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Abstract: The pandemic outbreak of human coronavirus is a global health concern that affects
people of all ages and genders, but there is currently still no effective, approved and potential drug
against human coronavirus, as many other coronavirus vaccines have serious side effects while
the development of small antiviral inhibitors has gained tremendous attention. For this research,
HE was used as a therapeutic target, as the spike protein displays a high binding affinity for both
host ACE2 and viral HE glycoprotein. Molecular docking, pharmacophore modelling and virtual
screening of 38,000 natural compounds were employed to find out the best natural inhibitor against
human coronaviruses with more efficiency and fewer side effects and further evaluated via MD
simulation, PCA, DCCR and MMGBSA. The lead compound ‘Calceolarioside B’ was identified on
the basis of pharmacophoric features which depict favorable binding (∆Gbind −37.6799 kcal/mol)
with the HE(5N11) receptor that describes positive correlation movements in active site residues with
better stability, a robust H-bond network, compactness and reliable ADMET properties. The Fraxinus
sieboldiana Blume plant containing the Calceolarioside B compound could be used as a potential
inhibitor that shows a higher efficacy and potency with fewer side effects. This research work will
aid investigators in the testing and identification of chemicals that are effective and useful against
human coronavirus.

Keywords: hemagglutinin esterase; human coronaviruses; lead compounds; molecular docking;
pharmacophore model; MD simulation; principal component analysis; dynamic cross correlation;
energy decomposition; MMGBSA

1. Introduction

Human coronavirus (COVID-19) is a positive, single-stranded RNA virus that causes
severe acute respiratory syndrome. It originated in China in 2019 and has spread to more
than 210 countries [1]. The coronavirus outbreak appeared to be extremely dangerous
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and lethal, with approximately 590 million people infected, and over 6.4 million deaths
globally [2,3]. The country with the greatest number of patients (around 92.8 million) is the
United States of America [4]. Coronaviruses belong to the family Coronaviridae, which is
further subdivided into four genera i.e., alpha, beta, gamma and delta-corona [5]. Among
all of them, β-coronavirus causes more severe disease than other subtypes and according to
the phylogenetic analysis of its genome, it shares 82% sequence similarity with SARS-CoV
and 50% with MERS-CoV. Novel coronaviruses are lipid-enveloped viruses that are more
virulent, pathogenic and contagious [6]. They contain the lengthiest known genome among
RNA viruses, with a diameter of 80 to 160 nm [7]. They spread from animals to humans,
followed by human-to-human transmission, and morbidity and mortality rates are higher
among elderly patients [8,9].

Coronaviruses genomes comprised upon 6 to 10 open reading frames (ORF). ORF1
at 5′ terminal is directly translated into ORF1a and ORF1b, which encode nonstructural
proteins, while the remaining ORFs encode some structural and accessory proteins [10]. To
understand the virus’s lifecycle, we need to understand the mechanism of these proteins.
Therefore, we can determine which protein can be used as a therapeutic target. The non-
structural proteins play a key role in the pathogenesis and survival of the virus inside the
cell, while four structural proteins: spike (S), membrane (M), envelope (E) and nucleocapsid
(N) proteins, play a significant role in viral replication, attachment [11] and promoting entry
into the host cell [12]. The spike protein is important to block viral entry into host cells and
thus prevent the virus’s replication [13]. Trimeric S protein is the largest among the other
proteins, with a mass of 600 kDa, comprising S1 and S2 subunits [14]. The N-terminal S1
subunit forms the receptor-binding domain (RBD), which helps in the binding of the S pro-
tein to the host cell protein angiotensin-converting enzyme 2 (ACE2), while the C-terminal
S2 subunit contains fusion machinery and undergoes structural rearrangements during the
fusion of viral and cellular membranes [15]. Hemagglutinin-esterase (HE), a viral envelope
glycoprotein of approximately 65 kDa, binds to O-acetylated sialic acid of the host cell
membrane [16] and aids in the attachment of human coronaviruses [17]. Therefore, the
structural spike protein, along with HE, binds to ACE2, which is expressed on the surface
of epithelial cells of the lungs, intestines, kidney and blood vessels. Smokers have higher
levels of risk of COVID-19 infection than non-smokers because their bodies express the
ACE2 gene more than average [18]. After making a connection, HE produces messenger
RNA and performs replication [19,20]. This is the reason that the structural protein HE is a
potential therapeutic target to inhibit the viral replication.

Many antiviral medications derived from fungi and plants that overcome side effects
and increase efficiency were discovered through in vitro tests and computational research
for the novel human coronavirus [21]. Polyketides, polyphenols and flavonoids play a
significant role against coronaviruses [22]. Plants are viewed as bio-factories due to their
antiviral properties and their ability to produce a wide range of chemical compounds
with potential medical applications [23]. To combat the coronaviruses, phytochemicals
have been investigated for their ability to inhibit the HE protein and prevent coronavirus
attachment and replication processes. The use of natural compounds is becoming more
effective and gaining importance against viral infections [24].

The objective of this study is to identify natural lead compounds that inhibit the
HE surface glycoprotein (5N11). Evaluation of novel inhibitors from library of natural
compounds was performed under computational analysis by adopting computer-aided
drug design approach with different bioinformatics tools and techniques [25–29]. Ligand’s
natural compound’s library available in the SelleckChem database have been screened
and identify the lead compound based on its interaction, RMSD, better binding affinity,
pharmacophore fit score, and some other parameters [19].

Calceolarioside B was selected as the lead compound due to its ability to inhibit the
target protein and it may be used in drug design in the future. Calceolarioside B is a
flavonoid glycoside found in the plant Fraxinus sieboldiana Blume and has been previously
reported for its anti-inflammatory and anti-tumor properties [24]. The results of this study
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suggest that Calceolarioside B may also have antiviral properties and could be used in the
development of novel therapeutics for COVID-19.

2. Materials and Methods
2.1. Structure Retrieval, Refinement and Evaluation

The X-ray crystallographic structure of Hemagglutinin-esterase (HE) surface glycopro-
tein with PDB ID 5N11 was retrieved from Protein Data Bank (PDB) (https://www.rcsb.org/
(accessed on 06 March 2022)), a freely available online database that contains the three-
dimensional structural data of macromolecules. The structure of the target protein was
refined via BIOVIA Discovery studio [30] and evaluated via PROCHECK, which provides
information about the stereochemistry of the protein structure via a Ramachandran Plot
that describes the quality of the protein [31].

2.2. Selection of Ligands and Pharmacophore Generation

Fifteen antiviral ligands were retrieved against the target protein HE surface glycopro-
tein from the publicly accessible PubChem (https://pubchem.ncbi.nlm.nih.gov/ (accessed
on 23 March 2022)) database [32] to generate a pharmacophore query. The use of pharma-
cophore is effective in computer-aided drug design (CADD). The pharmacophore model
is an accumulation of common steric and electronic features that quickly filter through a
huge number of a compound’s library for a specific target to initiate or inhibit its biological
response. The selected compounds were aligned and analyzed in terms of their chemi-
cal characteristics and common features were observed among them, such as hydrogen
bond donor, acceptor, cationic, anionic, aromatic and hydrophobic [33]. Protein–ligand
interactions were interpreted to achieve steric features. The pharmacophore of 15 active
antiviral inhibitors was generated on the basis of RMSD values, common steric and chemi-
cal features, and a high binding affinity against Hemagglutinin esterase glycoprotein of
human coronavirus using Ligand Scout 4.1.5. The Ligand Scout software rapidly generated
a 3D pharmacophore from the structural data of small molecules in a fully automated and
appropriate way [34].

2.3. Library Preparation and Virtual Screening

About 20 libraries that contain 38,000 natural compounds (Flavonoids, Traditional Chi-
nese Medicinal compounds, highly selective inhibitors, antiviral and bioactive compounds)
were downloaded from the SelleckChem (https://www.selleckchem.com/screening-librari-
es.html (accessed on 2 April 2022)) database on the basis of the Rule of Five and mini-
mizing their energy via UCSF Chimera 1.14 before docking to make sure they were in
the right conformation so the docking results would be more realistic. The system was
subjected to energy minimization to start the production runs. The system was mini-
mized using the steepest decent [35] and conjugate algorithm [36]. A total of 1500 steps
of conjugate gradient algorithm were applied on the system in which after every 50th
step, the deepest descent algorithm was applied. The freely available UCSF Chimera
(https://www.cgl.ucsf.edu/chimera/ (accessed on 8 April 2022)) was used for visualiza-
tion and analysis of molecular structures together with density maps, trajectories and
sequence alignments. The pharmacophore model was used for the virtual screening of
38,000 natural compounds via Ligand Scout and it selected compounds that had the best
pharmacophoric features and hit scores.

2.4. Docking Calculation and Interaction

After virtual screening, the top-20 compounds were selected on the basis of their
pharmacophore fit score. Molecular docking of these compounds was performed through
PyRx which contained Open Bebel, Vina Wizard, Autodock vina and python interpreter so
that it could automatically convert files into the required file format. Active site residues
were predicted via cocrystal structure and the CASTp server. The interpretation of H-bonds,
polar, pi-anion, pi-alkyl, pi-donor hydrogen bond and hydrophobic interactions among

https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
https://www.selleckchem.com/screening-librari-es.html
https://www.selleckchem.com/screening-librari-es.html
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HE receptor and studied compounds were visualized through UCSF Chimera 1.14 and
PyMOL. On the basis of visualization, a best-hit compound was selected.

2.5. Toxicity Analysis and Bioactivity Prediction

ADMET analysis, medicinal chemistry, lead-like and drug-like properties were pre-
dicted via freely available web tools, such as SwissADME (http://www.swissadme.ch/
(accessed on 22 April 2022)) [37], pkCSM (http://structure.bioc.cam.ac.uk/pkcsm (ac-
cessed on 23 April 2022)) [38], ProTox-II (https://tox-new.charite.de/protox_II/ (accessed
on 19 January 2023)) [39] and OSIRIS Property Explorer [40]. These tools analyzes drugs
and compounds to check whether the designed drug/compound is nontoxic for humans or
not. In addition, bioavailability radar analysis was performed to check the drug likeness
and bioavailability of the identified compound.

2.6. Lead Identification

Lead identification/optimization is an imperative step in drug design. All calculations
(docking scores, interaction and ADMET analysis including MW, HBD, HBA, logP, PSA,
rotatable bonds and rings) were achieved for the identification of a lead compound having
the most suitable results by following the rules i.e., Ghose, Veber, Egan and rule of five
(ROF). The compound with good interaction, best fit-score and binding affinity was selected
as a potential inhibitor against HE surface glycoprotein.

2.7. Molecular Dynamic (MD) Simulations

The lead compound protein and reference complex were subjected to MD simulation
to evaluate changes in the internal dynamics of the target protein. Amber tools were used
to prepare input files while NAMD3 was utilized to conduct 100ns MD simulation with
ff14SB and Gaff forcefields for protein (HE glycoprotein) and ligands (calceolarioside B and
control), respectively. Both ligands and proteins were prepared via the Antechamber and
Leap program of Amber tools while long-range electrostatic interactions were computed
by the particle mesh Ewald method and short-range interactions, such as columbic and
van der Waals interactions, were calculated with a cutoff of 10 Å. A specific number of
Na+ and Cl− counter ions and a TIP3P water box [41] of size 10 Å were introduced to
imitate physiological salt concentration and to neutralize the whole system. A shake
algorithm [42] was employed to constrain all bond lengths containing hydrogen bonds to
heavy atoms while the particle mesh Ewald method [43] was utilized to calculate the long-
range electrostatic interactions. The system was minimized using 10,000 steps and water
equilibration was performed by using 10,000 steps. The temperature equilibrations were
performed gradually at 200, 250, and 300 K temperatures for 5000 steps. After equilibration,
the system was ready and prepared complexes were used to run MD simulation at a
constant temperature of 310 K and 1 atm pressure. MD trajectories for both systems were
analyzed to obtain RMSD, Rg, RMSF, energy decomposition, PCA, cross correlation and
H-bond plot analysis.

2.8. Molecular Mechanics/Generalized Born Surface Area (MMGBSA) Analysis

Molecular Mechanics/Generalized Born Surface Area (MMGBSA) is the efficient force
field technique to access binding free energy of a system (ligand-receptor) in kcal/mol [44].
Calculations were based on the last 300 frames and determined by using the following
equations.

∆Gbind = Gcomplex − Gprotein − Gligand (1)

∆Gbind = ∆Ggas + ∆Gsol − T∆S (2)

∆Ggas = Bond + Angle + Dihed + EEL + VDWAAL (3)

∆Gsol = ∆EGB + ∆ESURF (4)

http://www.swissadme.ch/
http://structure.bioc.cam.ac.uk/pkcsm
https://tox-new.charite.de/protox_II/
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∆Gbind is the total binding free energy of the system (Equation (1)) which is calculated
by employing Equation (2). T∆S is the change of conformational entropy on ligand binding
at a given temperature. ∆Ggas is the total of bond, angle, dihydral, EEL (electrostatic
component of the internal energy) and van der Waals energy (Equation (3)). Internal energy
is associated with the vibration and rotation of single bond torsional angles. Solvation free
energy (∆Gsol) is the combination of ∆EGB (polar component of the solvation energy) and
∆ESURF (no polar component of the solvation energy) (Equation (4)).

3. Results

The target protein is the viral envelope protein, whose structure was retrieved from
the Protein Data Bank with PDB ID 5N11 (Hemagglutinin esterase), 2.45 Å resolution and
0.249 Å R-free value. The HE receptor has two chains, 423 residues and 47,482 Da MW. The
predicted structure was refined by removing the small compounds and water molecules
via BIOVIA Discovery Studio, optimized, minimized and shown in Figure 1 along with the
associated Ramachandran plot that provides information about the stereochemistry of the
target protein. According to the graph, 87.2% residues are in most-favored regions, 12.1%
are in additional allowed regions, while 0.7% are in generously allowed regions. Most of
the residues are in most-favored regions and the overall quality of the HE protein is 95%,
which indicates good quality structure.
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Figure 1. Structure of Hemagglutinin esterase surface glycoprotein (5N11) of human coronavirus
(left side) along it’s Ramachandran Plot with different regions (Most favored, additional allowed
regions and generously allowed regions) of targeted receptor (right side).

According to the domain architecture of the HE protein, there are two domains, shown
in Figure S1. The first one is hema_esterase (22–375) while the second one is Hema HEFG
(129–262), which is required for infection by recognizing the host cell receptor and helping
with the fusion of the viral and host cell membrane.

3.1. Ligand-Based Virtual Screening and Molecular Docking

Fifteen antiviral compounds were used to generate the pharmacophore model which
recognized the defined binding mode. The structures of these ligands along with their
name and pharmacophore fit score are presented in Table 1. A total of 15 active compounds
were aligned via Ligand Scout and we generated a pharmacophore model by choosing
the best features, such as HBD, HBA and aromaticity. Ligands with merged and selected
pharmacophoric features are shown in Figure 2. The prepared pharmacophore model
was used to screen a library of 38,000 natural compounds. Virtual screening has become
a standard tool in drug discovery. After virtual screening the top-20, hits with the best
pharmacophore fit score were selected for molecular docking with 5N11 receptor to explore
their binding modes. Figure 3A,B illustrates docked poses within the active site and
residues engaged in the binding. Docking energies of the top-20 ligands are shown in
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Table 2. The natural compound Calceolarioside B illustrates 11 interactions and was found
most favorable for HE inhibition with the least binding energy of −7.8 kcal/mol. Polar
amino acid residues i.e., Gln307, Cys311, Asn315, Asp289, Asp299 and nonpolar Phe313
created a hydrogen bond with OH of Calceolarioside B to inhibit the activity of the HE
protein (Figure 3C). The hydroxyl group (OH) increased the activity by participating in
hydrogen bonding. The homovanillic-acid-HE complex formed two hydrogen bonds with
OH of Phe313 while Gln307 formed hydrogen bond interactions with oxygen, respectively
(Figure 3D). As shown in Figure 3E, 2-(5-fluoro-2-methoxyphenyl)acetic acid formed a
network of 02 conventional hydrogen bond interactions with polar Cys306 residue, and
aromatic residue Phe313 while non-polar aliphatic Ala303, aromatic Tyr312 and polar
uncharged Gln349 make carbon hydrogen bonds. (Figure 3F) Hydroxytyrosol formed three
conventional hydrogen bonds with Asn294, Trp292, and Arg296 while one carbon hydrogen
bond with polar uncharged Ser298. Figure 3G depicts the hydrogen bond interactions of
omarigliptin with Ser316, Arg291, Asn315, Ala303, Ser298, Asp299, Trp292, Asn293 and
Gln307 residues. In addition, 4′-Methoxyresveratrol formed hydrogen bonds with Ala158,
Tyr150, Tyr152 and Ala160 and pi–pi interactions with residue Ala173. The remaining
14 compounds displayed interactions with binding site residues as shown in Table S2.

Table 1. Chemical structures and their names, along with the pharmacophore fit score of active
compounds.

No. Names Pharmacophore Fit Score Structures

1 5-Norbornene 2,3 dicarboxy-chloride 32.99
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(B) Labelled binding site residues engaged in interaction. Ligands (C) Calceolarioside B (D) Ho-
movanillic acid (E) 2-(5-fluoro-2-methoxyphenyl)acetic acid (F) Hydroxytyrosol (G) Omarigliptin
(H) 4′-Methoxyresveratrol involved in the interaction with the receptor.

Table 2. Binding affinities, pharmacophore fit score and physicochemical properties of hit compounds.

Selected Compounds Docking
Energies

Pharmacophore
Fit Score HBA HBD Rotatable

Bonds M.W logP

Calceolarioside B −7.8 40.08 10 7 9 478.4 0.6
Homovanillic acid −7.7 40.05 4 2 3 182 0.4

2-(5-fluoro-2-methoxyphenyl)acetic acid −7.7 40.00 4 1 3 184 1.5
Hydroxytyrosol −7.7 40.05 3 3 2 154.16 0.17

Omarigliptin −7.7 39.86 8 1 3 398.4 0.3
4′-Methoxyresveratrol −7.7 39.86 3 2 3 242.27 3.5

12-Hydroxy-10,13-dimethyl-2,4,5,6,17-dione −7.7 39.96 8 2 3 391.4 0.3
AZ628 −7.6 40.4 5 2 5 451.5 4.2

Telaprevir −7.5 39.99 8 4 14 679.8 4.2
Verdinexor −7.5 39.87 11 2 5 422.3 4.1

4-[3-(morpholine-4-carbonyl)-5-[4-
(trifluoromethyl)phenyl]pyrazol-1-

yl]benzenesulfonamide
−7.5 39.93 9 1 4 480.5 2.4

3,4 dihydroxyphenylacetic acid −7.3 40.08 4 3 2 168.15 0.5
aminomethyl(phenyl)phosphinic acid −7.3 40.00 3 2 2 171.13 −2.7

3-[2-(3-cyanatophenoxy)ethoxy]phenyl]cyanate −7.0 39.89 6 0 7 296.28 3.9
N-[(4,5-difluoro-1H-benzimidazol-2-yl)methyl]-9-
(3-fluorophenyl)-2-morpholin-4-ylpurin-6-amine −6.5 39.87 10 2 5 480.4 3.5

N-(2-methyl-4-phenylbut-3-en-2-yl)-1-
phenylmethanimine −6.4 40.4 1 0 4 249.3 4.4

Ruboxistaurin −6.2 40.4 4 1 2 468.5 2.7
Daunorubicin −5.3 40.11 11 5 4 527.5 1.8

Forsythoside A −5.1 40.08 15 9 11 624.6 −0.5
Turofexorate Isopropyl −5.1 40.4 5 1 4 438.5 5.0

ADMET properties and heatmap for toxicity analysis were determined for the top-six
compounds in Table 3 and Figure 4, respectively, that lay within the acceptable toxicity
profile. The bioavailability radar of the six top hits is shown in Figure 5. Phytochemical
calceolarioside B was selected as a lead compound against HE glycoprotein of human coro-
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navirus on the basis of its best binding affinity, RMSD, good interactions, pharmacophore
fit score and ADMET properties.

Table 3. ADMET analysis of the top-6 compounds.

Phytochemicals Calceolarioside
B

Homovanillic
Acid

2-(5-fluoro-2-
methoxyphenyl)

acetic Acid
Hydroxytyrosol Omarigliptin 4′-Methoxy-

resveratrol

Formula C23H26O11 C9H10O4 C9H9FO3 C8H10O3 C17H20F2N4O3S C15H14O3

Pfizer Rule Accepted Accepted Accepted Accepted Accepted Rejected

Golden Triangle Accepted Rejected Rejected Rejected Accepted Accepted

BBB Penetration BBB+ BBB+ BBB+ BBB+ BBB+ BBB+

Fu 5.8% 18.71% 5.98% 61.31% 73.074% 1.403%

Density 1.048 1.01 1.037 0.982 1.118 0.935

ESOL Class Soluble Very soluble Soluble Very soluble Soluble Soluble

Ali Class Moderately
soluble Very soluble Soluble Very soluble Very soluble Moderately

soluble

Silicos-IT class Soluble Soluble Soluble Soluble Soluble Soluble

GI absorption Low High High High High High

Pgp substrate Yes No No No Yes No

log Kp (skin
permeation) −8.80 −7.18 −6.39 −7.75 −8.55 −5.33

Lipinski violations 2 0 0 0 0 0

Ghose violations 1 0 0 1 0 0

Veber violations 1 0 0 0 0 0

Acute Toxicity
Alert 0 0 0 0 0 0

Genotoxic
Carcinogenicity

Alerts
1 0 0 0 0 0

SureChEMBL Rule
Alert 0 0 0 0 0 0

Synthetic
Accessibility 2.96 1.49 1.71 1.08 4.40 2.08

Drug-likeness −0.05 0.17 −2.0 −1.3 3.65 −3.1

Drug Score 0.56 0.75 0.54 0.59 0.85 0.27

Mutagenicity No No No No No No

Tumorgenic No No No No No No

Irritant No No No No No No

Reproductive Effect No No No No No Yes
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3.2. Molecular Dynamics Simulations

To further analyze the stability of the lead compound-receptor and control complex,
MD simulation was performed, and we evaluated MD trajectories and determined the
RMSD, RMSF, Radius of Gyration, principal component analysis (PCA), cross correlation,
no. of hydrogen bonds and MMGBSA.

3.2.1. System Stability, Fluctuation and Radius of Gyration

Figure 6 demonstrates RMSD, RMSF, Rg and hydrogen bond plot of control and
calceolarioside B-HE complex for 100 ns. MD trajectory displayed an average RMSD
value of 1.58 ± 0.10 Å for the complex and 2.0 ± 1.10 for the control while there was
a slight increase in the RMSD of the control at 22 ns (Figure 6A). The RMSD value of



Biomedicines 2023, 11, 793 11 of 17

the control and the complex did not vary significantly, staying nearly constant over the
course of the simulation and represented rigidity (Figure 6B). To identify the dynamic
behavior of most mobile residues and the effect of calceolarioside B binding on the flexi-
bility of the target protein, RMSF was investigated. According to the RMSF plot, protein
residues did not experience much flexibility when binding with a hit and reference com-
pound but a noteworthy escalation in the flexibility of amino acids was analyzed between
165–205 residues while an escalation in flexibility was remarkable in the case of the control.
Except for the specific region (165–205), both systems illustrated similarity in residual
fluctuations as the average RMSF value of the complex was 1.10 ± 0.25 Å and 1.50 ± 0.30 Å
for the control. The higher RMSF value at the C and N terminal and the middle residues
represented loop regions that fluctuated more than other secondary structures while a lower
RMSF represented relatively rigid residues. We detected the compactness of hemagglutinin
esterase by approaching the radius of gyration (Rg) of carbon alpha atoms. It provided
insights into the overall protein dimensions and enabled evaluations of the modifications
to the tertiary structure of the protein throughout the simulation. Figure 6C displays a
fluctuation near 40 and 58 ns in the complex system while the control represents significant
fluctuations at 35, 68 and 98 ns with an abrupt decrease near 60 ns and a sustained average
20.50 Å Rg value. Overall, there was no major variation in the complex Rg throughout
the simulation which showed that there were no unfolding events or loose packing, and
revealed the extremely compacted nature of protein–ligand complex, and the complex
maintained a 21.74 ± 0.18 Å Rg value.

Biomedicines 2023, 11, x  11 of 17 
 

escalation in the flexibility of amino acids was analyzed between 165–205 residues while 

an escalation in flexibility was remarkable in the case of the control. Except for the specific 

region (165–205), both systems illustrated similarity in residual fluctuations as the average 

RMSF value of the complex was 1.10 ± 0.25 Å  and 1.50 ± 0.30 Å  for the control. The higher 

RMSF value at the C and N terminal and the middle residues represented loop regions 

that fluctuated more than other secondary structures while a lower RMSF represented 

relatively rigid residues. We detected the compactness of hemagglutinin esterase by ap-

proaching the radius of gyration (Rg) of carbon alpha atoms. It provided insights into the 

overall protein dimensions and enabled evaluations of the modifications to the tertiary 

structure of the protein throughout the simulation. Figure 6C displays a fluctuation near 

40 and 58 ns in the complex system while the control represents significant fluctuations at 

35, 68 and 98 ns with an abrupt decrease near 60ns and a sustained average 20.50 Å  Rg 

value. Overall, there was no major variation in the complex Rg throughout the simulation 

which showed that there were no unfolding events or loose packing, and revealed the 

extremely compacted nature of protein–ligand complex, and the complex maintained a 

21.74 ± 0.18 Å  Rg value. 

(Figure 6D) The time evolution plot of H-bonds determines the formation and stabil-

ity of hydrogen bonds throughout the simulation time as H-bonds play a significant role 

in drug specificity, metabolism and absorption [45,46]. The results illustrated that calceo-

larioside B formed up to four H-bonds with 88.34% occupancy and depicted the stable 

nature of the complex while the control formed up to ten hydrogen bonds with a mini-

mum of six H-bonds throughout the simulation period. 

 

Figure 6. (A) RMSD plot of the control and calceolarioside B in contact with the target protein (com-

plex) during 100,000 ps, (B) RMSF plot of both the control and complex systems which evaluates 

the structural flexibility of each residue, (C) Radius of Gyration (Rg) of the control and hit com-

pound-HE system over 100 ns, (D) Hydrogen bond plot depicting all H-bonds formed between the 

lead-receptor and control system throughout the simulation time. 

3.2.2. Principal Component Analysis (PCA) 

A Principal Component Analysis (PCA) was employed to detect the protein’s con-

formational changes mediated by calceolarioside B binding and reveal the collective mo-

tions of MD trajectories. According to Figure 7, PC1, PC2, PC3 and eigenvalues of receptor 

Figure 6. (A) RMSD plot of the control and calceolarioside B in contact with the target protein
(complex) during 100,000 ps, (B) RMSF plot of both the control and complex systems which evaluates
the structural flexibility of each residue, (C) Radius of Gyration (Rg) of the control and hit compound-
HE system over 100 ns, (D) Hydrogen bond plot depicting all H-bonds formed between the lead-
receptor and control system throughout the simulation time.

(Figure 6D) The time evolution plot of H-bonds determines the formation and stability
of hydrogen bonds throughout the simulation time as H-bonds play a significant role in
drug specificity, metabolism and absorption [45,46]. The results illustrated that calceolario-
side B formed up to four H-bonds with 88.34% occupancy and depicted the stable nature
of the complex while the control formed up to ten hydrogen bonds with a minimum of six
H-bonds throughout the simulation period.
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3.2.2. Principal Component Analysis (PCA)

A Principal Component Analysis (PCA) was employed to detect the protein’s confor-
mational changes mediated by calceolarioside B binding and reveal the collective motions
of MD trajectories. According to Figure 7, PC1, PC2, PC3 and eigenvalues of receptor
was plotted against the respective eigenvector index for the first 20 modes of motion. PC
analysis indicated conformational changes in all clusters where the blue region exhibited
the most significant movements, the white region represented intermediate movements
and the red region displayed the least flexible movements. Overall protein movement
was controlled by eigenvectors, especially the higher ones and the top-five eigenvectors
in our system demonstrated dominant movements with eigenvalues of 18.0–59.9% while
the remaining eigenvectors had lower eigenvalues. According to the PCA plot, the PC1
cluster retained the highest variability of 17.98%, PC2 illustrated 10.63% variability, while
PC3 showed minimal variability (8.09%). The minimal variability of PC3 indicates highly
stabilized protein ligand binding and a compact structure when compared to the PC1 and
PC2 clusters.
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Figure 7. The interpretation of variance (HE-calceolarioside B) against eigenvalues calculated by
Principal Component Analysis. The 3 PCs showed fluctuating regions with 36.7% overall fluctuations.
The fluctuations in PC1, PC2 and PC3 were 17.98%, 10.63% and 8.09%, respectively.

3.2.3. Positive-Negative Correlation Movements of Residues

Dynamic cross-correlation maps represent inter residual motions computed via MD
trajectories (Figure 8). The cyan and magenta color depicts strongly correlated (positive) and
anticorrelated (negative) motions, respectively, between essential residues throughout the
MD simulation. The correlated residues were more than 0.8 while anticorrelated residues
were <−0.4. Positive correlation confirms RMSD and revealed a high stability. As shown
in Figure 8A, the control (standard compound-HE) depicts a positive correlation and also
depicts some of the negatively correlated movements (Figure 8B). The lead compound and



Biomedicines 2023, 11, 793 13 of 17

receptor are significantly correlated, and positively correlated movements were extremely
notable at residues 100–130 and 250–350 (active site region) and a higher percentage of
pairwise-correlated residues represent the stable binding of calceolarioside B with the
HE protein.
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Figure 8. Dynamic cross-correlation matrix of Cα atoms of (A) the control and (B) target-protein-
bound calceolarioside B. The cyan color depicts a high correlation while the magenta color designates
anticorrelation between amino acid residues.

3.2.4. Binding Energy Landscape and Energy Decomposition Analysis

To estimate the contribution of individual residues towards HE protein’s inhibition,
MMGBSA and energy decomposition analyses were performed. Per-residue energy decom-
position analysis showed the contribution of different amino acids to the overall binding
energy. According to the energy decomposition graph, the highest contributing residues
Val304, Phe313, Gln349 and Asn300 with −3.3, −2.5, −2, −1.5 kcal/mol energies interacted
with the ligand and are highlighted in Figure 9A.
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Figure 9. (A) Per-residue energy decomposition analysis (B) MMGBSA-based binding free energy of
calceolarioside B-HE system in kcal/mol.

Highly dynamic, cost-effective and computer-derived MMGBSA analysis computes
the binding free energy of the protein–ligand complex at the molecular level that might
be extremely beneficial for drug design (Figure 9B). The binding free energy (∆Gbind) of
calceolarioside B complex with HE protein is −37.6799 kcal/mol. Data reveal that van der
Waals interactions (VDWAALS) significantly contribute (−46.4165 kcal/mol) to the binding
free energies while EGB was 23.0200 kcal/mol and EEL was −9.4782 kcal/mol. The ∆Ggas
(bond + angle + dihed + EEL + VDWAALS) was the highest energy with−55.8948 kcal/mol
value (Table S1). The Calceolarioside B-HE complex represented the lowest negative values,
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indicating stability and favorable binding of calceolarioside B in the active site of the
HE receptor.

4. Discussion

The pandemic outbreak of novel human coronavirus spread into several other coun-
tries. In 2020, WHO declared a global health emergency based on the growing number of
cases and a situation that was growing worse on a daily basis. To handle this situation, it is
necessary to develop new drugs to treat COVID-19. Therefore, we used a multidisciplinary
field, computer-aided drug design widely used to find new drug candidates in less time
and at a reduced cost.

In this research, we made use of different bioinformatics tools to find a natural inhibitor
against the HE surface glycoprotein of human coronavirus. In recent years, the use of
natural compounds against viral infections has been found to be effective and is gaining
importance. Natural compounds are less toxic, and less harmful to human health and are
being analyzed to understand whether they could inhibit coronavirus. This virus shares
sequence similarity with beta coronaviruses which possess the HE protein that interacts
with various types of sialic acid, removes acetyl groups from O-acetylated sialic acid and
play a role in binding to the target cell.

Ligands and receptor were obtained from PubChem and PDB respectively, then
minimize their energy in order to reduce the overall potential of the receptor and ligands
and to make sure that they were in the right conformation with low delta G values so as
to be considered close to the biological system. Libraries of natural inhibitor compounds
were downloaded from the SelleckChem database which provided the antiviral, antifungal
and anti-inflammatory effects. A pharmacophore model was generated on the basis of
shared steric and electronic features of all known active and antiviral compounds with a
wide range of structural diversity and activities were aligned which were responsible for
the biological interactions. The pharmacophore model explains how structurally distinct
ligands can bind to the same side of the receptor.

Virtual screenings of thousands of natural compounds have been performed to dis-
cover novel molecules from a library of 38,000 compounds, docked via PyRx and to deter-
mine the interaction between the small molecule and the active site of the target protein at
an atomic level. Resultantly, we selected the best compound, calceolarioside B, on the basis
of its best docking affinity, RMSD and other physiochemical properties. The lead compound
tightly bound with Asn315, Val304, Phe313, Asp289, Cys311, Asn300 and Gln307 amino
acids and stabilized the active site of the HE receptor. Calceolarioside B is derived from the
roots and leaves of Fraxinus sieboldiana Blume plant, which is member of the Oleaceae family,
commonly known as the ash tree that is found in various regions of the world. It is native to
China Southeast, Japan and Korea. In northern areas of Pakistan, Fraxinus sieboldiana Blume
plant is usually used to treat malaria and pneumonia. Metabolites and extracts from this
plant exhibit a wide range of biological actions, including anticancer, anti-inflammatory,
antioxidant, antimicrobial, hepatoprotective, antiallergic and anti-viral properties.

A toxicity analysis evaluated the safety of the potential drug candidate, which in-
dicated that calceolarioside B is safe to use in the future against the HE glycoprotein of
human coronavirus. In checking for toxicity, the Lipinski rule was required to be fol-
lowed to check whether the drug was toxic or non-toxic. The Calceolarioside B compound
violated two Lipinski rules, but a drug or compound with two violations is acceptable
while more than two violations are not acceptable. RMSD, which computes the average
distance and the binding of calceolarioside B, revealed stability in the HE receptor. The
RMSF graph did not represent major fluctuations in the target protein after binding of a
hit compound. The radius of gyration value represents the compactness and stabilized
folding in the phytochemical bound complex. Calceolarioside B formed a lot of interactions
with the HE receptor, but the H-bond played a significant role by stabilizing the complex.
PCA, DCCR and MMGBSA represent compactness and stability in the lead compound-HE
receptor. Generally, the analysis of the MD simulation trajectory revealed the stable and
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energetically favorable complex formation in the presence of a lead phytochemical. These
findings and their implications are discussed in the broadest context possible. This study
will help researchers to evaluate the compounds that are effective and beneficial against
human coronavirus.

5. Conclusions

HE glycoprotein (5N11) is involved in causing COVID-19 disease in humans. This
research work was designed to find a natural compound that can act as inhibitor against
HE glycoprotein of human coronavirus within a reduced time and cost by using different
bioinformatics tools. Pharmacophore modeling, virtual screening and molecular docking
helped to filter out calceolarioside B as having a low binding affinity with the target protein.
Fraxinus sieboldiana Blume, a medicinal plant with rich phytochemical compounds, out of
which calceolarioside B is one of the compounds that show antiviral activity, inhibits the
replication of coronavirus, stabilizing the structure and energy of the HE receptor indicated
via MD simulation and MMGBSA analysis. The selected lead phytochemical must be
validated in future through in vitro and in vivo studies. It is concluded that Calceolarioside
B that is present in the root bark and leaves of the Fraxinus sieboldiana Blume plant, is an
effective lead compound in the case of novel coronavirus.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/biomedicines11030793/s1. Figure S1: Domain architecture
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