-value = 0.004; BB vs. OW: adj. p-value = 0.002; BAL vs. OW: adj. p-value = 0.002.
Definition of abbreviations: ASV = amplicon sequence variant.
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Table 2. Relative abundance comparisons at the phylum level across oral and lower airway compart-
ments of healthy young subjects (n = 25).

Taxon
MICROBIOME COMPARTMENT

p-Value *
Bronchial Brushings BAL Samples Oral Wash Samples

Phylum Median Q1; Q3 Median Q1; Q3 Median Q1; Q3 p adj. p

Bacteroidota 42.3 36.8; 46.2 40.2 37.3; 45.5 41.7 35.2; 44.5 0.59 0.59

Firmicutes 32.7 22.8; 37.6 31.4 26.9; 35.9 20.9 17.5; 25.5 <0.001 <0.001

Proteobacteria 7.0 4.6; 14.7 12.5 7.7; 18.5 27.9 23.0; 32.8 <0.001 <0.001

Fusobacteriota 6.2 3.0; 10.3 9.1 6.4; 14.0 4.6 3.1; 7.1 0.011 0.014

Actinobacteriota 3.7 2.9; 5.1 2.1 1.4; 2.4 1.7 1.0; 2.5 <0.001 <0.001

Values expressed in %. All phyla whose relative abundances were lower than 2% across all clinical samples
are not shown (based on their mean relative abundance across all clinical samples). Definition of abbreviations:
BAL = bronchoalveolar lavage; Q1 = first quartile; Q3 = third quartile. * p-values were calculated using a Kruskal–
Wallis test; adjusted p-values obtained according to the Benjamini–Hochberg method.

Table 3. Relative abundance comparisons of the most common genera across oral and lower airway
compartments of healthy young subjects (n = 25).

Taxon

MICROBIOME COMPARTMENT
p-Value *

Bronchial Brushings BAL Samples Oral Wash
Samples

Genus Median Q1; Q3 Median Q1; Q3 Median Q1; Q3 p adj. p

Prevotella-7 21.0 16.2;25.0 18.0 15.5; 20.7 19.7 15.7; 21.8 0.29 0.40

Veillonella 15.5 9.4; 17.9 16.8 13.9; 21.2 15.3 11.4; 16.8 0.28 0.40

Prevotella 14.0 9.4; 16.0 12.3 9.8; 14.1 11.0 8.8; 13.9 0.39 0.48

Haemophilus 3.1 1.8; 7.2 5.5 4.7; 7.2 16.3 12.2; 18.7 <0.001 <0.001

Alloprevotella 4.8 2.3; 10.0 7.2 4.4; 8.6 5.2 3.8; 10.1 0.47 0.51

Neisseria 1.7 0.5; 5.0 4.2 1.5; 7.1 7.1 3.7; 11.5 <0.001 0.001

Leptotrichia 1.8 1.0; 4.5 5.7 2.7; 7.7 2.6 1.4; 4.0 0.006 0.014

Fusobacterium 3.1 1.8; 6.2 2.5 1.9; 3.9 1.5 1.0; 2.9 0.07 0.12

Streptococcus 4.3 2.6; 5.7 3.2 1.9; 4.1 2.2 1.7; 4.1 0.06 0.11

Megasphaera 2.7 0.3; 4.2 2.4 1.5; 3.2 0.5 0.2; 0.8 <0.001 0.002

Selenomonas 1.2 0.0; 2.4 2.1 1.0; 3.7 0.7 0.4; 1.1 0.004 0.012

Treponema 0.7 0.3; 1.0 0.6 0.2; 0.9 0.3 0.1; 1.2 0.48 0.51

Actinomyces 1.8 1.2; 2.5 1.0 0.7; 1.3 0.9 0.7; 1.3 0.003 0.01

Porphyromonas 0.4 0.1; 0.9 0.9 0.2; 1.6 0.9 0.4; 1.7 0.03 0.08

Campylobacter 0.8 0.5; 1.2 0.9 0.5; 1.3 0.7 0.6; 1.1 0.75 0.75

Values expressed in %. Only the top 15 genera are shown. Definition of abbreviations: BAL = bronchoalveolar
lavage; Q1 = first quartile; Q3 = third quartile. * p-values were calculated using a Kruskal–Wallis test; adjusted
p-values obtained according to the Benjamini–Hochberg method.

Taxa analyses according to LEfSe provided similar results (Figure 6A). This bioinfor-
matics tool identified, from phylum to genus level, 36 differential taxa differential features
across BB, BAL, and OW samples. Out of these, 19 taxa features predominated in BB, and
most of them were Gram-positive bacteria. These included the Actinobacteriota phylum
(including Actinobacteria class and Micrococcales order), the Bacilli class (along with Staphy-
lococcaceae family and Staphylococcus genus), and the Actinomycetales order and its related
Actinomycetaceae family and Actinomyces genus. On the other hand, seven taxa features
were enriched in BAL, which included a mixture of Gram-positive (Firmicutes phylum) and
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Gram-negative (Leptotrichiaceae family and its corresponding Leptotrichia genus). Ten taxa
features showed higher expression in OW, and all of these were Gram-negatives, including
but not limited to the Proteobacteria phylum, Gammaproteobacteria class, and Haemophilus
and Neisseria genera.
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healthy young subjects (n = 25). Panel (A): LEfSe analyses, based on a linear discriminant analysis
(LDA) effect size > 3, identified several differential taxa features across microbiome compartments.
LEfSe analyses were carried out considering five taxonomic levels (from phylum to genus level);
Panel (B): Comparison of functional pathway predictions (based on the Kyoto Encyclopedia of Genes
and Genomes database) by PICRUSt2; differential functional pathways were visualized between
microbiome compartments using LEfSe with an LDA effect size > 2.

3.6. Metagenome Prediction Analyses

PICRUSt2 analyses were applied to our 16S amplicon sequencing data to predict the
metagenome functions of the bacterial microbiota in oral (OW) and lower airway (BB and
BAL) environments. Using the PICRUSt2 output in association with LEfSe (LDA score > 2),
we identified 58 pathways, which showed significantly different expressions across these
compartments: BB (n = 19); BAL (n = 13); and OW (n = 26) (Figure 6B). In addition to
differences in metabolic pathways (e.g., those related to metabolism and degradation of
carbohydrates, amino acids, and lipids), some pathway differences between these samples
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are noteworthy from a clinical standpoint. For instance, pathways involved with cell
motility (bacterial chemotaxis and flagellar assembly), biofilm formation (Vibrio cholerae
pathogenic cycle), and biosynthesis of specific metabolites (derived from penicillin and
cephalosporin) were enriched in BB. On the other hand, pathways related to membrane
transport (bacterial secretion system), metabolism of cofactors and vitamins (lipoic acid
metabolism), and glycan biosynthesis and metabolism (lipopolysaccharide biosynthesis)
were more highly expressed in OW.

3.7. Lower Airway Microbiota Changes Associated with Local Dysbiosis

The taxa composition in bronchial brushings of healthy young subjects was compared
against similar samples from the BCCA cohort (Table S5), which consisted of healthy
older smokers and patients with COPD. For better plot visualization, LEfSe analyses
were performed using a strict LDA score (>4.0). Notwithstanding, 25 differential taxa
features were still identified between healthy subjects and participants from the BCCA
cohort (Figure 7). Out of these, 13 taxa were enriched in the former group, including,
among others, the Prevotella, Leptotrichia, Neisseria, and Haemophilus genera. Only two taxa
predominated in healthy older smokers (Prevotellaceae UCG-001 genus and Comamonadaceae
family). Lastly, 10 taxa showed higher expression in COPD, including the Pseudomonas and
Streptococcus genera, which represent markers of airway dysbiosis and belong to potentially
pathogenic bacteria (PPB) involved with lung infections.
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4. Discussion

Here, we describe in detail the oral and lower airway microbiota observed in young
healthy persons (24.3 ± 3.3 years). According to our data, the most abundant phyla,
expressed in median relative abundance, were Bacteroidota (OW: 41.7%, BB: 42.3%; BAL:
40.2%), Firmicutes (OW: 20.9%; BB: 32.7%; BAL: 31.4%), and Proteobacteria (OW: 27.9%;
BB: 7.0%; BAL: 12.5%). Overall, at the genus level, Prevotella (considering both Prevotella
and Prevotella-7 genera) showed a median relative abundance of 30.7% (OW), 35.0% (BB),
and 30.3% (BAL), followed by Veillonella, with 15.3% (OW), 15.5% (BB), and 16.8% (BAL).
Our results are in line with previous studies. Dickson et al. observed a high proportion
of Veillonella and Prevotella species in oral rinse specimens collected from eight healthy
subjects (mean age: 53 ±15 years) [34]. Ramsheh et al. investigated the lower airway
microbiota using bronchial brushings from 207 healthy older subjects (52 to 66 years) [35].
These authors reported a higher expression of both the Bacteroidetes phylum (also known as
Bacteroidota) and the Prevotella genus, as these taxa showed a median relative abundance
of 54.0% and 47.7%, respectively. Whether age may account, at least partially, for these
differences in relative abundances between the former study and ours is unknown. We have
extended the findings from these previous studies by providing information regarding the
taxa profiles at the species level. Overall, the most abundant ASV in our samples belonged
to the Veillonela genus (V. dispar), and this species has been reported to colonize the tongue
of healthy individuals [36]. Concerning the Prevotella species, P. melaninogenica, P. nigrescens,
and P. pallens are ubiquitous species found in the oral cavity from birth [37]. P. jejuni, despite
its association with celiac disease, is also considered an oral resident species [37]. All these
Prevotella species were not only detected in our study but were also the most abundant ones
related to the Prevotella genus. It is worth mentioning that Veillonella spp. are Gram-negative
diplococci, while Prevotella spp. are anaerobic Gram-negative rods. Both of these organisms
are colonizers of the normal airways, and their presence in the lower airway microbiota is
due to microaspiration from the oropharynx [4,34]. For the Haemophilus genus, Haemophilus
parainfluenza was the most frequent species detected across our samples; this species can be
isolated from the upper respiratory tract microbiota of healthy subjects, as well as in the
microbiota of patients with sinusitis and acute exacerbations of COPD [38].

Among our healthy participants, ASVs belonging to the Moraxella, Pseudomonas, Staphy-
lococcus, and Acinetobacter genera were also identified. Several members of these genera are
associated with serious human diseases, including pneumonia and endocarditis, thus their
presence in lung samples of healthy participants should be interpreted cautiously. One
possible explanation may be contamination of our bronchoscopy specimens with bacterial
DNA present in laboratory reagents. However, none of these sequences were flagged by the
Decontam contamination removal process [24], supporting the notion that these sequences
represent real biological data rather than cross-contamination. It is intriguing that these
pathogenic genera were mostly isolated in bronchial brushings. Whether the normal airway
microbiome might harbor pathogenic genera in very low abundances from intermittent
colonization is plausible. In keeping with this, a previous study also detected these genera
at very low abundances in bronchoscopy samples from healthy subjects [35]. Conversely, in
COPD, chronic inflammation and disruption of the mucociliary clearance typically lead to
lower airway colonization by PPB (i.e., lung microbial dysbiosis) [5], such as Streptococcus
pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa. Interestingly, smoking does
not appear to significantly shift the lower airway microbiome unless it is associated with
early COPD [5]. These findings are consistent with our results (Figure 7).

Our data also revealed significant differences across oral and lower airway microbiome
compartments, and the most pronounced differences in microbial diversity were detected
between the oral washes and bronchial brushings. These differences between the oral and
lower airway microbiota are partially explained by the amount of biomass in each of these
microenvironments; the oral microbiota represents a high-biomass milieu compared to
the relatively low biomass found in the lower airways. Consistent with this, the median
microbial richness in OW (150) was 54% and 14% higher compared to that observed in
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bronchial brushings (94) and BAL (131). Interestingly, the microbial communities were also
significantly distinct between related lower airway compartments (bronchial brushings
and BAL fluid). These differences in microbial diversity between BB and BAL samples may
be explained by two factors: (1) whereas bronchial brushing evaluates approximately 1 cm2

of the airway mucosa, a BAL fluid aliquot is capable of sampling a much larger airway
area [34]; and (2) the BB samples were collected from LB1 + 2 as opposed to RB4 or RB5 for
the BAL. As previously shown by Erb-Downward et al. [39], it is possible that the bacterial
microbiota may be influenced by regional differences in lungs within the same individual
(e.g., sample collection from different lung segments).

A few studies have investigated interventions that can be applied to reverse at least in
part the local dysbiosis in the oral cavity and lower airways of the diseased lung. Given
the ease of access, most of those studies have addressed interventions on pathogens, such
as those related to the orange- and red-complexes, which are associated with oral dysbio-
sis and periodontal disease [40]. For instance, Butera et al. have shown a bacterial load
decrease of orange-complex pathogens (Fusobacterium, Prevotella and Campylobacter spp.)
after a 6-month treatment with a probiotics-based toothpaste in association with probiotics-
based chewing gum containing bacteria belonging to the Lactobacillus and Bifidobacterium
genera [41]. In terms of potential therapeutic interventions targeting airway dysbiosis,
reducing airway concentration levels of indole-3-acetic acid (IAA), derived from Lactobacil-
lus spp., upregulated interleukin-22 signaling and epithelial cell apoptosis pathways in
COPD [42]. In the same study, the authors observed an increase in local IAA levels with
a subsequent restoration of their airway protective effects in mice following intranasal
inoculation of two airway lactobacilli.

Our study has several limitations. First, no a priori sample size calculation or power
analysis was performed owing to insufficient prior data on this topic involving young
healthy volunteers. The sample size was empirically derived over a 2-year period based on
the number of young, healthy adults who were willing to participate in a bronchoscopy
study in Vancouver (and terminated just prior to the start of the COVID-19 pandemic).
While the study’s sample size is relatively low (n = 25), it is still one of the largest studies
of its kind. Second, our research subjects were young adults, thus these data might not
apply to older persons. However, as co-morbidities and harmful environmental exposures
(e.g., cigarette smoke and air pollution) increase with the ageing process, ascertaining
data in “healthy” older persons may be challenging. Third, as previously described,
we sampled only two areas in the lower respiratory tract. As the lower airways have a
complex branching pattern, it is possible that there could be significant sampling error in
our measurement.

5. Conclusions

Our study describes in detail the taxa profiles and microbial diversity along with
predicted metagenomic functions in both the oropharynx and lower airways of healthy
young individuals providing an important reference dataset for these habitats, against
which future analyses can be benchmarked. Our data support the notion that the lower
airway microbiota differs significantly from the oral microbiota in healthy young persons
and that significant differences may also be observed between bronchial brushings and BAL
fluid even when collected from the same subject. By better understanding the expected
taxa profiles in health, it will be possible to properly characterize homeostatic host–microbe
interactions and perturbations in different habitats. New studies will be needed to investi-
gate how these host–microbe interactions contribute to diseases in dysbiotic environments
and how to revert dysbiosis using medical interventions.
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