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Abstract: A series of Michael adducts of malononitrile and sulfonamide chalcones were synthesized,
characterized, and evaluated for their antifilarial activity. Out of 14 compounds, N-(4-(4,4-dicyano-3-
p-tolylbutanoyl)phenyl)benzenesulfonamide showed favorable drug-likeness properties with marked
antifilarial effects at micro-molar dosages. Apoptosis in Brugia malayi microfilariae was confirmed
by EB/AO staining, MTT assay, and cytoplasmic cytochrome c ELISA. Since chalcone and folate
synthesis pathways share the same substrate, we hypothesize a structural analogy-based inhibition
of folate metabolism by this compound. Molecular docking against a pre-validated BmDHFR protein
showed more favorable thermodynamic parameters than a positive control, epicatechin-3-gallate. The
compound significantly suppressed the DHFR activity in a parasite extract in vitro. Our hypothesis
is also supported by a significant reversal of DHFR inhibition by folate addition, which indicated a
plausible mechanism of competitive inhibition. These results demonstrate that targeting filarial folate
metabolism through DHFR with consequent apoptosis induction might be rewarding for therapeutic
intervention. This study reveals a novel rationale of the structural analogy-based competitive
inhibition of DHFR by Michael adducts of sulfonamide chalcones.

Keywords: Michael adducts; sulfonamide chalcone; antifilarial; dihydrofolate reductase; folate metabolism

1. Introduction

Lymphatic filariasis (LF) poses a risk to about 863 million people in 47 countries world-
wide, with a huge burden of consequent disability [1]. Failing in eliminating LF by 2020, the
WHO has set a new target of achieving LF elimination by 2030 by introducing triple-drug
therapy (IDA): ivermectin, diethylcarbamazine (DEC), and albendazole. However, this
preventive chemotherapy strategy is facing many challenges, including setbacks due to
COVID-19, poor drug acceptability among communities due to a lack of awareness, and
lack of training of health workers [2–4]. Moreover, the threat of disease re-emergence due
to insufficient mosquito vector control programs and possible drug resistance is a matter of
concern. The absence of a prophylactic vaccine complicates it further. All these compelling
issues make antifilarial drug research a dire necessity, in consonance with the mandate of
drug research for filarial diseases set out by WHO (TDR) [5].

The most accepted mechanism of DEC action entails eliciting a host inflammatory
response against the filarial parasite. Although DEC targets the folate pathway as well, its
direct role in filaricidal action is still obscure [6]. Evidence suggests the apoptotic effect of
DEC on the parasite in vitro [7], although it is not sufficient for filaricidal action. In our
previous work, certain herbal extracts rich in polyphenolic/flavonoid ingredients have
shown efficacy against Brugia malayi parasites [8]. Since the shikimate pathway of folate
and flavonoid biosynthesis shares a precursor called chorismite [9], a possible structural
resemblance-based inhibition of folate metabolism by flavonoids through dihydrofolate
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reductase (DHFR) inhibition can be contemplated. A similar rationale with consequent
apoptosis was demonstrated with the flavonoids derived from tea [10].

Chalcones are flavonoid metabolites that are being extensively studied for their spec-
trum of actions on various cellular metabolic processes [11]. Interestingly, chalcones and
their derivatives have proven antiparasitic effects [12]. Recently, we have shown the antifi-
larial activity of sulfonamide chalcones with consequent apoptosis induction; however, the
mechanism is unclear [13]. Comprehensibly, a close association between folate pathway
inhibition and apoptosis can be envisioned due to the crucial role of folate in the nucleic
acid synthesis required for cell proliferation. Against this backdrop, we have undertaken
this study to ascertain the antifolate effects of Michael adducts of sulfonamide chalcones in
the human lymphatic filarial parasite.

2. Materials and Methods
2.1. Chemistry

All solvents and chemicals were obtained commercially and were used as received.
Melting points were determined in an open capillary and were not corrected. The reaction’s
progress was checked using pre-coated TLC plates. The synthesized compounds were
characterized based on chemical properties and spectral analysis. IR spectra were recorded
using a spectrometer instrument (Bruker India Scientific Pvt Ltd., Mumbai, India). NMR
spectra were recorded with a Bruker Avance II at 400 MHz as well as a Bruker DMX
spectrometer at 500 MHz (1H) and 125 MHz (13C) using CDCl3 or DMSO-d6 as the solvent
(Supplementary Materials) (Bruker Scientific LLC, MA, USA). All chemical shifts are
reported in ppm and have been referenced to tetramethylsilane using residual 1H or
13C signals of the deuterated solvents as internal standards. Electron spray ionization
mass spectra were recorded on a Bruker microTOFQ spectrometer (Bruker Scientific LLC,
Marlton, MA, USA). Elemental analyses (C, H, N) were obtained using a Carlo Erba 1108
analyzer (EA Consumables, LLC, Marlton, NJ, USA). Synthesis of sulfonamide chalcones
(1a-n) was achieved by the Claisen–Schimdt condensation of sulphonamide ketones with
substituted aromatic aldehydes [13].

2.1.1. General Method of Synthesis

A suspension of sulfonamide chalcone (1a-n) (1.25 mmol) and malononitrile (1.25 mmol)
in the presence of piperidine (0.375 mmol) in 0.5 mL aqueous ethanol (1:1) was stirred at
room temperature for an appropriate time. After completion of the reaction, as indicated
by TLC, the product was simply separated by filtration under suction to afford a product
of sufficient purity. The crude compound was recrystallized in ethanol, if necessary.

(4-(4,4-dicyano-3-phenylbutanoyl)phenyl)benzenesulfonamide (3a)

White solid; (yield 0.50 g, 94%); mp: 179–180 ◦C; Rf 0.5 (30% EtOAc:Hexane); IR: 2966
(Ar C-H str), 1593 (C=O str), 1464 (asymm. S=O str), 1156 (symm. S=O str) cm−1; 1H
NMR (400 MHz, DMSO-d6) (Figure S1). δ: 10.88 (s,1H, NH), 7.86–7.81 (m, 4H, Ar-H),
7.64–7.59 (m, 3H, Ar-H), 7.43–7.41 (m, 2H, Ar-H), 7.36–7.28 (m, 3H, Ar-H), 7.21–7.19 (m, 2H,
Ar-H), 5.18 (d, 1H, J = 6.0 Hz, H1), 4.00 (m, 1H, H2), 3.71 (dd, 1H, J = 21.8 Hz, 9.6 Hz, H3)
3.5 (dd, 1H, J = 18.2 Hz, 12.4 Hz, H4) 13C NMR (100 MHz, DMSO-d6) (Figure S2) δ: 194.53,
142.35, 139.00, 137.46, 132.98, 130.78, 129.48, 129.16, 128.28, 127.88, 126.36, 117.58, 113.13,
112.84, 48.44, 39.99, 28.88; HRMS (ESI) (Figure S3): m/z: calculated for C24H19N3NaO3S is
452.1045 found 452.1099 [M+Na]+.

N-(4-(4,4-dicyano-3-(4-methoxyphenyl)butanoyl)phenyl)benzenesulfonamide (3b)

White solid; (yield 0.46 g, 81%); mp: 191–193 ◦C; Rf 0.45 (30% EtOAc:Hexane); IR:
2966 (Ar C-H str), 1590 (C=O str), 1464 (asymm. S=O str) 1228 (symm S=O str) cm−1;
1H NMR (500 MHz, DMSO-d6) (Figure S4) δ: 7.87–7.83 (m, 4H, Ar-H), 7.64–7.61 (m, 1H,
Ar-H), 7.58–7.55 (m, 2H, Ar-H), 7.35–7.33 (m, 2H, Ar-H), 7.21–7.19 (m, 2H, Ar-H), 6.91–6.89
(m, 2H, Ar-H), 5.13 (d, 1H, J = 6.0 Hz, H1), 4.00 (dd, 1H, J = 12.92 Hz, 7.55 Hz, H2), 3.94



Biomedicines 2023, 11, 723 3 of 17

(dd, 1H, J = 17.05 Hz, 7.9 Hz, H3), 3.67 (dd, 1H, J = 17.8 Hz, 11.95 Hz, H4); 13C NMR
(125 MHz, DMSO-d6) (Figure S5) δ: 194.40, 159.00, 143.39, 142.78, 136.49, 130.83, 129.55,
129.43, 129.29, 129.15, 126.64, 117.66, 113.79, 113.14, 112.96, 54.80, 40.16, 38.84, 29.21; HRMS
(ESI) (Figure S6): m/z: calculated for C25H21N3NaO4S is 459.1253, found 459.3528 [M+Na]+.

N-(4-(3-(4-chlorophenyl)-4,4-dicyanobutanoyl)phenyl)benzenesulfonamide (3c)

White solid; (yield 0.50 g, 82%); mp: 182–183 ◦C; Rf 0.36 (30% EtOAc:Hexane); IR: 3333
(N-H str), 2879 (Ar C-H str), 1674 (C=O str), 1328 (asymm. S=O str), 1158 (symm. S=O str)
cm−1; 1H NMR (500 MHz, DMSO-d6) (Figure S7) δ: 10.97 (s,1H, NH), 7.85–7.56 (m, 7H,
Ar-H), 7.45–7.20 (m, 6H, Ar-H), 5.17 (d,1H, J = 5.36 Hz, H1), 4.02 (m, 1H, H2), 3.70–3.76 (m,
2H, H3, H4) 13C NMR (125 MHz, DMSO-d6) (Figure S8) δ: 194.85, 142.75, 139.28, 136.91,
133.50, 133.06, 130.27, 129.94, 129.63, 128.73, 126.82, 117.96, 113.43, 113.13, 46.11, 39.29, 29.18;
HRMS (ESI) (Figure S9): m/z: calculated for C24H18ClN3NaO3S is 486.0655 found 486.0478
[M+Na]+ and 488.0465 [M+Na+2]+.

N-(4-(3-(4-bromophenyl)-4,4-dicyanobutanoyl)phenyl)benzenesulfonamide (3d)

White solid; (yield 0.51 g, 82%); mp: 23–212 ◦C; Rf 0.55 (30% EtOAc:Hexane); IR: 3335
(N-H str), 2963 (Ar C-H str), 1603 (C=O str), 1329 (asymm. S=O str), 1158 (symm. S=O str)
cm−1; 1H NMR (400 MHz, DMSO-d6) (Figure S10) δ: 7.86–7.83 (m, 4H, Ar-H), 7.66–7.61
(m, 1H, Ar-H), 7.58–7.56 (m, 3H, Ar-H), 7.41–7.39 (m, 2H, Ar-H), 7.22–7.20 (m, 3H, Ar-H),
5.20 (d, 1H, J = 6.0 Hz, H1), 4.00 (d, J = 0.92 Hz, 1H, H2), 3.73 (dd, 1H, J = 17.95, 9.45 Hz,
H3), 3.49 (dd, 1H, J = 17.95, 12.25 Hz, H4); 13C NMR (100 MHz, DMSO-d6) (Figure S11) δ:
193.98, 142.47, 132.93, 129.55, 128.84, 128.12, 126,38, 118.45, 45.95, 39.85, 26.08; HRMS (ESI)
(Figure S12): m/z: calculated for C24H18BrN3NaO3S is 530.0150 found 531.0126 [M+Na]+

and 532.0155 [M+Na+2]+.

N-(4-(4,4-dicyano-3-(3,4,5-trimethoxyphenyl)butanoyl)phenyl)benzene-sulfonamide (3e)

White solid; (yield 0.62 g, 96%); mp: 187–188 ◦C; Rf 0.55 (30% EtOAc:Hexane); IR: 3188
(N-H str), 2966 (Ar C-H str), 1588, (C=O str), 1329, (asymm. S=O str), 1125 (symm. S=O str)
cm−1; 1H NMR (400 MHz, DMSO-d6) (Figure S13) δ:7.74–7.72 (m, 1H, Ar-H), 7.55–7.36 (m,
5H, Ar-H), 7.26–7.24 (m, 1H, Ar-H), 6.92 (d, J = 8.56 Hz, 1H, Ar-H), 6.82 (s, 1H, Ar-H), 6.66
(d, J = 8.72 Hz, 1H, Ar-H), 6.57 (s, 1H, Ar-H), 5.60 (s, 1H, H1), 4.49 (d, J = 11.76 Hz, 1H, H2),
4.23 (d, J = 11.76 Hz 1H, H3), 4.3 (dd, J = 12.62 Hz, 3.28 Hz, 1H, H4), 3.82 (s, 6H, 2(MeO)),
3.70 (s, 3H, MeO); 13C NMR (100 MHz, DMSO-d6) (Figure S14) δ: 197.33, 152.64, 140.52,
139.48, 137.66, 136.61, 132.43, 130.27, 129.76, 128.16, 126.23, 125.79, 120.16, 114.36, 113.80,
36.19, 59.93, 55.84, 55.44, 44.31, 38.95, 22.92; CHN Analysis: Anal. calcd for C27H25BrN3O6S
(519.14): C, 62.42; H, 4.85; N, 8.09%. Found: C, 62.39; H, 4.83; N, 8.08.

N-(4-(3-(2-chlorophenyl)-4,4-dicyanobutanoyl)phenyl)benzenesulfonamide (3f)

White solid; (yield 0.43 g, 75%); mp: 181–182 ◦C; Rf 0.55 (30% EtOAc:Hexane); IR: 3270
(N-H str), 2899 (Ar C-H str), 1663 (C=O str), 1358 (asymm. S=O str), 1156 (symm. S=O str)
cm−1; 1H NMR (400 MHz, DMSO-d6) (Figure S15) δ: 3.82 (s, 1H, NH), 7.85–7.83 (m, 4H,
Ar-H), 7.61–7.57 (m, 2H, Ar-H), 7.54–7.51 (m, 2H, Ar-H), 7.49–7.44 (m, 1H, Ar-H) 7.35–7.28
(m, 2H, Ar-H), 7.24–7.22 (m, 2H, Ar-H), 5.21 (brs,1H, H1), 4.54 (d, 1H, J = 6.00 H2), 3.75
(dd, 1H, J = 18.06, 8.36 Hz, H4), 3.62 (dd, 1H, J = 18.04, 5.06 Hz, H3); 13C NMR (100 MHz,
DMSO-d6) (Figure S16) δ: 194.06, 142.73, 139.36, 135.15, 133.97, 132.87, 130.73, 129.63, 129.48,
129.44, 129.06, 128.08, 127.41, 126.58, 117.77, 112.51, 40.22, 36.11, 27.75; CHN Analysis: Anal.
calcd for C24H18ClN3O3S (493.93): C, 62.13; H, 3.91; 9.06%. Found: C, 62.02; H, 3.84; N,
8.96%.

N-(4-(4,4-dicyano-3-p-tolylbutanoyl)phenyl)benzenesulfonamide (3g)

White solid; (yield 0.38 g, 70%); mp: 191–192 ◦C; Rf 0.4 (30% EtOAc:Hexane); IR: 3333
(N-H str), 2881 (Ar C-H str), 1677 (C=O str), 1399 (asymm. S=O str), 1157 (symm. S=O str)
cm−1; 1H NMR(400 MHz, DMSO-d6) (Figure S17) δ: 3.85 (s, 1H, NH), 7.85–7.83 (m, 4H,
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Ar-H), 7.61–7.51 (m, 3H, Ar-H), 7.32–7.30 (m, 2H, Ar-H), 7.24–7.22 (m, 2H, Ar-H) 7.16–7.14
(m, 2H, Ar-H), 5.12 (d, 1H, J = 5.64 Hz, H1), 3.94 (d, 1H, J = 3.88 Hz H2), 3.66 (dd, 1H,
J = 18.04 Hz, 8.00 Hz, H4), 3.47 (dd, 1H, J = 17.88 Hz, 6.00 Hz, H3), 2.29 (s, 3H, Me); 13C
NMR (30 MHz, DMSO-d6) (Figure S18) δ: 194.48, 142.67, 139.37, 137.42, 134.46, 132.89,
129.94, 129.46, 129.09, 129.04, 127.87, 126.58, 117.79, 113.12, 112.82, 40.21, 38.96, 29.04, 20.63;
CHN Analysis: Anal. calcd for C25H21N3O3S (443.52): C, 67.70; H, 4.77; N, 9.47%. Found:
C, 67.54; H, 4.66; N, 9.44%.

N-(4-(4,4-dicyano-3-(4-methoxyphenyl)butanoyl)phenyl)4-methylbenzene-sulfonamide (3h)

White solid; (yield 0.49 g, 84%); mp: 162–164 ◦C; Rf 0.57 (30% EtOAc:Hexane); IR: 3458
(N-H str), 2966 (Ar C-H str), 1671 (C=O str), 1305 (asymm. S=O str), 1151 (symm. S=O str)
cm−1; 1H NMR(400 MHz, DMSO-d6) (Figure S19) δ: 3.74 (s, 1H, NH), 7.84–7.80 (m, 2H,
Ar-H), 7.77–7.71 (m, 2H, Ar-H), 7.40–7.30 (m, 4H, Ar-H), 7.23–7.18 (m, 2H, Ar-H) 6.89–6.83
(m, 2H, Ar-H), 5.3 (d, 1H, J = 5.84 Hz, H1), 3.93 (dd, 1H, J = 12.74 Hz, 6.96 Hz, H2), 3.75 (s,
3H, MeO), 3.70–3.62 (m, 1H, H4), 3.46 (dd, 1H, J = 17.8 Hz, 11.8 Hz, H3), 2.34 (s, 3H, Me);
13C NMR (100 MHz, DMSO-d6) (Figure S20) δ: 194.49, 159, 143.39, 142.78, 136.49, 130.83,
129.55, 129.48, 129.29, 129.15, 126.64, 117.66, 113.79, 113.14, 112.84, 54.87, 40.21, 38.96, 29.17,
20.97; CHN Analysis: Anal. calcd for C26H23N3O4S (473.54): C, 65.95; H, 4.90; N, 8.87%.
Found: C, 65.85; H, 4.86; N, 8.87%.

N-(4-(3-(4-chlorophenyl)-4,4-dicyanobutanoyl)phenyl)-4-methylbenzene-sulfonamide (3i)

White solid; (yield 0.51 g, 86%); mp: 178–179 ◦C; Rf 0.67 (30% EtOAc:Hexane); IR: 3443,
(N-H str), 2968 (Ar C-H str), 1678 (C=O str), 1333 (asymm. S=O str), 1160, (symm. S=O str)
cm−1; 1H NMR(400 MHz, DMSO-d6) (Figure S21) δ: 3.72 (s, 1H, NH), 7.83–7.81 (m, 2H,
Ar-H), 7.73–7.71 (m, 2H, Ar-H), 7.46–7.44 (m, 2H, Ar-H), 7.37–7.36 (m, 2H, Ar-H) 7.31–7.29
(m, 2H, Ar-H), 7.23–7.21 (m, 2H, Ar-H), 5.15 (d, 1H, J = 6.08 Hz, H1), 4.01 (d, 1H, J = 6.56
Hz, H2), 3.68 (dd, 1H, J = 17.96 Hz, 9.96 H4), 3.51 (dd, 1H, J = 17.96 Hz, 12.36 Hz, H3), 2.35
(s, 3H, Me); 13C NMR (100 MHz, DMSO-d6) (Figure S22) δ: 194.15, 143.34, 142.85, 136.46,
136.28, 133.22, 130.66, 129.76, 129.47, 129.38, 128.43, 126.62, 117.62, 112.79, 112.52, 40.22,
38.97, 28.74, 20.98; CHN Analysis: Anal. calcd for C25H20ClN3O3S (477.96): C, 62.82; H,
4.22; N, 8.79%. Found: C, 62.64; H, 4.39; N, 8.57%.

N-(4-(3-(4-bromophenyl)-4,4-dicyanobutanoyl)phenyl)4-methylbenzene-sulfonamide (3j)

White solid; (yield 0.57 g, 88%); mp: 192–194 ◦C; Rf 0.5 (30% EtOAc:Hexane); IR:
3450(N-H str), 2966 (Ar C-H str), 1679 (C=O str), 1295, (asymm. S=O str), 1161 (symm. S=O
str) cm−1; 1H NMR(400 MHz, DMSO-d6) (Figure S23) δ: 3.71 (s, 1H, NH), 7.83–7.81 (m, 2H,
Ar-H), 7.73–7.71 (m, 2H, Ar-H), 7.52–7.50 (m, 2H, Ar-H), 7.40–7.48 (m, 2H, Ar-H) 7.31–7.29
(m, 2H, Ar-H), 7.23–7.21 (m, 2H, Ar-H), 5.15 (d, 1H, J = 6.24 Hz, H1), 3.99 (dd, 1H, J = 13.46
Hz, 7.12 Hz, H2), 3.67 (dd, 1H, J = 17.98 Hz, 9.96 Hz, H4), 3.50 (dd, 1H, J = 18.06 Hz, 12.32
Hz, H3), 2.35 (s, 3H); 13C NMR (100 MHz, DMSO-d6) (Figure S24) δ: 194.09, 143.32, 142.85,
136.7, 136.44, 131.36, 130.61, 129.44, 129.35, 126.6, 121.64, 112.73, 112.47, 40.23, 38.98, 28.63,
21.00; CHN Analysis: Anal. calcd for C25H20BrN3O3S (522.41): C, 57.48; H,15.30; N, 8.04%.
Found: C, 57.21; H, 3.52; N, 7.89%.

N-(4-(4,4-dicyano-3-(4-isopropylphenyl)butanoyl)phenyl)-4-methylbenzene-sulfonamide (3k)

White solid; (yield 0.48 g, 80%); mp: 175–176 ◦C; Rf 0.42 (30% EtOAc:Hexane); IR: 3450
(N-H str), 2966 (Ar C-H str), 1682 (C=O str), 1294 (asymm. S=O str), 1160 (symm. S=O str)
cm−1; 1H NMR (400 MHz, DMSO-d6) (Figure S25) δ: 3.76 (s, 1H, NH), 7.85–7.83 (m, 2H,
Ar-H), 7.73–7.71 (m, 2H, Ar-H), 7.36–7.30 (m, 4H, Ar-H), 7.23–7.20 (m, 4H, Ar-H), 5.14 (d,
1H, J = 5.80 Hz, H1), 3.95 (dd, 1H, J = 12.64 Hz, 6.48 Hz, 1H, H2), 3.68 (dd, 1H, J = 18.00
Hz, 3.24 Hz, 1H, H3) 3.50 (dd, 1H, J = 17.94 Hz, 11.92 Hz, H4), 2.87 (sept, 1H, J = 6.88 Hz,
CH(CH3)2), 2.34 (s, 3H, Me), 1.20 (d, 6H, J = 6.88 Hz, CH(CH3)2); 13C NMR (100 MHz,
DMSO-d6) (Figure S26) δ: 194.48, 148.2, 143.4, 142.78, 136.46, 134.83, 130.78, 129.57, 127.94,
126.65, 126.39, 117.62, 113.13, 112.87, 40.19, 38.94, 33.06, 29.03, 23.93, 20.98; CHN Analysis:
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Anal. calcd for C28H27N3O3S (485.60): C, 69.26; H, 5.60; N, 8.65%. Found: C1, 69.03; H, 5.39;
N, 8.42%.

N-(4-(3-(2-chlorophenyl)-4,4-dicyanobutanoyl)phenyl)-4-methylbenzene-sulfonamide (3l)

White solid; (yield 0.50 g, 85%); mp: 182–184 ◦C; Rf 0.53 (30% EtOAc:Hexane); IR: 3458
(N-H str), 2966 (Ar C-H str), 1663 (C=O str), 1342 (asymm. S=O str), 1158 (symm. S=O str)
cm−1; 1H NMR(400 MHz, DMSO-d6) (Figure S27) δ: 3.79 (s, 1H, NH), 7.85–7.83 (m, 2H,
Ar-H), 7.73–7.71 (m, 2H, Ar-H), 7.61–7.59 (m, 1H, Ar-H), 7.49–7.47 (m, 1H, Ar-H) 7.36–7.30
(m, 2H, Ar-H), 7.22–7.20 (m, 2H, Ar-H), 5.24 (d, 1H, J = 5.56 Hz, H1), 4.54 (s,1H, H2), 3.77
(dd, 1H, J = 22.08 Hz, 8.48 Hz H4), 3.59 (dd, 1H, J = 18.08 Hz, 5.44 Hz, H3), 2.34 (s, 3H, Me);
13C NMR (100 MHz, DMSO-d6) (Figure S28) δ: 194.11, 143.46, 142.82, 136.43, 135.22, 133.97,
130.62, 129.62, 129.55, 129.5, 128.13, 127.47, 126.67, 117.61, 112.61, 40.19, 36.08, 27.82, 20.97;
CHN Analysis: Anal. calcd for C25H20ClN3O3S (477.96): C, 62.82; H, 4.22;N, 8.79%. Found:
C, 62.54; H, 3.98; N, 8.51%.

N-(4-(4,4-dicyano-3-p-tolylbutanoyl)phenyl)-4-methylbenzenesulfonamide (3m)

White solid; (yield 0.44 g, 77%); mp: 167–168 ◦C; Rf 0.48 (30% EtOAc:Hexane); IR: 3432
(N-H str), 2973 (Ar C-H str), 1682 (C=O str), 1334 (asymm. S=O str), 1162 (symm. S=O str)
cm−1; 1H NMR(400 MHz, DMSO-d6) (Figure S29) δ: 3.75 (s, 1H, NH), 7.84–7.82 (m, 2H,
Ar-H), 7.73–7.71 (m, 2H, Ar-H), 7.35–7.30 (m, 4H, Ar-H), 7.22–7.18 (m, 2H, Ar-H), 7.16–7.14
(m, 2H, Ar-H), 5.13 (d, 1H, J = 6.12, Hz, H1), 3.95 (dd, 1H, J = 6.16 Hz, 7.52 Hz, H2), 3.67 (dd,
1H, J = 17.95, Hz 7.96 Hz, H4), 3.49 (dd, 1H, J = 17.90 Hz, 6.04 Hz, H3), 2.34 (s, 3H, Me), 2.29
(s, 3H, Me); 13C NMR (100 MHz, DMSO-d6) (Figure S30) δ: 194.42, 143.38, 142.77, 137.42,
136.44, 134.43, 130.78, 129.53, 129.42, 129.02, 127.86, 126.64, 117.62, 113.08, 112.78, 40.2, 38.95,
29.02, 20.98, 20.63; CHN Analysis: Anal. calcd for C26H23N3O3S (457.54): C, 68.25; H, 5.07;
N, 9.18%. Found: C, 68.02; H, 5.21; N, 8.98%.

N-(4-(3-(3-chlorophenyl)-4,4-dicyanobutanoyl)phenyl)-4-methylbenzene-sulfonamide (3n)

White solid; (yield 0.53 g, 90%); mp: 183–184 ◦C; Rf 0.52 (30% EtOAc:Hexane); IR: 3462
(N-H str), 1667 (C=O str), 1303 (asymm. S=O str), 1154 (symm. S=O str) cm−1; 1H NMR
(400 MHz, DMSO-d6) (Figure S31) δ: 3.81 (s, 1H, NH), 7.86–7.84 (m, 2H, Ar-H), 7.74–7.72
(m, 2H, Ar-H), 7.54 (s, 1H, Ar-H), 7.42–7.30 (m, 5H, Ar-H), 7.23–7.21 (m, 2H, Ar-H), 5.26 (br
s, 1H, H1), 4.03 (t, 1H, J = 6.68, Hz, H2), 3.73 (dd, 1H, J = 18.3 Hz, 3.0 Hz, H4), 3.53 (dd, 1H, J
= 17.9 Hz, 11.96 Hz, H3), 2.35 (s, 3H, Me); 13C NMR (100 MHz, DMSO-d6) (Figure S32) δ:
194.21, 143.38, 142.9, 139.95, 136.46, 133.41, 130.63, 130.08, 129.53, 129.49, 128.16, 28.3, 126.65,
117.6, 112.76, 40.19, 38.94, 28.71, 20.98; CHN Analysis: Anal. calcd for C25H20ClN3O3S
(477.96): C, 62.82; H, 4.22; N, 8.79%. Found: C, 62.54; H, 4.01; N, 8.51%.

2.1.2. Biological Activity
Microfilariae Collection

The model animals Meriones unguiculatus (jirds) and Mastomys natelansis (mastomys)
were used in this study to ensure patency of the filarial infection as per the guidelines of
the Committee for the Purpose and Control of Experimental Animals. Microfilariae (Mf)
were obtained by lavage of the peritoneal cavities of jirds with an intra-peritoneal filarial
infection of 3 months or more duration. The collected Mf were washed with RPMI-1640
medium (ThermoFisher Scientific, Branchburg, NJ, USA) (containing 20 g/mL gentamycin,
30 g/mL penicillin, and 30 g/mL streptomycin), plated on sterile plastic Petri dishes, and
incubated at 37 ◦C for 1 h to remove peritoneal exudate cells. The recovered Mf were then
repeatedly washed using RPMI-1640 with antibiotics and used for in vitro experiments [14].

In Vitro Screening of Compounds for Antifilarial Activity

The efficacy of the compounds used to affect Mf viability in vitro was assessed by the
extent of parasite motility. A stock solution of 2 mM concentration in DMSO was prepared
for each chalcone derivative. Further dilutions were made in sterile isotonic sodium
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chloride solution to obtain a desired final concentration in the 0.5–500 µM range. The
highest concentration of DMSO used with the compounds was <1%. Hence, 1% DMSO was
used as a comparable vehicle control. Staurosporine (20 µM, standard apoptosis inducer)
(Millipore Sigma, Darmstadt, Germany) was used as a positive control [15]. Approximately
300 Mf in 300 µL sodium chloride solution were introduced into each vial for each test drug
(over a dose range of 1–30 µM) along with the vehicle control and incubated on a shaking
incubator (Scigenics Biotech, India) at 37 ◦C for 30 min at 150 rpm. After incubation, the Mf
were washed with RPMI-1640 medium and 30 Mf were plated in each well (each individual
sample in triplicate) of sterile 24-well culture plates (Nunc, Denmark) containing 300 µL of
RPMI-1640 medium. The plates were re-incubated at 37 ◦C for 48 h in a 5% CO2 incubator
(pre-optimized conditions). Mf motility was assessed by microscopy (Nikon Diaphot,
TMD inverted microscope, Tokyo, Japan). Each experiment was repeated thrice to check
reproducibility. Percent inhibition in terms of loss of motility was determined as described
earlier [13]. We selected IC100 for an effective antifilarial molecule to ensure the proposed
complete apoptotic effect.

Determination of Lethal Dose of Chalcone Derivatives

The cytotoxicity of the chalcone derivative was evaluated by a trypan blue dye exclu-
sion assay. Peripheral blood mononuclear cells (1 × 106 cells/mL) derived from healthy
human volunteers with informed consent were exposed to varying concentrations of com-
pounds for 48 h followed by a 1 min incubation with trypan blue (0.2 mg/mL). The cells
were observed under a Nikon light microscope (Tokyo, Japan), and the viable cell ratio
was calculated by counting the stained and unstained cells separately. Viable cells do
not take up trypan blue, while non-viable cells with porous membranes stain blue. The
cytotoxicity of compounds was evaluated, and the 50% cytotoxic concentration (CC50) was
determined [13].

Molecular Docking Studies

Since the three-dimensional structure of the B. malayi DHFR protein is not available
in the Protein Data Bank (PDB), homology-dependent modeling was used to construct a
three-dimensional protein structure using a homologous template protein (FZJ_A protein;
GI:122920266), and structure validation was performed using ProSa-web, as previously
described [16]. For molecular docking, a PDB file of the template protein was used. The
molecular structure of the ligands was drawn using an online small-molecule topology
generator (The GlycoBioChemPRODRG2 Server), after which molecular docking was
performed using the AutoDock tool version 4.2. Consequently, the free energy levels of
binding and inhibition constants were derived from the software-mediated analysis of the
molecular docking.

DHFR Enzyme Assay

For the enzyme assay, all reagents were freshly prepared. DHFR activity was measured
in the homogenate prepared from the untreated parasite. Mf extract was obtained by
homogenizing the Mf in buffer A (0.5 mol/L Tris buffer, pH 7.5) containing a protease
inhibitor cocktail (Sigma Aldrich, India) in a Remi type RQ127A homogenizer (Maharashtra,
India). The homogenate was centrifuged at 5000× g for 20 min at 4 ◦C to remove debris
and the resulting supernatant was further centrifuged at 30,000× g for 60 min at 4 ◦C. The
supernatant containing the DHFR enzyme was collected and used for the enzyme assay.

Folic acid (FH2) stock solution (25 mg in 1.5 mL of 2-mercaptoethanol and 6.0 mL
buffer A) was diluted in buffer B (0.05 mol/L Tris buffer, pH 7.5), yielding a final reaction
solution of 0.34 g/L. The NADPH/DHFR reaction solution consisted of 0.4 mL NADPH
stock solution (50 mg in 3 mL buffer A) and 0.8 mL Mf supernatant. FH2 reaction solution
(130 µL) was added to each well of the 96-well flat-bottom plate. In the test well, compound
3g (20 µL diluted in buffer B) was added at a final concentration of 38 µM in the reaction
mixture. A control well was used that was devoid of any drug. The microplate was shaken
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on a plate shaker for 1 min; then NADPH/DHFR reaction solution (50 µL) was added to
each well, and the microplate was shaken again on a plate shaker for 1 min. The absorbance
of each well was read in a microplate reader (Agilent Synergy HTX Multi-Mode Reader,
CA, USA) at 37 ◦C at 340 nm and 490 nm (reference) using a kinetic mode with a reading
interval of 20 s for a duration of 18 min [17].

Folate Reversal Studies

Mf was pre-treated with 30 mM folic acid in RPMI-1640 medium for 1 h at 37 ◦C.
Control Mf was incubated in RPMI-1640 medium only. After the incubation, the control
and folic acid-pre-treated Mf were washed with RPMI-1640 medium and treated with 3g at
its IC90 concentration (34 µM) as described above. We used IC90 in this experiment because
IC100 may permanently and irreversibly predispose Mf to apoptosis, which may not be
suitable for observing the reversal of the antifilarial effect. The Mf were incubated for 48 h
in 5% CO2 at 37 ◦C. Mf motility was assessed by microscopy.

MTT Assay

The control and 3g-treated Mf (at IC100 concentration) were washed with 0.05 M
phosphate-buffered saline (PBS, pH 7.2). The Mf were incubated in 30 µL of PBS containing
0.5 mg/mL MTT (Sigma Aldrich). After 2 h incubation, the Mf were washed by centrifuga-
tion, and DMSO was added to the Mf pellet to dissolve dark blue crystals of formazan. The
mixture was transferred to a 96-well microtiter plate and read at 595 nm using DMSO as a
blank [18].

Acridine Orange–Ethidium Bromide (AO/EB) Staining for Determination of Apoptosis

Dual staining with AO/EB was performed according to the standard protocol [13]. The
dye mix consisted of 30 µg/mL AO and 30 µg/mL EB in phosphate-buffered saline. The
Mf (negative control as well as Mf treated with 3g or staurosporine for 48 h) were washed
and re-suspended in 25 µL cold PBS, followed by the addition of 5 µL AO/EB dye mix.
The stained Mf were viewed under a fluorescence microscope (Nikon E600 Fluorescence
microscope, Tokyo, Japan) with the excitation filter set at 480/30 nm and the barrier filter at
535/40 nm.

Cytochrome c ELISA

Vehicle- or compound-treated Mf were lysed with RIPA buffer (Himedia Laboratories
Pvt Ltd., Maharashtra, India) for 1 h in the presence of protease inhibitors. The Mf lysates
were centrifuged at 300× g for 3 min at 4 ◦C to remove cell debris, and the supernatants
were centrifuged at 16,000× g for 20 min at 4 ◦C to pellet mitochondria and obtain a
post-mitochondrial supernatant fraction.

The cytochrome c ELISA kit (Invitrogen, Maharashtra, India) was used to estimate
cytochrome c protein content in the post-mitochondrial supernatant fraction as per the man-
ufacturer’s instructions. Measurements were performed in duplicate, and the cytochrome c
content was analyzed at 450 nm.

2.1.3. Statistical Analysis

All experiments were performed in triplicate and the results are expressed as mean ± SD.
Statistical significance was calculated using Student’s t test using SPSS version 16.0 (IBM,
Armonk, NY, USA). The level of α error was limited to 5%.

3. Results and Discussion
3.1. Chemistry

The synthesis of Michael adducts was achieved by the reaction of sulfonamide chal-
cones (1a-1n) with compound 2 in moderate to high yields (70–96%) (Table 1). It has been
observed that the substitution of the phenyl ring linked with β carbon of the double bond
of reactant 1 has an influence on the rate of reaction. The electron-donating substituent



Biomedicines 2023, 11, 723 8 of 17

posed some challenges, and lengthened the reaction time, while the electron-withdrawing
substituent reduced the reaction time.

Table 1. Synthesis of Michael adducts (3a-3n).
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The structures of the newly synthesized Michael adducts were characterized by IR, 1H,
13C, mass spectrometric and elemental analysis. The IR spectrum clearly indicates that N-H
stretching at the absorption band was observed around 3200 cm−1, while a characteristic
stretching frequency was observed at 2200–2250 cm−1 due to cyano groups. Characteristic
symmetric and asymmetric stretching of the -SO2NH group were also observed around
1380 and 1350 cm−1, respectively. In the 1H spectrum, a broad singlet of N-H was observed
around δ 3.8. There was a doublet around δ 6.0 for the H1 proton (Figure 1). The H2 proton
resonated as a doublet or multiplets around δ 4.0. The H3 and H4 protons resonated as
doublets of doublets around δ 3.9 and δ 3.6, respectively. The 13C NMR spectra showed the
requisite number of distinct resonances in agreement with the designated structure. The
ESI-MS of the compounds showed molecular ion peaks at their respective m/e values.
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3.2. Biology

Chalcones, which are flavonoid metabolites, are expected to target the DHFR protein.
Therefore, after minimizing the total interaction energies using a molecular dynamics
program (obminimize tool, Open Babel), we studied the interaction of the Michael adducts
(MA) of sulfonamide chalcones with B. malayi DHFR in silico. We found a measurably
better interaction between these than what was observed with the basic structure of the
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chalcone compound (Table 2). Therefore, we further explored their effects on B. malayi
in vitro.

Table 2. In silico structure optimization of chalcone compound.

Compound Chalcone Michael Adduct (MA)

Structure
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Free energy of binding (∆Gb) −6.93 kcal/Mol −9.46 kcal/Mol

Inhibition constant (Ki) 8.31 µM 115.69 nM

Hydrogen bonding Gly116:HN::O:Chalcone Gly116:HN::OS:MA

3.3. Antifilarial Activity and Cytotoxicity

The present work was designed to evaluate the antifilarial effects of chalcone deriva-
tives and explore a possible antifolate action. The in vitro screening of 14 Michael adducts
was performed, of which 4, namely, 3c, 3g, 3i, and 3l, showed pharmacological activity
in terms of 100% loss of motility of all parasites in the culture (Table 3). This is in sharp
contrast to DEC, which was shown to have no in vitro effect on the parasite. Other Michael
adducts showed outcomes similar to that caused by the vehicle control, exhibiting no mi-
crofilaricidal activity up to 500 µM. The lowest IC100 value was observed with 3g; therefore,
we selected it for the mechanistic study. The IC50 value of 3g was 23 µM.

Table 3. Antifilarial activity of Michael adducts of sulfonamide chalcone.

Compound IC100

3c 114 ± 9 µM

3g 38 ± 1 µM

3i 132 ± 4 µM

3l 210 ± 0 µM

The cytotoxicity of 3g against human PBMCs was assessed by a trypan blue dye
exclusion assay. The CC50 was 100 µM. These findings confirm the results of previous
reports on various chalcone derivatives as potent antifilarial agents [13,19]. The sulfon-
amide chalcone derivatives used in this study are the products of the Michael addition
reaction, reminiscent of the physiological xenobiotics disposal system that operates through
glutathione-based Michael adducts [20]. The pharmacological significance of such agents
as potential anticancer agents is also evident [21].

3.4. DHFR as a Target

The DHFR enzyme catalyzes the conversion of folic acid into dihydro-folic acid (FH2)
and tetrahydro-folic acid (FH4), which are the feeders for the thymidine biosynthetic re-
action in DNA synthesis. This makes DHFR a very lucrative drug target. As a proof
of this principle, the approach to targeting this enzyme is exploited in the development
of several antimicrobial and anticancer drugs, such as trimethoprim and methotrexate,
respectively [22,23]. DHFR is present in numerous nematodes, including Dirofilariaimmitis,
Litomosoides carinii, Dipetalonemaviteae, and Onchocerca volvulus [6]. Due to the paucity
of research on B. malayi, the proteome database of this parasite lacks details on this protein.
However, we found a genetic sequence of the B. malayi dhfr gene (EDP2873.1), and con-
firmed its actual expression as derived from the reported proteomic analysis [24]. In silico
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studies have proven DHFR to be a possible target for antifilarial drug development [16].
A similar bioinformatics-based approach was used to analyze the structure–activity rela-
tionship. As can be seen, all four compounds showed favorable docking in the nM range
against B. malayi DHFR (Table 4). The presence of a p-tolyl group (4-Me-C6H4) in 3g is
responsible for the orientation of a sulfonyl group (O=S=O) of 3g towards the Leu29 of
BmDHFR to form a hydrogen bond (Figure 2). In contrast, the replacement of Me from a
tolyl group with Cl (4-Cl-C6H4) in 3c has been found to be responsible for the orientation of
the O=S=O of 3c in an opposite direction to Leu29. In the case of 3i and 3l, the presence of a
4-Me group on benzene-sulfonamide (which is absent in 3c and 3g) hindered the orientation
of the O=S=O group towards Leu29. However, the presence of 2- or 4-chlorophenyl on the
4,4-dicyanobutanoylphenyl of 3c, 3i, and 3l is responsible for these compounds’ antifilarial
activity. A positive control epicatechin gallate (ECG) showed favorable binding against
BmDHFR with a higher inhibition constant in the µM range.

Table 4. Computationally derived free energy of binding and inhibition constant of Michael adducts
of sulfonamide chalcones and ECG against BmDHFR target protein homology model.

Compound ∆Gb Ki Hydrogen Bonds

3c −9.58 kcal/Mol 94.52 nM No H-bond formed

3g −9.54 kcal/Mol 101.83 nM NH of Leu29 of BmDHFR: sulfonyl group
(O=S=O) of 3g

3i −9.87 kcal/Mol 58.61 nM No H-bond formed
3l −9.41 kcal/Mol 125.65 nM No H-bond formed

ECG −7.82 kcal/Mol 1.84 µM NH of Leu29 of BmDHFR: H of ECG
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Figure 2. Molecular docking of 3g with Brugia malayi DHFR protein. A p-tolyl group (4-Me-C6H4)
directs a sulfonyl group (O=S=O) of 3g towards Leu 29 of BmDHFR to form a hydrogen bond
(green line).

To validate the antifolate activity of 3g, the DHFR activity in the Mf extract was
determined spectrophotometrically using FH2 as a substrate in the presence of NADPH. As
shown in Figure 3, a gradual decrease in absorbance over time was observed in a controlled
reaction mixture (control 1) due to the consumption of chromogenic NADPH by active
DHFR to convert FH2 to FH4. The addition of 3g to the reaction mixture manifested a line
parallel to the horizontal axis over time (a test), indicating the non-utilization of NADPH
due to the 3g-mediated inhibition of the DHFR activity. However, the initial absorbance
level in this test is well below the corresponding level for control 1 (represented as a dashed
line in Figure 3). To find out whether this is because of a possible interaction between 3g
and NADPH, only these two substrates (without Mf extract) were added in the buffer. The
resulting absorbance was subtracted from the corresponding value of control 1 to obtain a
second control line (control 2). This secondary control represents the available unbound
chromogen (NADPH) in the presence of 3g.
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Figure 3. Change in absorbance of the reaction mixture at 340 nm over time. Data were obtained from
3 independent experiments set out to check for reproducibility. Control 1: Reaction mixture without
3g. Control 2: Corrected control 1 line after deduction of absorbance obtained by drug-mediated
hypochromicity of NADPH. Test: Reaction mixture with 3g (38 µM).

As shown in the figure, control 2 had an onset of absorbance equal to that of the test;
however, it showed the expected gradual decline in absorbance over time. Therefore, it can
be surmised that 3g inhibits DHFR, as reflected by the trajectory of the higher absorbance by
the unutilized NADPH in the test than in control 2 (after correction for the hypochromicity
of NADPH due to the possible masking effect of chalcone on the actual absorbance of
NADPH). This phenomenon can be attributed to a possible hindrance in absorbance by
a purine base of NADPH due to its juxtaposition with the ring structure of chalcone,
similar to the hypochromicity emerging due to the base stacking effect of hybridized
DNA. This experiment was conducted per the previously described method [17], in which
methotrexate was used as the standard DHFR inhibitor. Notably, methotrexate is an
effective inhibitor of B. malayi DHFR [25,26]. Although the present experiment lacked a
positive control (methotrexate), having considered similar procedures utilized in previous
studies and in our work, we are confident about the accuracy of our experimental results,
and believe that they will be quite reproducible. Based on this mechanistic insight, we
will include this positive control in our future studies to develop a more potent and safer
anti-filarial derivative.

To further confirm the antifilarial action of 3g through DHFR inhibition, the possible
reversal effect was studied using a DHFR substrate, folic acid. It was observed that folic
acid could significantly reverse the antifilarial effect of 3g. An almost 50% reduction in
motility loss was observed in folic acid-pre-treated Mf, followed by 3g treatment, compared
with only 3g-treated Mf (at IC90 dose), which showed the expected 90% loss of motility.
This reversal in the presence of the substrate strongly suggests a mechanism of competitive
inhibition carried out by the Michael adduct. As mentioned above, chalcones, which are
structurally related to flavonoids, are expected to bear a resemblance to folate, a biological
DHFR substrate. Therefore, 3g may act as a competitive inhibitor of DHFR.

3.5. Induction of Apoptosis

During the proliferative phase of the cell cycle, the demand for DNA synthesis in-
creases. In this context, chalcone-induced DHFR inhibition may act as an apoptotic trigger.
Therefore, our experimental evidence implies the necessity of detecting apoptosis as a con-
sequence of DNA synthesis failure due to DHFR inhibition. For the detection of 3g-induced
apoptosis, the Mf were stained with EB/AO and observed under a fluorescence microscope
(Figure 4). In EB/AO dual staining, AO permeates all cells, making the nuclei appear
green, and EB is taken up by the cells only when the cytoplasmic membrane’s integrity
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is lost, staining the nuclei red. Therefore, viable cells have a normal green nucleus; early
apoptotic cells have a bright green nucleus, with condensed or fragmented chromatin; late
apoptotic cells show condensed and fragmented orange chromatin; cells directly killed by
necrosis have a structurally normal orange nucleus. The Mf treated with staurosporine or
3g showed orange–yellow fluorescence, indicating a loss of cell membrane integrity due to
apoptotic damage. In contrast, the negative control (DMSO-treated Mf) was stained green,
which implied an intact cell membrane.
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Figure 4. Acridine orange/ethidium bromide differential staining of Mf treated with (A) DMSO (a
negative control), (B) staurosporine (20 µM, a positive control), or (C) 3g (38 µM). Staurosporine
or 3g-treated Mf shows orange–yellow fluorescence, indicating apoptotic damage. In contrast, the
DMSO-treated Mf was stained green, which indicates an intact cell membrane.

Further, the MTT assay was performed to assess the 3g-induced loss of cell viability.
There was a 26.3% decrease in the formation of colored formazan in the 3g-treated Mf
(Figure 5). Both these results in congruence suggest the induction of the apoptotic process
by this chalcone derivative.
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A determination of cytoplasmic cytochrome c was carried out in order to yield
confirmatory evidence of apoptosis. The Mf treated with 3g or staurosporine showed
markedly higher cytoplasmic cytochrome c release than that of the negative control
(Figure 6). These results clearly substantiate the premise of apoptosis induction because of
mitochondrial damage.
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The results of the study confirm DHFR inhibition and the consequent apoptosis as
the major mode of operation of chalcones against human lymphatic parasites. Based on
the experimental findings, the role of the Michael adduct of sulphonamide chalcone as a
potential chemotherapeutic agent against LF can be inferred. Future research goals include
the further structural optimization of this molecule to increase its therapeutic index, as well
as animal studies to establish it as a potent antiparasitic lead molecule.

4. Conclusions

Exploiting apoptotic impact through the structural analogy-based inhibition of DHFR
was shown to be a successful method of antiparasitic drug development. The synthesis
and characterization of sulfonamide chalcone-based Michael adducts, followed by the
demonstration of their apoptotic rationale, reveals their therapeutic potential.
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