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Abstract: Background: Before integrating new machine learning (ML) into clinical practice, algo-
rithms must undergo validation. Validation studies require sample size estimates. Unlike hypothesis
testing studies seeking a p-value, the goal of validating predictive models is obtaining estimates of
model performance. There is no standard tool for determining sample size estimates for clinical
validation studies for machine learning models. Methods: Our open-source method, Sample Size
Analysis for Machine Learning (SSAML) was described and was tested in three previously pub-
lished models: brain age to predict mortality (Cox Proportional Hazard), COVID hospitalization
risk prediction (ordinal regression), and seizure risk forecasting (deep learning). Results: Minimum
sample sizes were obtained in each dataset using standardized criteria. Discussion: SSAML provides
a formal expectation of precision and accuracy at a desired confidence level. SSAML is open-source
and agnostic to data type and ML model. It can be used for clinical validation studies of ML models.

Keywords: statistics; machine learning; power calculation

1. Introduction

Reports of opportunities for machine learning (ML) to improve clinical care are being
published at an accelerating rate [1]. Proof-of-concept studies with a clinical ML model
are now common. However, before adopting such models into clinical practice, they
should undergo validation [2]. Clinical validation provides a confirmation that the proposed
algorithm can be generalized to situations or patients not previously encountered and helps
to clarify the limitations of an algorithm [3].

Clinical validation studies are often expensive, time consuming, and may expose
subjects to risk. Therefore, researchers need to determine the minimum number of sam-
ples/events/patients needed to verify an algorithm with a specified confidence level. Most
clinical investigators are familiar with sample size calculations designed to test a yes/no
question, couched in terms of the familiar machinery of significance testing, i.e., the number
of subjects or events needed to provide a given level of power to reject a null hypothesis
with a specified level of type I errors. By contrast, the goal of a validation study for a
predictive model is to estimate model performance measures. That is, the role of a clinical
validation study is to measure model performance—accurately and precisely. Accuracy
means low bias (small distance from “true” estimates). Precision means high certainty
(small confidence intervals). Thus, the goal of a clinical validation is conceptually distinct
from hypothesis testing [4].

In addition, because ML models for medical problems can be challenging to interpret
(e.g., deep learning with millions or billions of parameters), and increasingly deal with
data generated by processes not well described by conventional statistical models, sample
size calculations are not always straightforward for predictive models developed using
ML techniques.
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Here, we propose a general algorithmic approach for Sample Size cAlculation for
ML clinical validation studies (SSAML). Unlike several other proposed techniques [5–7],
SSAML makes no assumptions about the specific ML technique being validated, or about
the type of data involved. By being model agnostic, SSAML permits classical statistical
predictive models (such as regression models) or modern machine learning algorithms to
be tested in the same way. This approach builds on earlier work by Collins et al. [4]. We
provide open-source computer code that implements SSAML, so that other investigators in
translational medicine can use the technique to estimate the sample size needed for their
own ML model validation studies.

2. Materials and Methods

The data were obtained in a de-identified format from three previously published
studies on neurologic prediction models. The first was a study of the Brain Age Index
(BAI) [8], which used sleep EEGs from participants in the Sleep Heart Health Study [9].
The BAI study estimated the “brain age” based on a transformed linear regression model of
the EEGs which was then compared to the participant’s actual age. Using survival analysis
in combination with BAI, it was found that life expectancy could be estimated [10]. The
second study (COVA) evaluated the risk of hospitalization, ICU admission, and death
from COVID-19, utilizing an ordinal regression model [11]. The third study from Seizure
Tracker™ (ST) developed a seizure forecasting system based on de-identified electronic
seizure diaries using an artificial neural network model (deep learning) [12]. The ST
study was exempted by the Beth Israel Deaconess Medical Center Institutional Review
Board, 2017D000488. The COVA and BAI studies were exempted by the Mass General
Brigham Institutional Review Board, 2013P001024. The basic characteristics of each study
are summarized in Table 1.

Table 1. Characteristics of the three example datasets used. BAI = brain age index. COVA = COVID-
19 risk study. ST = Seizure Tracker™. In all three datasets, the number of events and number of
patients are listed, but only in the COVA dataset we employed an event-based analysis, whereas in
BAI and ST we used a patient-based analysis.

Dataset Machine
Learning

# of Patients/#
of Events

Disease
Model Outcome Repeated

Measures
Survival
Analysis

Event-Based
Analysis

BAI [8,10] Transformed
linear regression

4070 patients
3359 events Aging

Estimate of
brain age (used
to forecast life
expectancy)

N Y N

COVA [11] Ordinal
regression

2205 patients
1479 events COVID-19

Risk of
hospitalization,
critical illness,

or death

N N Y

ST [12] Deep learning 1613 patients
98,119 events Epilepsy Risk of seizure

within 24 h Y N N

Our technique, SSAML consist of five steps:

• STEP (1) Specify performance metrics, including measures of model discrimination
(ability to distinguish cases from controls) and calibration (how well the model’s risk
predictions match observed case rates). For discrimination, we used the area under
the receiver operating curve (AUC) for binary classification tasks (ST and COVA); we
used the Harrell’s C-index (a generalization of AUC) for our survival model task (BAI).
For calibration, we employed calibration slope and calibration-in-the-large (CIL) [13].

• STEP (2) Specify the required precision (relative width of confidence intervals, or
RWD) and accuracy (percent bias or BIAS). We used cut-offs of ≤0.5 for precision and
±5% for accuracy. Let CI be the difference of the limits of the confidence interval, and



Biomedicines 2023, 11, 685 3 of 9

trueValue be the estimate of the true value being estimated from the population. Then,
RWD is given by:

RWD =
CI

trueValue
(1)

For a given trial attempting to approximate the trueValue, let the approximation be
called estimate. The accuracy or BIAS is then given by:

BIAS =
estimate− trueValue

estimate
(2)

• STEP (3) Specify the required confidence (probability that the CI includes the true
value, i.e., “coverage probability” or COVP). We recommend 95%. COVP is given by:

COVP = Prob[trueValue ∈ CI] (3)

• STEP (4) For increasing sample sizes, calculate the expected precision (RWD) and
accuracy (BIAS) that is achievable, subject to the coverage probability requirement
(COVP > 95%). This should be calculated for each metric (slope, AUC (or C-index),
and CIL).

• STEP (5) Choose the minimum sample size that meets the requirements. Thus, at
the minimal sample size, all three metrics (slope, AUC/C-index, CIL) must satisfy
these equations:

RWD < 0.5 (4)

|BIAS| < 5% (5)

COVP > 95% (6)

Let N represent a given number of samples. The sample size required for each metric
(slope, AUC/C-index, CIL) to satisfy Equations (4)–(6) is:

Sslope = min
RWD<0.5, |BIAS|<5%,COVP>95%

N (7)

SAUC = min
RWD<0.5, |BIAS|<5%,COVP>95%

N (8)

SCIL = min
RWD<0.5, |BIAS|<5%,COVP>95%

N (9)

Taking the maximum sample size of the three metrics ensures that all metrics will meet
all criteria. Therefore, Soverall represents the ideal sample size from SSAML:

Soverall = max
i=slope,AUC,CIL

Si (10)

The ML approach to be validated is run on a bootstrapped sample of the data, and
the chosen discrimination and calibration metrics are computed; in our examples we
used calibration slope, AUC or C-index, and CIL. These calculations can be performed
on real data or on simulated data that captures the investigator’s hypothesis about the
data generating process. This calculation is repeated N times from randomly chosen sam-
ples with replacement (bootstrapping), allowing the calculation of mean and confidence
intervals from the performance metrics. Bootstrapping is repeated M times (i.e., dou-
ble bootstrapping [14]) to obtain mean estimates of RWD and BIAS, and for COVP. If
COVP < 95% in any metric, the confidence interval (CI) is enlarged, and the double boot-
strapping procedure is repeated. If all metrics meet criteria, then this process is repeated
with a larger number of patients (or events). The smallest number of patients or events that
satisfies all selection criteria is then chosen.

For each of our three illustrative datasets, we ran SSAML for a set of four possible
sample sizes. The COVA dataset has a binary outcome measured once per patient, estimated
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using an ordinal regression. The BAI dataset has a numerical outcome measured once
per patient with censorship (i.e., survival analysis), estimated using a Cox proportional
hazard model. For BAI, we estimated the number of events needed for a validation study,
rather than the number of patients needed. The ST dataset has a binary outcome which was
measured in a timeseries and forecasted repeatedly in each patient, estimated with deep
learning. It is noted that the choice to use events rather than patients is at the discretion of
the user—either way is essentially equivalent, but we opted to illustrate both.

In addition, we generated simulated datasets to explicitly investigate the effect of
different numbers of model input features (10 and 100), class imbalance ratios (1:1 and
1:10), noise levels (input label were swapped at a rate of 10% and 20%) on the confidence
intervals of the metrics from SSAML. These simulated datasets were fit with a logistic
regression model, and SSAML was run on each. Simulations of different levels of skew and
outliers were also performed using a subset of the above datasets. The purpose of these
simulations was to show that numbers of inputs, imbalance ratios, and noise levels could
impact SSAML in expected ways.

Open-source code for SSAML and the simulations are available (https://github.com/
GoldenholzLab/SSAML).

3. Results

The main features of each dataset are summarized in Table 1. Each dataset presents a
unique challenge in terms of type of data, machine learning algorithm, and unique features.
These examples were chosen to show the variety of applications that SSAML can manage
successfully.

The results from SSAML are summarized in Table 2. The results from the smallest
confidence interval for each patient or event size that met the COVP ≥ 95% condition is
shown. Using this data table, it is possible to estimate a minimum sample size required
for a clinical validation study that all meets the criteria established here (RWD < 0.5,
BIAS < 5%, COVP > 95%). These numbers are as follows: BAI, 1500 patients; COVA,
150 events; and ST, 40 patients.

Table 2. SSAML result tables from each example dataset (BAI, COVA, ST). BAI = Brain Age Index
(BAI) [8,10], COVA = COVID-19 risk Assessment [11], ST = Seizure Tracker™ [12]. Highlighted in
bold are numbers that satisfy the requirements: RWD < 0.5, |BIAS| < 0.05, and COVP > 0.95. The
number of patients/events that satisfy the requirements for all categories are also highlighted in bold.
Conf. int. = confidence interval, Slope = calibration slope, AUC = area under the receiver operator
curve, C-index = Harrell’s c-index, CIL = calibration-in-the-large, RWD = relative width of confidence
interval, BIAS = bias in estimate compared with “true” value, COVP = probability of confidence
interval covering “true” value. Note: for the confidence interval used for ST with 20 patients, the
actual value was 0.9999; however, due to rounding for three significant digits it is listed as 1.000.

BAI Number of Participants

METRIC 500 1000 1500 2000
Conf. int. 0.997 0.997 0.955 0.955

RWD slope 1.602 0.848 0.444 0.382
RWD C-index 0.157 0.110 0.061 0.052
RWD CIL 0.196 0.134 0.073 0.063
BIAS slope −0.053 −0.024 −0.008 −0.008
BIAS C-index −0.001 −0.001 −0.002 −0.001
BIAS CIL 0.005 0.002 0.002 0.001

COVP slope 0.981 0.989 0.953 0.958
COVP C-index 0.998 0.993 0.955 0.958
COVP CIL 0.994 0.994 0.959 0.951

https://github.com/GoldenholzLab/SSAML
https://github.com/GoldenholzLab/SSAML
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Table 2. Cont.

BAI Number of Participants

COVA Number of events

METRIC 125 150 175 200
Conf.int. 0.955 0.955 0.955 0.955

RWD slope 0.557 0.486 0.421 0.378
RWD AUC 0.149 0.132 0.116 0.104
RWD CIL 0.285 0.248 0.218 0.197
BIAS slope −0.005 0.000 0.000 0.002
BIAS AUC −0.001 −0.001 0.000 0.001
BIAS CIL −0.011 −0.005 −0.004 −0.007

COVP slope 0.966 0.964 0.956 0.973
COVP AUC 0.968 0.979 0.972 0.974
COVP CIL 0.977 0.971 0.966 0.977

ST Number of patients

METRIC 20 40 60 80
Conf.int. 1.000 0.997 0.997 0.997

RWD slope 1.001 0.324 0.187 0.131
RWD AUC 0.378 0.205 0.168 0.146
RWD CIL 0.370 0.165 0.129 0.107
BIAS slope 0.076 0.022 0.010 0.007
BIAS AUC 0.046 0.023 0.015 0.011
BIAS CIL −0.026 −0.010 −0.008 −0.005

COVP slope 0.990 0.996 0.996 0.991
COVP AUC 0.977 0.965 0.972 0.981
COVP CIL 0.997 0.992 0.996 0.997

The three metrics for calibration and discrimination are plotted in Figure 1 for each
of the three datasets. This plot illustrates the point that using increasingly larger sample
sizes reduces the uncertainty (narrows the confidence intervals) for estimates of each of
the metrics. In all three cases, the confidence intervals around the slope narrowed with
increasing numbers of patients/events converging close to 1.0 as expected. The C-index
converged to different final values depending on the dataset. BAI tended towards 0.6,
COVA to just under 0.8, and ST to just under 0.9. These differences reflect the underlying
discrimination capabilities of the specific models. The CIL values for BAI were considerably
lower than ST and COVA. This, combined with the slope, indicated better calibration for ST
and COVA compared with BAI. Regardless of the differences in how accurate or precise
these models may be, SSAML clarifies how many samples are needed for a validation study
in each case.

Figure 2 summarizes simulations using two different numbers of features (10 vs. 100),
two class imbalance ratios (1:1 vs. 1:10), and two noise levels (label flipping rate of 10% vs.
20%). First, the confidence intervals decreased with increasing N in all conditions. Next, the
calibration slope was sensitive to the different conditions (features, imbalance, and noise).
Additionally, increased noise or imbalance independently decreased the AUC. Additionally,
CIL was not sensitive to features, imbalance, or noise. Finally, it is helpful to review the
slope, AUC, and CIL to get a global sense of how well a given number of patients fits the
model. Overall, the behavior of the simulated data helped to confirm intuitions about how
SSAML would behave under various conditions.
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(COVA) [11], and Seizure Tracker™ (ST) [12]. Each row indicates metrics for model performance: 

Figure 1. Narrowing confidence regions with increased number of patients/events. Shown here are
three example datasets, one per column: Brain Age Index (BAI) [8,10], COVID-19 risk Assessment
(COVA) [11], and Seizure Tracker™ (ST) [12]. Each row indicates metrics for model performance:
calibration slope (slope), area under the receiver operator curve or Harrell’s c-index (C-index), and
calibration-in-the-large (CIL). In each subplot, as the number of patients or events (N) increased, the
confidence interval narrowed. When the desired performance level was reached, this represents the
minimum powered study.
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Biomedicines 2023, 11, 685 7 of 9

ratios (1:1 and 1:10), and noise levels (label flipping rate of 10% and 20%). Each dataset was fit
using a logistic regression. The fitted data were then fed into the SSAML algorithm. The purpose is
to explore the behavior of the confidence intervals of the calibration slope (top row), AUC (middle
row), and CIL (bottom row) under known conditions. Several simple observations can be made here:
(1) the confidence intervals decreased with increasing N in all conditions; (2) the calibration slope was
sensitive to different conditions; (3) increased noisy or class imbalance decreased the AUC; (4) CIL
was not sensitive to the different conditions tested; and (5) evaluating all three metrics (slope, AUC,
and CIL) was important.

Next, we tested how the SSAML is affected by outliers. We used the simulated dataset
with 100 features, balanced class ratio (to not introduce irrelevant factor), and label flipping
rate of 10% (a near perfect case to not introduce irrelevant factors). We varied the percentage
of outliers to 0%, 5%, and 10% by randomly multiplying the specified proportion of the
input features by 10. We ran SSAML on N = 500, 1000, 1500, 2000, and 2500. The result
indicated that when there is no outlier, we need N = 1000; when the outlier percentage
was 5%, we need N = 1000 (no change due to the coarse level of Ns tested); when the
outlier percentage was 10%, we need N = 1500. When we compared the RWD, BIAS, and
COVP metrics, with an increasing percentage of outliers, all RWD metrics increased with
no change in all BIAS and COVP metrics. The increasing RWD metrics confirmed the
conclusion that more samples are needed when there are more outliers.

We also tested how SSAML is affected by skewed data distribution. We used the same
simulated dataset as in the outlier test above. To achieve skewed distribution, we first
sorted the dataset according to the feature with median t-test p-value with class labels,
which represents an average feature; we then took the subset of the dataset that maximizes
the skewness of that feature. In this way, we increased the skewness while preserving
the mapping between features and class labels. The normality test had a p-value < 0.0001
which rejects the null hypothesis of being a normal distribution at alpha = 0.05 level. We
ran SSAML on N = 500, 1000, 1500, 2000, and 2500. The result indicated that when there
was no impact of a skewed distribution on any RWD, BIAS, or COVP metrics, and hence
no impact on the sample number needed. The reason is that, in realistic settings, although
the data is skewed, the mapping between data and class labels is not affected, hence not
affecting the prediction performance. This is different to having outliers which affects the
prediction performance.

4. Discussion

As demonstrated here, SSAML provides algorithmic sample size calculations for
validation of predictive models involving machine learning in clinical medicine. The
methodology comes with several helpful advantages. First, unlike several other proposed
techniques [5–7], it is agnostic to the specific machine learning techniques employed to
develop the predictive models. Second, it makes no assumptions about the underlying
distribution of data. Third, it is available as an open-source tool. Fourth, it is flexible
enough to manage single sample data (as in the case of COVA and BAI) or time series
data (as in the case of ST). Finally, it provides precision and accuracy guarantees within
pre-specified confidence ranges.

Each of the three datasets used highlights different features of SSAML (Table 1). For
BAI and COVA, one sample was obtained per patient. For ST, there were multiple samples
per patient (i.e., repeated measures). BAI was analyzed using survival statistics while
COVA and ST were not. The number of events was computed for COVA, whereas for ST
and BAI the number of patients was employed. Each of these three datasets were derived
from different types of ML models. Finally, as seen in Figure 2, each of these models had
different degrees of calibration and precision compared with the ground truth. In short,
many different situations are well handled by SSAML.

The limitations of SSAML should be noted. Depending on the dataset, this method
can be computationally expensive, and access to high performance computing may be
beneficial. Moreover, if the sample of data is inadequate, or alternatively if one is unable
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to generate reasonable simulated data, SSAML cannot be expected to be accurate. If
insufficient samples are included, or a large number of sample but not enough to fully
capture the population distribution, both cases are expected to fail. An overly simplified
example illustrates this point. Suppose an ML technique predicts migraine risk from eye
movements. Using 1000 sighted participants as the input dataset for SSAML, the number
of participants required for validation will be inaccurate if the validation study includes
blind participants. In other words, the variability of the output of any model needs to be
captured with a representative sample of data so that SSAML can predict a reasonable
sample size. As with any statistical model, the results of SSAML depend on the quality and
representativeness of the data being used. In addition, it is important to emphasize that
SSAML is not designed to predict the sample size for traditional trials designed around
hypothesis testing (such as traditional drug vs. placebo trials). Rather, SSAML is focused
on determining the sample size needed to validate a machine learning predictive model
(such as a disease diagnosis prediction or time-to-death model).

5. Conclusions

Whenever a machine learning method is found to have potential clinical value, a
validation study is required to demonstrate the generalizability of the tool. Due to the com-
plexity of modern machine learning tools, traditional sample size estimators are inadequate
for planning validation studies. SSAML supplies a flexible framework for determining
an appropriate sample size. Because it is model agnostic, distribution agnostic, and open-
source, SSAML can provide a robust estimate of sample size for such validation studies
regardless of the details in many contexts.
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