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Abstract: Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease
worldwide and it ranges from simple steatosis to hepatocellular carcinoma (HCC). HCC represents
the first liver tumor and the third source of cancer death. In the next few years, the prevalence of
NAFLD and consequently of HCC is estimated to increase, becoming a major public health problem.
The NAFLD-HCC shows several differences compared to other causes of chronic liver disease (CLD),
including the higher percentage of patients that develop HCC in the absence of liver cirrhosis. In HCC
surveillance, the international guidelines suggest a six months abdominal ultrasound (US), with or
without alpha-fetoprotein (AFP) evaluation, in patients with cirrhosis and in a subgroup of patients
with chronic hepatitis B infection. However, this screening program reveals several limitations,
especially in NAFLD patients. Thus, new biomarkers and scores have been proposed to overcome the
limits of HCC surveillance. In this narrative review we aimed to explore the differences in the HCC
features between NAFLD and non-NAFLD patients, and those between NAFLD-HCC developed in
the cirrhotic and non-cirrhotic liver. Finally, we focused on the limits of tumor surveillance in NAFLD
patients, and we explored the new biomarkers for the early diagnosis of HCC.

Keywords: HCC surveillance; non-cirrhosis; NAFLD; conventional imaging; AFP; new biomarkers;
liquid biopsy

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is defined by the presence of hepatic
steatosis, detected by imaging or histology, after the exclusion of other causes of chronic
liver disease (CLD) [1]. NAFLD is the most common cause of liver damage in Western
countries and it is estimated to affect 25–30% of the population worldwide, according
to regional differences and the exploited diagnostic tools [2]. Indeed, the prevalence of
NAFLD ranges from 35% in both North and South America to 30% in Europe and Asia,
with a lower incidence (28%) in Africa [3]. Moreover, NAFLD frequency increases to more
than 50% in patients with type 2 diabetes mellitus (T2DM) and to 90% in obese ones [4].
Due to the pandemic diffusion of T2DM, obesity, and to the reduction of viral chronic
hepatitis prevalence, NAFLD will become the leading cause of liver transplantation in the
next few years [5].

The term NAFLD covers several clinical conditions, ranging from simple steatosis to
non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma (HCC) [6].
HCC is the most common liver malignancy and the fifth cause of cancer worldwide, with
a higher occurrence in men than women (ratio men to women 2.8:1). A total of 906,000 new
cases of HCC were diagnosed in 2020, thus emerging as the third cause of cancer deaths
globally [7]. The spreading of NAFLD in the coming years makes NAFLD-driven HCC
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an important health concern, despite the relatively lower rates of HCC in the context of
NAFLD compared to other CLDs.

The overall risk of HCC onset in NAFLD patients is 17-fold higher compared to the
general population, with a stepwise progression according to the stage of the disease (lower
for simple steatosis, greater for cirrhosis) [8]. Notably, HCC may also arise in the absence of
cirrhosis, although it is most commonly encountered in correlation with severe fibrosis [9].
As a result, NAFLD-triggered HCC has an annual incidence of 0.7–2.6% in patients affected
by NASH-cirrhosis and of 0.1–1.3% in non-cirrhotic ones [10].

In a NAFLD setting, free fatty acids (FFAs) accumulation in hepatocytes leads to
lipotoxicity, which is associated with intracellular organelle derangement, i.e., endo-
plasmic reticulum (ER) and mitochondrial abnormalities, hepatocellular injury, and cell
death [11,12]. Both T2DM and obesity are associated with chronic inflammation and
reactive oxygen species (ROS) over-production [13], insulin resistance (IR), hepatocytes
death, and hepatic stellate cells (HSCs) activation [14]. Through the release of inflam-
matory cytokines, a pro-inflammatory milieu is created, thereby exacerbating oxidative
stress, propagating inflammation, and promoting the transition to NASH and fibrosis [7,15].
Then, chronic inflammation fosters HCC initiation and expansion [16]. Likewise, genetic
predispositions may also influence the progression of NAFLD up to HCC [17], and the
rs738409 single nucleotide polymorphism (SNP) in the patatin-like phospholipase domain-
containing 3 (PNPLA3) gene is the most studied genetic predictor of NAFLD-HCC [18],
although several other genetic variants are under evaluation [10].

Clinical practice aims to detect cancer as early as possible through screening tests.
Indeed, a good diagnostic tool should identify the disease in a timely manner, ameliorating
the probability of effective treatments in high-risk populations. [19]. For these reasons, the
international guidelines recommended HCC surveillance using abdominal ultrasounds
(US), with or without alpha-fetoprotein (AFP) assessment, every six months in all patients
with liver cirrhosis of any aetiology and in subgroups of patients with hepatitis B virus
(HBV) chronic infection without cirrhosis [20,21]. Although chronic HBV, hepatitis C virus
(HCV) infections, and alcohol misuse are well-established inducers of hepatocarcinogenesis,
NAFLD represents the most significant emerging risk factor [22]. Despite this evidence,
HCC surveillance in this context is underestimated, due to the elevated number of patients
with NAFLD, the technical difficulties to perform US in obese subjects, and the occurrence
of HCC in non-cirrhotic NAFLD patients.

Therefore, this review aims firstly to summarize the clinical and pathophysiological
differences between HCC arising from different aetiologies. Secondly, we evaluate the
latest evidence regarding HCC surveillance in cirrhotic and non-cirrhotic NAFLD patients,
emphasizing the difficulties in the HCC screening of metabolic patients and, finally, we
explore the future directions for the diagnosis and monitoring of HCC in NAFLD patients.

2. Research Strategy and Study Selection

We conducted a narrative review by searching peer-reviewed articles about HCC
surveillance across aetiologies in both cirrhotic and non-cirrhotic NAFLD patients on the
PubMed database. The search time limit was before November 2022 and only English
papers were included in the research. We included experimental and observational studies,
clinical trials, systematic review, meta-analyses, editorials, and commentaries reporting
data on HCC screening tests in CLD and on new diagnostic tools used in NAFLD-HCC
diagnosis. We excluded studies that did not meet the selection criteria, literature review,
meeting abstracts, duplicate publications, and those concerning other primary liver cancers
except HCC.

3. Differences between HCC across Aetiologies

During the past few decades, incidence and mortality rates of HCC have fallen along
with the decline of HBV and HCV infections, as well as the mitigation of aflatoxin ex-
posure [23]. Conversely, countries that were previously considered at low risk, such as
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most European countries, Northern America, Australia, New Zealand, and South America,
have seen a rise in HCC prevalence due to the growing burden of obesity, T2DM, and
NAFLD [24]. The clinical, radiological, and molecular characteristics of HCC prompted us
to focus on the differences between viral-, alcohol-, and NAFLD-induced HCC.

3.1. HCC in Patients with Viral Hepatitis

HBV is a DNA virus that integrates into the host genome, causing a persistent necroin-
flammation that leads to oncogene activation in hepatic liver cells and resulting in HCC
development [24]. The lifetime risk of developing HCC is between 10 and 25%, especially
in cirrhotic patients and those who have an active HBV infection [25]. This risk is further
increased in combination with male sex, older age, high HBV replicative levels, infection
duration, an HBV genotype, coinfection with HCV or human immunodeficiency virus
(HIV), obesity and T2DM, exposure to alcohol, and tobacco [26].

Conversely, HCV is an RNA virus associated with a 15-to-20-fold increased risk of
HCC, especially in cirrhotic patients [27]. HCV-related carcinogenesis seems to be causally
linked to HCV-reiterated liver injury, which primes fibrosis and cirrhosis, possibly involv-
ing intricate epigenetic controls and complex cellular signaling networks [28]. Several
co-factors may enhance HCV carcinogenesis, such as male sex, Hispanic ethnicity, HCV
genotype 3, longer duration of infection, coinfections with HBV or HIV, alcohol abuse,
metabolic comorbidities, and smoking habits [27,29]. Interestingly, Hispanics have a higher
prevalence of fatty liver and of the PNPLA3 C > G variant, which may explain their in-
creased risk of developing hepatic injuries and HCC, regardless of common metabolic risk
factors. However, the mechanisms underlying this association are still under investiga-
tion [30]. Viral eradication with direct antiviral agents (DAAs) has dramatically softened
the risk of liver cancer and death [31] but it does not eliminate HCC risk, especially in
cirrhotic patients, who therefore still require HCC surveillance after a sustained virological
response (SVR) [32].

3.2. HCC in Patients with Alcoholic and Non-Alcoholic Liver Disease

Together with infectious aetiologies, even excessive alcohol intake is a well-known
risk factor for HCC, rising the susceptibility to hepatic malignancy by 46% for 50 g daily
ethanol consumption and by 66% for 100 g daily ethanol consumption [33]. In addition,
alcohol even in low amounts can increase the risk of developing HCC in males older than
60 years, and in those with impaired liver indices [34].

Besides promoting chronic inflammation and liver cirrhosis, alcohol leads to carcinogen-
esis by producing acetaldehyde and ROS, altering the immune system and changing gene ex-
pression [35]. The prevalence of alcoholic etiology of HCC is country-specific—ranging from
6% in the Middle East, up to 20% in Southern Europe, and 60% in Eastern Europe—and
globally it accounts for 30% of HCC-related deaths [36]. In large European cohorts of pa-
tients with alcoholic cirrhosis and several risk factors (male gender, older age, and severity
of cirrhosis), the annual incidence of HCC reached up to 2.9% [37]. Accordingly, a recent
meta-analysis showed a 5- and 10-year cumulative risk of HCC in alcoholic cirrhosis of
3% and 9%, respectively [38]. Furthermore, T2DM, smoking, variceal bleeding, and liver
decompensation are associated with the increased risk of HCC onset in the context of
alcoholic liver disease (ALD) [38]. Alcoholic cirrhosis remains the second most common
indication for liver transplantation, whereas the signs and symptoms of advanced liver
disease do not seem to impact post-transplant survival [39,40]. In addition, women with
alcoholic cirrhosis showed higher percentage of ascites and encephalopathy, but a lower
transplant rejection [41]. Around 30% of patients affected by ALD do not regularly attend
surveillance, with consequent delayed diagnosis, larger tumor size, and poorer outcomes
than other etiologies.

With an annual incidence of 0.44 per 1000 person years [2], NAFLD has a relatively
low risk of HCC onset compared to the other etiologies. However, NAFLD-related HCC
is becoming impressively prevalent following the growth of NAFLD. HCC incidence
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parallels the severity of NAFLD, reaching 5.29 per 1000 person years in NASH patients
and up to 0.5% to 2.6% in patients with NASH-cirrhosis [2]. Notably, around 20–30% of
NAFLD-related HCC develops in non-cirrhotic livers [42].

3.3. HCC Clinical Features and Survival across Different Aetiologies

Few studies have compared the clinical features and survival outcomes of HCC
related to HBV and NAFLD [43–46]. NAFLD-HCC patients are older, with a higher
body mass index (BMI), are more likely diabetic and, interestingly, HCC develops more
frequently in non-cirrhotic liver compared to HBV subjects. As for tumor characteristics,
some studies registered larger tumor size with better tumor differentiation [44] in NAFLD-
HCC compared to HBV-HCC. A number of studies have shown that NAFLD-HCC is
more unifocal than HBV-HCC [43,44], although Lin et al. [45] did not support this finding.
Perioperative mortality and morbidity seem to be similar in the two aetiologies as well as
in overall survival and recurrence-free survival [43,45], although in a recent study D’Silva
et al. [46] found that NAFLD could be protective against systemic recurrence in comparison
to HBV [46]. However, NAFLD-derived HCC is often diagnosed at severe stages, making
its management more challenging [47].

Mounting evidence regarding the comparison between NAFLD and HCV-related
HCC is accumulating over the time, with still conflicting results. NAFLD-HCC seems
to be often diagnosed at more advanced stages than HCV-HCC, it usually occurs with
a larger tumor size and infiltrative pattern, being frequently detected in non-cirrhotic
livers and outside-specific surveillance [48,49], with lower AFP levels [49–51]. However,
prognosis appears to be superimposable in the two groups. Indeed, an Italian study
showed shorter survival in patients with NAFLD-HCC compared to HCV-HCC due to the
delayed diagnosis, but this result was not confirmed by the propensity score analysis [48].
Other studies did not find any significant difference in morbidity, recurrence, and overall
survival between the two groups [49,50]. On the contrary, Benhammou et al. [51] showed
that after treatments, NAFLD-HCC patients had longer overall survival rates compared
to patients affected by viral-associated HCC, with similar recurrence-free survival [51].
Finally, Hernandez et al. [52] analyzed a cohort of transplanted patients and found a higher
proportion of HCV-HCC patients with vascular invasion and poorly differentiated HCC
compared to the NASH-HCC group, with a shorter recurrence-free survival of 5 years in
HCV-HCC patients [52].

Two studies compared the clinical outcomes of HCC in the setting of ALD and
NAFLD [53,54]. NAFLD-HCC patients were older, presented a higher rate of metabolic
comorbidities and were diagnosed less frequently on surveillance than ALD-HCC pa-
tients [53,54]. NAFLD-related cancer is also less likely to occur in cirrhotic livers and with
ascites than ALD-related HCC [53]. Ahn et al. [53,54] reported a worse HCC presentation at
diagnosis in NAFLD patients, with a higher prevalence of an infiltrative pattern, larger tu-
mor size, microvascular invasion, and tumors more often exceeding the Milan criteria, while
Kumar et al. [53,54] found similar liver and tumor characteristics between these two groups.
Finally, survival rates were analogous in NAFLD- and ALD-driven HCC [53,54].

Conversely to the risk factors, several prevention models of liver carcinogenesis have
been studied. Nutrition and physical activity are well-known factors associated with the
prevention of HCC development, especially in NAFLD-HCC [55]. Several clinical trials
showed that a diet enriched in vegetables, such as the Mediterranean diet, is associated
with a lower hepatocarcinogenesis [56,57]. Similarly, monounsaturated fats are associated
with a lower risk of HCC development, in both metabolic and viral patients [58]. On
the other hand, the use of processed meat is associated with HCC development, whereas
white meat and fish are inversely associated with a risk of HCC [59]. Similarly, high
physical activity is associated with a reduction in liver carcinogenesis, independent of body
weight [60]. The viral suppression of HBV and HCV decreases the risk of HCC onset [61].
Otherwise, the role of HCV eradication by direct antiviral agents on hepatocarcinogenesis
is still debated [61,62].
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Differences in the prevalence of HCC due to the predisposing background, risk factors,
and preventing strategies across the diverse aetiologies are summarized in Table 1.

Table 1. Differences in HCC prevalence according to predisposing background, risk factors, and
preventing strategies across the diverse aetiologies.

HCV HBV ALD NAFLD

HCC prevalence 15–20% 10–25% 46–66% 0.5–2.6%

Predisposing
background

- Cirrhosis
(before/after
viral eradication)

- Cirrhosis
- Active replication

- Daily alcohol
consumption

- Cirrhosis (20–30% in
non-cirrhotic livers)

Risk factors

- Male sex
- Ethnicity

(Hispanic)
- HCV genotype 3
- Longer duration

of infection
- HBV and/or HIV

coinfections
- Alcohol
- Metabolic

comorbidities
- Smoking habits

- Male sex
- Ageing
- HBV genotype
- High

replicative levels
- Longer duration

of infection
- HCV and/or

HIV coinfections
- Alcohol abuse
- Metabolic

comorbidities
- Smoke habits

- Male sex
- Ageing
- Impaired

liver enzymes

- Male sex
- Ageing
- Higher BMI
- Diabetes

Preventing factors - Antiviral therapy - Antiviral therapy
- Vaccination

- Alcoholic
abstention - Mediterranean diet

- Physical activity

HCV: hepatitis C virus; HBV: hepatitis B virus; ALD: alcoholic liver disease; NAFLD: non-alcoholic fatty liver
disease; and BMI: body mass index.

4. HCC Onset in Cirrhotic and Non-Cirrhotic NAFLD Patients
4.1. Shared Predisposing Factors Triggering NAFLD-HCC in Cirrhotic and Non-Cirrhotic Patients

As previously mentioned, the risk to develop HCC severely differs across various
clinical background. In this regard, metabolic patients have a higher risk of HCC onset in the
absence of cirrhosis, compared to those affected by viral hepatitis or ALD [63]. Furthermore,
the progression rate of HCC in patients with NAFLD-cirrhosis varies considerably, ranging
from non-progressive to rapid multifocal dissemination and end stage liver disease [8].

Several risk factors are associated with the occurrence of HCC, both in cirrhotic and
non-cirrhotic NAFLD patients, such as male sex, age, smoking, and T2DM [64,65]. The
risk of developing HCC is to- to four-fold higher in males than in females, probably
because androgens and estrogens play an opposite role in carcinogenesis. The andro-
gen/androgen receptor axis is intertwined with different pathways involved in tumor
formation and progression, as Wnt/β-catenin and those in which cycle-related kinase
(CCRK) and Nanog transcriptional factor are involved [66,67]. Conversely, the induction of
the estrogen/estrogen receptor axis hampers the growth and spread of the malignancies
through the inhibition of metastasis-associated protein 1 (MTA1) expression [68]. Nonethe-
less, recent evidence showed an ever-increasing prevalence of HCC in women, especially
in the co-presence of metabolic morbidities including T2DM and obesity [69]. Therefore,
the recent findings are still conflicting. Indeed, in 2021 Myers and colleagues reported
that the incidence of NAFLD-HCC in women is higher than in men, especially when
T2DM coexisted [70].

Cigarette smoke is a well-established risk factor for several cancers outbreak, including
HCC. Indeed, the odds to develop HCC are 1.55 (95% CI: 1.46 to 1.65; p < 0.00001) in current
smokers and 1.39 (95% CI: 1.26 to 1.52; p < 0.00001) in former smokers, as shown in
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a systematic review including 81 epidemiological studies conducted in 2017 [71]. Tobacco
is associated with an increase in pro-inflammatory cytokines, such as interleukin (IL)
1 and 6, TNFα, angiogenic factors, and pro-fibrotic agents. All these insults prompt
inflammation, apoptosis, and fibrosis deposition. Moreover, smoke leads to vascular
constriction, endothelial dysfunction, and tissue hypoxia, thereby favoring hepatocellular
injuries and HCC [72].

T2DM is the primary metabolic risk factor associated with HCC, especially in patients
with NAFLD [73]. A preclinical model of ApoE−/− mice displayed a downregulation of the
Asxl2 gene, which is involved in glucose and lipid metabolism but also in tumor cells sur-
vival and migration [74]. According to the role of T2DM in this process, numerous studies
demonstrated the beneficial effect of anti-diabetic drugs on the HCC risk. In particular, the
anti-cancer properties of Metformin have been highlighted in both in vitro and in vivo ani-
mal models [75,76]. A recent large retrospective study, across 85,963 patients with NAFLD
and T2DM followed for 10 years, determined that Metformin administration softened the
risk of HCC by 21% [77]. The protective effect of anti-diabetic drugs is also confirmed
for other classes of drugs, such as dipeptidyl peptidase 4 (DPP4) inhibitors and sodium-
glucose cotransporter-2 (SGLT2) inhibitors, as demonstrated in the NASH-related HCC
mouse models [78,79]. Other metabolic comorbidities such as obesity, dyslipidaemia and,
hypertension also favor HCC, even though they exert a minor role compared to T2DM [80].

A plethora or genetic predictors have been pointed out to be implicated in the devel-
opment and progression of NAFLD up to HCC. The most established genetic variants are
those in PNPLA3, transmembrane 6 superfamily member 2 (TM6SF2), membrane-bound
O-acyltransferase domain-containing 7 (MBOAT7), and glucokinase regulator (GCKR)
genes [81–84]. On the contrary, it has been demonstrated that the splice variant rs72613567
in the 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) gene prevents severe fibrosis
and HCC [85].

The dysregulation of the immune system contributes to NAFLD-related carcinogene-
sis. Increasing intrahepatic fat accumulation exacerbates the mitochondrial dysfunction
accompanied by excessive ROS production and the reduction of intrahepatic CD4+ T lym-
phocytes, according to a study conducted in 2016 by Ma et al. [86]. Indeed, HCC onset
and spreading is physiologically prevented by intrahepatic CD4+ T lymphocytes by foster-
ing apoptotic processes in the hepatocytes that harbor cancer mutations [87]. Moreover,
T-regulatory cells (Tregs) are increased in murine models of NASH. Tregs are enabled to
release immunosuppressive cytokines, which contribute to hepatic carcinogenesis [88]. T-
lymphocytes are also directly and indirectly modulated by the gut microbiota composition
through microbial metabolites as FFAs [89]. Changes in gut microbiota species in patients
with NAFLD-cirrhosis promotes butyrate synthesis, a short-chain fatty acid that induces
hepatocyte proliferation, fibrosis, and HCC, whereby influencing immune cells [90]. It
has been shown that butyrate is more significantly elevated in the serum and feces of
patients with NAFLD-HCC than NAFLD-cirrhosis, probably due to its immunomodulatory
properties [91]. Altogether, these observations support the hypothesis that gut microbiota
dysregulation promotes the development of an immunosuppressive phenotype, which is
conducive to HCC [92].

4.2. Risk Factors That Discriminate HCC Onset in Cirrhotic and Non-Cirrhotic NAFLD Patients

The development of HCC in NAFLD patients without cirrhosis represents a great
challenge for surveillance programs, since several differences have emerged in the past
years between its onset in association with, or not with cirrhosis. Known mechanisms be-
hind this variety encompass the activation of inflammatory signaling pathways, the release
of pro-carcinogenic products due to the exaggerated lipoperoxidation, and an increase in
apoptosis as a result of hepatic steatosis and IR [93]. The progression from NAFLD to HCC
in non-cirrhotic livers is severely influenced by metabolic factors and steatosis degree, thus
showing a lower prevalence in mild conditions and a much higher incidence in patients
affected by grade 3 steatosis [94].
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In a mouse model fed an ALIOS diet, enriched in fat and liquid sugar mimicking
“fast food” meals, inflammation, hyperglycemia, and IR were all associated with a pro-
proliferative environment, which induces HCC growth regardless of hepatic fibrosis [95].
Accordingly, clinical studies have shown that a better glycemic control reduces the risk of
developing HCC [77]. Indeed, in a population-based study performed on 392,800 NAFLD
patients, Pinyopornpanish and collaborators demonstrated that T2DM, especially when
in association with the male sex, an age greater than 65, and smoking habits, remarkably
enhanced the risk of HCC among non-cirrhotic NAFLD patients [65]. Moreover, elevated
alanine aminotransferase (ALT) levels and markers of liver inflammation, are independently
associated with an increased HCC risk (hazard ratio (HR) 6.80, 95% CI: 3.00–15.42; p < 0.001)
in patients with non-cirrhotic NAFLD, according to the role of a proliferative environment
and inflammation on tumorigenesis [96].

Despite the large numbers of evidence regarding the impact of inherited polymor-
phisms on NAFLD progression to more severe diseases, including HCC [18,82], few studies
have pointed to the diverse genetic background between cirrhotic and non-cirrhotic HCC.
In 2017, a study on 765 Italian patients with NAFLD demonstrated that the MBOAT7
rs641738 T allele is causally correlated with HCC onset, even in non-cirrhotic patients,
which is likely due to its pro-inflammatory effect [97,98]. Similarly, rare genetic variants in
telomerase reverse transcriptase (TERT) rs2242652 C > T, TP53, apolipoprotein B (APOB),
proline/serine-rich coiled-coil protein 1 (PSRC1) rs599839 A > G, and neurotensin (NTS)
rs1800832 A > G have been outlined as possible modifiers of the genetic risk of HCC,
irrespective of the fibrosis severity [99–102]. In more detail, Dongiovanni and colleagues
used a mendelian randomization analysis and a polygenic risk score (PRS), and established
that fatty liver is the main driver of advanced NAFLD up to HCC and the impact of risk
alleles in PNPLA3 C > G, TM6SF2 C > T, MBOAT7 C > T, and GCKR C > T on liver damage
is directly proportional to their effect size on hepatic fat accumulation [103]. The genetic
risk is amplified by metabolic disturbances, albeit genetic factors may trigger cirrhosis
and HCC even in the absence of metabolic comorbidities [104]. A schematic overview of
the main genetic risk factors associated with HCC onset in NAFLD patients is indicated
in Table 2.

Considering immune dysregulation as a predisposing environment for HCC, in 2021
Eldafashi et al. [105] proposed that heritable alterations in the programmed cell death-1
(PDCD1) gene, encoding the programmed cell death-1 protein (PD-1), are implicated in
hepatocarcinogenesis. The inhibitory receptor PD-1 is expressed on the surface of activated
T lymphocytes and, when it is bound to programmed death ligand-1 and 2 (PDL-1 and PDL-
2), it suppresses the activity of T lymphocytes and contributes to immunosuppression [105].
Although these authors were not able to replicate their findings in other cohorts, this study
highlighted the importance of immunoregulatory genes in HCC, especially in patients
without cirrhosis. Moreover, in a murine model of NAFLD-HCC it has been observed
as a selective reduction of intrahepatic CD4+ T lymphocytes as a consequence of the
dysregulation of lipid metabolism and of lipids released from fatty-laden hepatocytes. In
keeping with this observation, CD4+ T lymphocytes depletion mediated tumor initiation,
expansion, and more numerous lesions. The likely mechanism behind CD4+ T lymphocytes
peculiar suppression in NAFLD seems to be due to their more pronounced mitochondrial
mass compared to CD8(+) T lymphocytes, thus favoring ROS overproduction and oxidative
injuries, which critically mediates CD4+ T lymphocyte death. These findings further
corroborate the notion that HCC may develop rapidly, even in the absence of cirrhosis
when an immunosuppressive milieu prevails [86]. In this context, immunotherapeutic
approaches became appealing as the standard of care in the management of HCC [106], and
the immune checkpoint blockade (ICB) has been proposed as a tool to rescue the immune
control of tumors [107]. However, the clinical utility of ICB in NAFLD patients remains
under definition.
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Table 2. Schematic list of the main inherited variations related to NAFLD-HCC.

Variant Gene Global MAF Function Effect Impact Phenotype

rs738409
C > G PNPLA3 0.26 (G) Lipid remodeling p.I148M Loss-of-function ↑ NAFLD, NASH,

fibrosis, and HCC
rs58542926

C > T TM6SF2 0.07 (T) VLDL secretion p.E167K Loss-of-function ↑ NAFLD, NASH,
and fibrosis

rs641738
C > T TMC4/MBOAT7 0.37 (T) Lipid remodeling p.G17E Loss-of-function ↑ NAFLD, NASH,

and fibrosis, HCC
rs1260326

C > T GCKR 0.29 (T) Regulation
of DNL p.P446L Loss-of-function ↑ NAFLD, NASH,

and fibrosis
rs72613567

T > TA HSD17B13 0.18 (TA) Lipid remodeling Truncated
protein Loss-of-function ↓ NASH, fibrosis,

and HCC

Several APOB NA VLDL secretion Protein change Loss-of-function ↑ NAFLD NASH,
fibrosis, and HCC

Several TERT NA Telomere
maintenance Protein change Loss-of-function ↑ Fibrosis and HCC

Several TP53 NA Genomic stability
maintenance Deletion Loss-of-function ↑ HCC

rs1800832
A > G NTS 0.11 (G) Lipid metabolism

Overexpression
of circulating

Pro-NTS
Gain-of-function ↑ Fibrosis and HCC

rs599839
A > G PSRC1 0.24 (G)

Microtubule
destabilization

and
spindle assembly

Overexpression
of CELSR2-

PSRC1-SORT1
gene cluster

Gain-of-function ↑ HCC

MAF: minor allele frequency.

HCC onset diverges in non-cirrhotic NAFLD patients from those with cirrhosis not
only for its molecular characteristics, but also for its macroscopic features. Non-cirrhotic
HCCs appear to be larger at the presentation and have a higher recurrence rate, probably
due to a lack of screening programs, consequently delaying the diagnosis [64,108]. Even
more, non-cirrhotic HCCs were more attenuated at the computed tomography (CT) scan,
due to the higher presence of necrosis [109]. A different radiological pattern was observed
in the arterial and delayed phases. Fibrous septae along with fat and necrosis give non-
cirrhotic HCC its mosaic appearance during the late arterial phases [110]. As a result
of a capsule surrounding the lesion, contrast-CT showed a delayed washout phase in
non-cirrhotic HCC compared to the cirrhotic one [110]. In addition to the differences
emerged by CT, a recent study showed the differences at an ultrasound between non-
cirrhotic and cirrhotic HCC. In this retrospective multicentric study, a contrast-enhanced
ultrasound (CEUS) was performed in 96 patients with non-cirrhotic HCC. The lesions
exhibited hyperenhancement in the arterial phase and rapid washout in the portal phase,
resembling metastatic liver lesions rather than cirrhotic-HCC [111].

A schematic illustration of the main risk factors involved in HCC development in
cirrhotic and non-cirrhotic NAFLD patients is represented in Table 3.
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Table 3. Similarities and differences in HCC carcinogenesis between cirrhotic and non-cirrhotic
NAFLD patients.

Non-Cirrhotic vs. Cirrhotic NAFLD

Common risk factors

- Male sex
- Age > 65 years
- Smoking habits
- T2DM
- Unhealthy lifestyle
- Genetic polymorphisms in PNPLA3,

TM6SF2, and MBOAT7 genes
- Immune system dysregulation
- Alterations in gut microbiota

Mechanisms involved in carcinogenesis
- Worst glycemic control and IR
- Genetic variants in TERT, TP53, APOB,

PSRC1, NTS, and PDCD1 genes
- Reduction of intrahepatic T CD4+ cells

Macroscopic features

- Larger lesions at the presentation
- More attenuated at CT scan
- Mosaic appearance in late arterial phase

at CT
- Delayed washout at CT
- Hyperenhancement in arterial phase and

rapid washout at CEUS
T2DM: type 2 diabetes mellitus; PNPLA3: patatin-like phospholipase domain-containing 3; TM6SF2: transmem-
brane 6 superfamily member 2; MBOAT7: membrane-bound O-acyltransferase domain-containing 7; GCKR:
glucokinase regulator; HSD17B13: 17beta-hydroxysteroid dehydrogenase type 13; IR: insulin resistance; TERT:
telomerase reverse transcriptase; APOB: apolipoprotein B; PSRC1: proline/serine-rich coiled-coil protein 1; NTS: neu-
rotensin; PDCD1: programmed cell death 1; CT: computed tomography; and CEUS: contrast-enhanced ultrasound.

5. Tumor Surveillance in HCC

As previously mentioned, HCC has a high mortality rate, with an estimated 5 year
overall survival of 10–20% [112], and the frequency of liver cancer is expected to rise
by more than 55% in the next twenty years [113]. Curative treatments for HCC include
invasive surgical approaches, such as partial hepatic resection, image-guided tumor abla-
tion, and liver transplantation, but not all patients with HCC are eligible candidates for
these therapies. A single nodule without vascular invasion or metastasis can be surgically
resected, while liver transplantation is possible only when the nodule meets the Milan
criteria (a single tumor ≤ 5 cm or two to three nodules ≤ 3 cm without vascular invasion or
extrahepatic metastasis) [114]. Since the early detection of HCC is crucial to reducing cancer
mortality, the efforts may be imperatively focused on the discovery of novel cutting-edge
strategies to screen NAFLD patients, even in the absence of a fibrous background. The
current clinical guidelines suggest screenings in cirrhotic patients for HCC, by performing
an abdominal US every six months, along with or without an AFP measurement [21,115].
Recently, the Japanese guidelines recommended to perform HCC surveillance every three
months over the past year [116], although several studies have shown that such surveillance
did not improve the detection of early HCC and did not ameliorate survival rates [117].

5.1. Abdominal Ultrasound for the Screening of HCC

Hepatologic societies worldwide largely recommended an abdominal US as the first
step for HCC screening, as it is a non-invasive tool that is rapidly available and economic,
and it has no radiation exposure for patients. [118].

At B-mode US examination, a differential diagnosis of hepatic focal lesions can be made
by analyzing the tumor shape, border, margins, and intratumor and posterior echo [119].
The HCC nodular-type usually appears as a round or oval lesion, whereas HCC massive-
type shows as an irregular shape [120]. HCC lesions at a US can be detected as hyperechoic,
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hypoechoic, or with a mosaic pattern, and the prevalence of the different echogenicity
observed changes according to the tumor size. Indeed, small HCCs are often hyperechoic,
because of the intralesional presence of the fatty load, which histologically correlates with
well differentiated cancer areas, while as the tumor grows it becomes poorly differentiated
and loses fat droplets with a consequent of US hypoechoic appearance [121,122]. When
the tumor mass reached a diameter greater than 20 mm, it typically develops a mosaic
pattern, which pathologically represents the characteristic growth path of the tumor [123].
Moreover, advanced HCCs also show the “halo sign” and the “lateral shadows” and both
expressions of the presence of a fibrous capsule of the tumor [124,125], together with the
“posterior echo enhancement”, which is a less specific sign but is detectable in almost half
of the HCC nodules [126].

Since HCC is a highly vascular tumor, color Doppler and power Doppler can be
helpful in its detection. Power Doppler examination usually shows low flows inside or
around the tumor for small lesions, which reflects a feeding portal flow [127], whereas
bigger nodules are often characterized by an increased flow signal with a “basket-pattern”
blood flow, representing the arterial vessels that surround the tumor [128].

The evidence that HCC surveillance with a US is a predictor of survival comes from
a single randomized clinical trial (RCT) performed in China with 18,816 HBV patients. The
RCT had a low adherence (60%) but was able to show a remarkable reduction (37%) in HCC-
related mortality in the monitored group [129]. Further evidence relies on retrospective
observational studies showing that HCC surveillance has a survival benefit in high-risk
patients from different aetiologies [130–134].

Based on the mean small HCC doubling time (usually from 70 to 120 days) [135],
international guidelines recommend a 6-month surveillance interval for cirrhotic pa-
tients [21,116,136], because a longer interval between each examination results in a lower
survival and poorer HCC detection [132,137,138]. Hence, it could be postulated that
a shorter surveillance interval may help identify HCC at earlier stages [139], albeit in
a French RCT US surveillance performed every 3 months, they detected more focal lesions
but failed to diagnose HCCs < 30 mm of diameter, and demonstrated no benefits in the
patients’ survival [117].

According to a meta-analysis, despite a relatively good sensitivity in detecting HCC
at any stage (84% sensitivity, 95% CI 76–92%), a US shows only a 47% sensitivity (95% CI
33–61%) for early stage HCC [140].

5.2. Alternative Imaging Approaches for the Screening of NAFLD-HCC

Overall, despite its many advantages, US could be ineffective in HCC screening,
especially in NAFLD patients [141]. Indeed, Simmons et al. [142] identified NASH-cirrhosis,
male gender, BMI, Child-Pugh B or C cirrhosis, and in-patient status as predictors of
surveillance failure, with a worryingly over one-third (34.6%) of NASH-related cirrhotic
patients showing inadequate US images [142]. A similar rate of severe limitations in
visualization at US was detected by Huang et al. [143] in a prospective cohort of NAFLD-
cirrhotic patients. Therefore, US sensitivity seems to be decreased in patients with NASH
compared to other aetiologies, to the point that Samoylova et al. [144] suggested that
US performed in NASH patients potentially miss 41% of HCC, with a 25% decreased
sensitivity vs. other CLD aetiologies (0.59 vs. 0.84; p = 0.02) [144]. In line with this data,
a recent retrospective study conducted in 2053 cirrhotic patients showed that among all
aetiologies of CLD, NAFLD-related cirrhosis had the greater proportion of limited US
visualization [145].

The scant US sensibility in detecting HCC in the context of NAFLD is mainly due
to obesity, which is extremely prevalent in NAFLD patients [146], as subcutaneous fat
accumulation may attenuate the US beam, determining poor penetration and low-quality
images [147]. Accordingly, many studies reported BMI as a predictor of US failure in
detecting HCC [142–145,148]. In particular, Samoylova et al. [144] showed that a US was
10% less sensitive in obese patients vs. other subjects (0.76 vs. 0.87, p = 0.01) [144], while
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Huang et al. [143] showed a five times higher risk of inadequate US images for obese
patients compared to non-obese ones [143]. These results can be explained both by the
thickness of the subcutaneous fat layer along the abdominal wall, which increases the
distance between the liver and the transducer, and the distortion and scattering of the
US beam, which is caused by fat tissue [137,138]. Furthermore, peculiar tissue properties
of steatosis lead to the attenuation of the US beam with poor visualization of the entire
liver [149]. Moreover, not the whole liver is easy to examine through US, in particular the
subcapsular regions [150].

To overcome the limits of a US, especially in obese patients or in the case when the
liver is not fully evaluable (for excessive intestinal gas and/or chest wall deformity), or
in the setting of the liver transplantation waiting list, CT scan, or magnetic resonance
imaging (MRI), which are validated alternatives in HCC surveillance, as recommended
in the European guidelines for HCC [151]. Nevertheless, the same guidelines did not
recommend CT or MRI as the first choice exam in HCC surveillance, due to the high rate
of false-positive results and the need to use a contrast agent. Moreover, CT used ionizing
radiation and the cost-effective ratio for both CT and MRI, which were not favorable for
a screening program. An RCT conducted in 2013 was the first to evaluate the performance
of a biannual US and an annual CT for the HCC surveillance. The authors showed that
a biannual US was comparable to an annual CT for the detection of early stage HCC, with
lower costs and no use of radiation, suggesting the use of biannual US as a validated tool
for HCC surveillance [152].

To date, contrast-enhanced imaging methods such as CT and MRI are necessary as the
subsequent steps after a US for the HCC diagnose. Indeed, the latter is primarily based
on the appearance of the lesion in the arterial, portal venous, and delayed phase [153].
Typically, HCC shows a hyperenhancement in the arterial phase and a washout in the
portal venous and/or delayed phases [154]. The radiological aspect of HCC reflects the
vascular changes that occur during HCC development, such as sinusoid capillarization
and unpaired arteries. The neoplastic cells in HCC overexpress the hypoxia-inducible
factor-1a (HIF-1a), with a consequential increase in the transcriptional activity of the
vascular endothelial growth factor (VEGF) and erythropoietin. These modifications lead to
angiogenesis and confer the typical aspect on contrast-enhanced imaging [155]. Due to the
fact that HCC diagnosis required liver biopsy only in uncertain cases, in 2018 the American
College of Radiology and the American Association for the Study of Liver Disease (AASLD)
introduced the Liver Imaging Reporting and Data System (Li-RADS), to standardize the
terminology in liver imaging [115]. The Li-RADS system was applicable in CT and MRI
and was first designed for patients with liver cirrhosis. The diagnosis of HCC was based
on wash in and wash-out, the non-rim arterial phase enhancement, the size of the lesion,
the presence of a capsule, and the rate of tumor growth. Ancillary features such as corona
highlight, intralesional fat and/or iron sparing, mosaic and nodule-in-nodule appearance,
diameter stability for two years, diffusion restriction, and mild hyperintensity in T2 could
be applied to better define the lesion.

The Li-RADS score ranged from one to five, with an increasing probability of HCC:
LR-1 definitely benign; LR-2 probably benign; LR-3 intermediate probability of HCC; LR-4
probably HCC; and LR-5 definitely HCC. The other three categories were explicated in
the Li-RADS system: LR-NC for a non-classifiable lesion due to image degradation or
omission; LR-TIV for gross vascular tumor invasion, and LR-M if the lesion was probably
or definitely malignant but not HCC-specific. Typical imaging features of hepatic cysts or
hemangiomas are defined by LR-1 or 2 [156].

The imaging criteria for the diagnosis of HCC have been developed in patients with
liver cirrhosis, but as we showed previously, several micro and macroscopic features
distinguished HCC occurrence in cirrhotic and non-cirrhotic livers. Whereas cirrhotic-HCC
and non-cirrhotic HCC show several similarities at imaging, such as arterial enhancement,
portal and late phase wash-out, and capsule enhancement [157], NASH-HCC less frequently
shows the typical wash-out. A small study conducted on 21 NASH patients showed that
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40% of NASH-HCC did not display portal or late phase wash-out at MRI [158]. Afterward,
a multicentric study conducted on 107 patients who underwent surgery for suspected HCC
in a non-cirrhotic liver confirmed that nearly 30% of HCC occurred in non-cirrhotic liver,
which showed the wash-out phase on the MRI [159]. Comparing the imaging features of
NASH-HCC and virus-induced HCC, Barat et al. [160] showed that both of them seem to
have the primary criterion of Li-RADS, including portal and late-phase wash-out [160]. The
presence of hepatic steatosis seems to be related to the absence of wash-out at MRI [161] but
not at CT imaging [162], which possibly explains the differences of the wash-out prevalence
in NASH-HCC across the studies.

Probably due to the lack of tumor surveillance in non-cirrhotic HCC, these patients
frequently showed a large solitary mass with peripheral satellites, extrahepatic spread of
the disease, invasion of portal vein, and abdominal lymphadenopathy [109].

5.3. Alpha-Fetoprotein Assessment for the Screening of HCC

All the efforts of researchers should be imperatively addressed to overcome the hurdles
of the early diagnosis and to improve the prognosis of HCC. Given its ever-increasing
prevalence and the cancer-related mortality in the NAFLD setting, it is crucial to focus our
attention on the discovery of non-invasive biomarkers with a reliable diagnostic power
and clinical utility during follow-up. To date, proteins with high expressions in tumoral
tissues compared to the adjacent ones are the most attractive analytes that are exploited
for HCC surveillance programs. Among them, despite several limitations, AFPs still have
a high consensus among clinicians for tumor staging, grading, and management, due to
their elevated diagnostic performance for the detection of HCC [163]. According to the
2018 European Association for the Study of the Liver (EASL) guidelines on HCC, AFP
was not recommended alone for the HCC screening surveillance, due to its suboptimal
cost-effectiveness ratio [164]. Almost 80% of small tumors, which were less than 3 cm, had
normal levels of AFP, with a low sensitivity of AFP in these lesions (sensitivity 25%) [165].
Nevertheless, a meta-analysis conducted in 2018 and including 13,367 patients showed
that the sensitivity of US for the detection of small HCC in cirrhosis was significantly
higher when AFP was added to the US (45% vs. 63%, respectively) [140]. According to
Asian guidelines, AFPs could be included in HCC surveillance along with US [116]. The
association of AFPs with US seems to be a higher benefit in viral-induced HCC rather
than metabolic ones [166], but there is a lack of NASH-HCC-tailored studies. To overrule
the above mentioned limits on HCC surveillance, several biomarkers were evaluated
and proposed.

The inflammatory milieu that characterizes HCC tumorigenesis involves T-regulatory
lymphocytes with non-specific neutrophilia and relative lymphopenia. The consequence is
an immune-mediated antitumor response, with improves HCC progression [167]. A ret-
rospective cohort study conducted on 789 HCC patients showed that the neutrophil-
lymphocyte ratio (NLR) appeared to parallelly increase with HCC severity, and an NLR
greater than three was associated with a large tumor size, vascular invasion, and tumor rup-
ture [168]. Patients with NASH-HCC seem to have a higher NLR compared to viral-ones,
and NLR may be a prognostic marker for disease severity [168].

5.4. Novel Strategies to Non-Invasively Assess NAFLD-HCC: Proteins and Receptors

Des-gamma-carboxy prothrombin (DCP), also known as pro-thrombin induced by
vitamin K absence-II (PIVKA II), is an aberrant prothrombin molecule induced by vitamin K
and is overproduced during the malignant transformation of hepatocytes [169]. Therefore,
DCP is a promising HCC predictive and prognostic marker, and, when it is combined with
AFP, it may complement US in the early tumor detection [163]. Moreover, considering its
role in the crosstalk between HCC and vascular endothelial cells, it may also be useful in
identifying more aggressive tumors and advanced tumor stages, and in evaluating the
prognosis after therapies [170]. Glypican-3 (GPC3) is a heparin sulfate proteoglycan that
is involved in the regulation of developmental morphogenesis through the interaction
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with numerous growth factors [171]. GPC3 levels are elevated in HCC patients, but
not in hepatitis or healthy subjects [172]. Of note, GPC3 expression levels are higher in
cirrhotic livers with dysplasia compared to those without it, suggesting its potential use as
a precancerous biomarker [173]. However, this biomarker has a low sensitivity and poor
detection rate in blood samples compared to hepatic biopsies, but it gains sensitivity and
specificity when it is assessed simultaneously with AFP [174]. Osteopontin (OPN) is an
extracellular matrix multifunctional protein that is physiologically expressed in Kupffer
and stellate cells, but not in hepatocytes [175]. OPN levels are positively associated with
the HCC risk [176], and many studies show a better accuracy of the combination of OPN
and AFP for HCC diagnosis compared to AFP alone [177]. Golgi protein-73 (GP73) is
a Golgi trans-membrane glycoprotein involved in HCC cell proliferation, invasion, and
migration [178]. Several pieces of evidence demonstrate its high sensitivity and specificity
in HCC detection, which is even higher than AFP [179], which makes GP73 a promising
HCC biomarker.

G protein-coupled receptors (GPCRs), which are known to be involved in carcino-
genesis and are reported to be mutated and overexpressed in a HCC microenvironment,
are currently being evaluated as potential HCC biomarkers [172]. In particular, a recent
study proposed GPCRs such as the beta2-adrenergic receptor as a predictive factor for
both recurrence-free and overall survival, being upregulated in HCC tumor tissues and
significantly associated with poor prognosis [180].

5.5. Novel Strategies to Non-Invasively Assess NAFLD-HCC: Cell-Circulating Tumor DNA and
Non-Coding RNAs

An innovative strategy to assess the genetic profile of primary and metastatic tumors
and to dynamically track their genomic evolution is constituted by a liquid biopsy [164].
The latter may represent a good opportunity to ameliorate our ability to explore the tumor
molecular signature and heterogeneity, thus favoring the discovery of feasible biomarkers
into the circulation, ameliorating the tumor screening, surveillance, detection, and out-
come. This approach takes advantage of the opportunity to resample body fluids over
time, addressing analytes, actively or passively, that are released into the bloodstream
from cancerous lesions. For instance, cell-circulating tumor DNAs (ctDNAs) are gaining
an exceptional potential in the management of HCC. ctDNAs are double-stranded DNA
fragments, containing genetic aberrancies that are identical to the tumor cells from which
they are derived from, and are detectable in both the serum and plasma [181]. In more
detail, these DNA fragments are released by apoptotic- or necrotic-injured cells and their
genetic/epigenetic pattern has been associated with cancer aggressiveness in different
tumors, including HCC [182–184]. Specifically, the assessment of the SNPs or methylation
changes in this fragmented DNA may exert a central role in the determination of cancer
recurrence and metastatic potential [185], to the extent that the methylation changes of
the ctDNA have been linked to early tumor occurrence [186]. In a cohort of 1098 HCC
patients, it has been reported that the methylation profiles of HCC tumor DNA are strongly
correlated with the matched plasma ctDNA [187]. Multiple methylation aberrancies have
been linked to HCC, and the hypermethylation of promoter regions has been outlined
as a precocious anomaly in tumorigenic processes. Therefore, the combined assessment
of ctDNAs and AFP may improve HCC detection, exceeding the previously described
plasma biomarkers, in terms of higher sensitivity and better clinical correlation in dis-
criminating HCC patients from the normal controls [188]. Plasma DNA levels have also
been positively correlated with tumor size, intrahepatic spreading, and vascular invasion,
being an independent risk factor for poor overall survival, recurrence, and extrahepatic
metastasis [189]. Finally, ctDNA concentrations have also been associated with the response
to ICB therapy with pembrolizumab, a monoclonal antibody anti PD-1, also predicting the
therapeutic outcomes [190].

Furthermore, mounting evidence indicates that changes in the expression of short or long
non-coding RNAs (ncRNAs) may be indicative of NAFLD worsening into HCC [191,192].
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These molecules do not encode proteins, albeit they still modify the expression of target
genes. Specifically, during HCC initiation, worsening, and metastatic spreading, several
ncRNAs are tremendously altered, thus suggesting their potential regulatory role in these
processes [192]. Thus, ncRNAs that are isolated from tumoral tissues, blood, and urine
could be useful in the future as biomarkers for the early detection of HCC or to foresee
the prognosis of patients, possibly bridging the gap between clinical requirements and the
current needs [193].

In detail, among the short ncRNAs, we can take into account the endogenous microR-
NAs (miRNAs) that may dually operate as either oncogenes or onco-suppressors upon
different conditions [194,195]. Their most studied aberrancies include the downregulation
of miR-122, miR-15, miR-16, and miR-34a in NASH-associated HCC [196,197], and the over-
expression of miR-221 and miR-101-3p [198], whereby paralleling the severity, invasiveness,
and TNM classification of HCC.

Conversely, along with the short ncRNAs, also long non-coding RNAs (lncRNAs)
are non-codifying molecules with transcriptional (gene activation/silencing) or post-
transcriptional (mRNA splicing) regulatory properties, but with a length of more than
200 nucleotides [191,199]. In the context of NAFLD-derived HCC, lncRNA MALAT1,
HULC, NEAT1, HOTAIR, and H19 have been extensively described as novel modifiers of
the predisposition to liver carcinogenesis and chemoresistance [172,200].

Finally, the circular non-coding RNAs (circRNAs) are gaining overwhelming interest
as biomarkers in different tumor types. They are stable scrambled exons that are resistant
to endonucleases, consisting of a structure of a circular-loop RNA void of a 5-cap and 3-tail
containing conserved miRNA response elements (MREs) [201]. As a consequence, circRNAs
work as “miRNA sponges”, enabled to sequester more than one miRNA, smoothening their
activity, and further affecting the expression of downstream mRNA through a circRNA–
miRNA–mRNA pathway [202]. In patients with HCC, some circRNAs are aberrantly
expressed and they may participate with pivotal events that occur during NAFLD evolution
toward HCC, such as lipogenesis, fibrosis, and cell proliferation [172,203].

6. New Proposed Scores to Estimate the Risk of NAFLD-HCC

Apart from novel biomarkers, several scores have been proposed to predict HCC
prognosis in the setting of NASH. For instance, the fibrosis-4 index (FIB-4) is a widely
used score that encompasses age, platelet (PLT) levels, AST, and ALT to define the risk of
advanced fibrosis in CLD. Because patients with increased FIB-4 have a higher probability
of advanced fibrosis, it is conceivable that patients with high FIB-4 also have an increased
risk of HCC development. A huge study conducted in 2018 on 25,947 Korean patients with
a one-year follow-up showed that a FIB-4 greater than 1.45 was associated with an increased
risk of HCC in NAFLD [204]. Another large retrospective European study conducted on
29,999 NAFLD patients showed that a FIB-4 greater than 1.3 was associated with HCC
development within the 10-year follow-up, even without cirrhosis at the baseline [205].

Similar findings have been shown with the use of transient elastography (TE). A Fi-
broScan through the use of a pulse-echo US acquisition (vibration-controlled transient
elastography (VCTE)) simultaneously quantifies both the liver fibrosis by a liver stiffness
measurement (LSM) and the liver steatosis through the use of a controlled attenuation
parameter (CAP) [206]. Izumi et al. [207] performed a FibroScan to evaluate both the
LSM and CAP in 1656 patients with CLD. They showed that the LSM ≥ 5.4 kPa and
CAP ≤ 265 dB/m were primarily associated with the risk of HCC development in NAFLD
patients. The LSM cut-off was lower when compared to viral patients (5.4 kPa for NAFLD
vs. 8 kPa for HCV and 6.2 kPa for HBV). The authors also confirmed that an increased FIB-4
value (greater than 2.67) was significantly associated with the risk of HCC development in
NAFLD patients [207].

To estimate the risk of advanced fibrosis and the adverse clinical outcomes among
patients with NAFLD, the enhanced liver fibrosis (ELF) test has been proposed. This score
considers the amount of hyaluronic acid, tissue inhibitor of matrix metalloproteinase-type
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1 (TIMP-1), and the aminoterminal propeptide of type 3 procollagen (P3NP). In a large
retrospective cross-sectional study, Younossi and colleagues reported that the AUROC
for ELF in identifying patients with histologically or non-invasively diagnosed severe
fibrosis was 0.81 (95% CI, 0.77–0.85) and 0.79 (95% CI, 0.75–0.82), respectively [208]. The
simultaneous assessment of ELF and FIB-4 may have a reliable clinical utility to determine
the presence of progressive fibrosis among NAFLD patients, although a recent study
demonstrated that ELF and VCTE were superior to FIB-4 for all fibrosis endpoints [209],
also exceeding other scores, such as the NAFLD fibrosis score (NFS) and the BARD score.

Another score that has been demonstrated to have a good accuracy in both non-
cirrhotic and cirrhotic NASH-HCC was the GALAD score. The GALAD score encompasses
gender, age, AFP-L3 (an isoform of AFP more specific for neoplasia), AFP, and DCP and it
seems to have a high prognostic accuracy in the early detection of HCC in NASH patients
(area under receiver operating characteristic curve, AUROC: 0.96). The accuracy of GALAD
was high, independent of aetiologies and cirrhosis, with similar AUROCs in patients
without cirrhosis (AUROC: 0.98) and those with cirrhosis (AUROC: 0.93). GALAD could
detect HCC independent of cirrhosis and the HCC stage, and it became raised within a few
months of HCC detection. The cut-off threshold proposed for GALAD was −1.334, and it
could be used in the future in the screening program for HCC detection, especially in non-
cirrhotic NASH patients [210]. Notably, the combination of GALAD and US (GALADUS
score) may further ameliorate the performance of the GALAD score alone [211].

Non-invasive tests (NITs) for stratifying NAFLD patients according to the risk of
developing HCC are listed in Table 4.

Table 4. Non-invasive tests (NITs) for stratifying NAFLD patients according to the risk of developing HCC.

NIT Formula Higher Risk

VCTE NA >18 KPa
MRE NA >3.63 KPa

BARD score
BMI ≥ 28 kg/m2 = 1

AST/ALT ratio ≥ 0.8 = 2
T2DM = 1

≥2

FIB-4 index age (years) × AST (U/L)/[PLT (109/L) × ALT1/2 (U/L)] >2.67

NFS
−1.675 + 0.037 × age (year) + 0.094 × BMI (kg/m2) + 1.13 ×

IFG/diabetes (yes = 1, no = 0) + 0.99 × AST/ALT ratio −
0.013 × PLT count (×109/L) − 0.66 × albumin (g/dL)

>0.676

ELF test 2.494 + 0.846 × ln(HA) + 0.735 × ln(P3NP) +
0.391 × ln(TIMP1) >9.89

GALAD score
−10.08 + 1.67 × [Gender (1 for male, 0 for female)] + 0.09 ×

[Age] + 0.04 × [AFP-L3%] + 2.34 × log[AFP] +
1.33 × log[DCP]

≥−0.63

ALT: alanine aminotransferase; AST: aspartate aminotransferase; BMI: body mass index; HA: hyaluronic acid;
IFG: impaired fasting glucose; MRE: magnetic resonance elastography PLT: platelets; P3NP: pro-peptide of type
3 procollagen; and TIMP1: tissue inhibitor of matrix metalloproteinase type 1.

Finally, the role of genetic predispositions is well-known in NAFLD development and
progression, and the role of the genetic risk in identifying patients at high risk to develop
HCC is an area of active research. As previously described, the genetic polymorphisms in
PNPLA3 C > G, TM6SF2 C > T, MBOAT7 C > T, and GCKR C > T genes are predisposed
to NAFLD progression and HCC development [212]. On the other hand, the rs72613567
HSD17B13 TA variant seems to prevent hepatic fibrosis and HCC tumorigenesis [85]. Based
on these assumptions, Bianco et al. [213] in 2021 proposed a PRS to identify the risk of
HCC in NAFLD patients. A PRS based on the five aforementioned variants could be
used to predict the risk of HCC in patients with NAFLD and concomitant dysmetabolism,
targeting the neoplastic surveillance on metabolic patients without cirrhosis but with a high
PRS [213]. Thus, a good PRS may correlate to clinically relevant genetic variants with
environmental and dynamic risk factors with the purpose to acquire greater accuracy for
HCC early detection [17]. A previous study performed on the general population confirmed
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that an increased PRS based on PNPLA3 rs738409, TM6SF2 rs58542926, and HSD17B13
rs72613567 conferred a higher risk of both cirrhosis and HCC development, with a higher
risk of HCC compared to the risk of cirrhosis (29-fold higher for HCC vs. 12-fold higher for
cirrhosis) [18]. Moreover, in 1380 patients with NAFLD, among whom 121 had HCC, Longo
et al. [82] evaluated the impact of the three variants, I148M PNPLA3, rs641738 MBOAT7,
and E167K TM6SF2, showing that the co-presence of these three at-risk variants was
related to enhanced levels of markers of liver damage, advanced steatosis, inflammation,
ballooning, fibrosis, and approximately a two-fold higher risk of HCC [82]. A schematic
representation of the main risk factors involved in HCC development in cirrhotic and
non-cirrhotic NAFLD patients and the current and future tools for the diagnosis of HCC in
non-cirrhotic NAFLD are illustrated in Figure 1.
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Figure 1. Clinical and molecular risk factors associated with the development of HCC in NAFLD
patients with or without cirrhosis (upper panel) and current and future diagnostic tools for the
diagnosis of HCC in non-cirrhotic NAFLD patients (lower panel). Genetic background, steatosis
degree, smoking habits, and worse glycemic control are marked in bold, since these factors more
specifically trigger HCC onset in non-cirrhotic NAFLD patients. ↓: downregulation; ↑: upregulation.
HCC: hepatocellular carcinoma; NAFLD: non-alcoholic fatty liver disease; T2DM: type 2 diabetes
mellitus; US: ultrasound, CEUS: contrast-enhanced ultrasound; CT: computed tomography; MRI:
magnetic resonance imaging; AFP: alpha-fetoprotein; DCP: des-gamma carboxyprothrombin; OPN:
osteopontin; GP73: Golgi protein-73; GPCRs: G protein-coupled receptors; FIB4: fibrosis-4 index;
PRS: polygenic risk score; ctDNAs: cell-circulating tumor DNAs; and Circ-RNAs: circular non-
coding RNAs.

Considering the extent of the NAFLD population, a good screening test should em-
brace various criteria, including high sensitivity and specificity, cost effectiveness, and
availability [214]. Other predictive models have recently been proposed to stratify the risk
of developing HCC and surveillance in patients. Among them, Chen et al. developed
in 2022 a highly accurate diagnostic model that combines a 12-gene signature, biological
pathway analysis and a machine learning algorithm, with the purpose of distinguishing
between cancer and noncancerous tissues [215]. Overall, machine learning algorithms will
become a powerful tool for clinicians to accurately identify patients at high risk for HCC
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development, and they will pave the way for the optimization of personalized therapeu-
tic approaches [216].

7. Concluding Remarks

Despite NAFLD showing a low incidence rate of HCC compared to other causes of
CLD, it is predicted that the rate of NAFLD-HCC will increase faster in the next few years
due to its spreading worldwide.

In contrast to viral and alcohol-related HCC, NAFLD-HCC develops in non-cirrhotic
livers with a higher frequency (below 20–30% of cases). NAFLD-HCC appears larger at
diagnosis, with an infiltrative pattern and microvascular invasion, probably because the
screening program failed more frequently in these patients.

Male sex, T2DM, age, smoking, and a higher BMI are clinical risk factors related to
the development of NAFLD-HCC, also in non-cirrhotic livers. The pathophysiological
mechanisms responsible for non-cirrhotic NAFLD-HCC onset include systemic inflam-
mation, hyperglycemia, IR, and the immune dysregulation with low intrahepatic CD4+ T
lymphocytes. Furthermore, genetic predisposition plays an important role in the develop-
ment of non-cirrhotic NAFLD-HCC, as testified by the great accuracy of PRS to foresee
HCC. Furthermore, gut dysbiosis seems to be related to non-cirrhotic HCC through the
promotion of a pro-inflammatory milieu.

The international guidelines suggest performing a 6 months surveillance with a US,
with or without AFP measurements, in all patients with liver cirrhosis and in a subgroup
of patients with HBV chronic infection without cirrhosis. However, a US shows several
limits for NAFLD patients, probably due to obesity and the steatosis-mediated attenuation
of US beams. CT and MRI could be valid alternative to US for NAFLD patients, but some
concerns such as the use of ionizing radiation, the costs, allergies, and chronic kidney
diseases limits the use of these techniques.

AFP is often normal in patients with HCC, especially of those with metabolic origin.
For this reason, AFP should only be measured together with a US examination. Several
biomarkers and scores are being proposed to overcome the limits of screening surveillance
and to detect early HCC, especially in non-cirrhotic patients. A liquid biopsy with the
evaluation of ctDNAs, ncRNAs, and circRNAs seems to be promising, nevertheless its
use is not routinary. FIB-4, LSM, and GALAD scores could help physicians better identify
patients with higher probabilities of developing HCC and PRS.

The possibility of combining multiple biomarkers may offer more accurate and valu-
able information for HCC diagnosis than the use of a single one.

In conclusion, HCC detection in NAFLD patients is a challenge for physicians, due
to the high prevalence of NAFLD, the possibility of HCC development in non-cirrhotic
livers, and the limits of conventional imaging in these patients. In the context of a more
personalized medicine approach, the PRS and the liquid biopsy are promising tools for the
early detection of HCC in both cirrhotic and non-cirrhotic NAFLD patients.
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Abbreviations

AASLD American Association for the Study of Liver Disease
AFP alpha-fetoprotein
ALD alcoholic liver disease
ALT alanine aminotransferase
APOB apolipoprotein B
AST aspartate aminotransferase
AUROC area under receiver operating characteristic curve
BMI body mass index
CAP controlled attenuation parameter
CCRK cycle-related kinase
ctDNAs cell-circulating tumor DNAs
CLD chronic liver disease
CEUS contrast-enhanced ultrasound
Circ-RNAs circular non-coding RNAs
CT computed tomography
DAAs direct antiviral agents
DCP des-gamma carboxyprothrombin
DPP4 dipeptidyl peptidase 4
EASL European Association for the Study of the Liver
ECM extracellular matrix
ELF enhanced liver fibrosis
ER endoplasmic reticulum
FFAs free fatty acids
FIB-4 fibrosis-4 index
GCKR glucokinase regulator
GP73 Golgi protein-73
GPC3 glypican-3
GPCRs G protein-coupled receptors
HA hyaluronic acid
HBV hepatitis B virus
HCC hepatocellular carcinoma
HCV hepatitis C virus
HIF1α hypoxia-inducible factor-1a
HIV human immunodeficiency virus
HR hazard ratio
HSCs hepatic stellate cells
HSD17B13 17beta-hydroxysteroid dehydrogenase type 13
ICB immune checkpoint blockade
IFG impaired fasting glucose
IFN-γ interferon-gamma
IL interleukin
IR insulin resistance
Li-RADS Liver Imaging Reporting and Data System
lncRNAs long non-coding RNAs
LSM liver stiffness measurement
MBOAT7 membrane-bound O-acyltransferase domain-containing 7
miRNA microRNA
MRE miRNA response elements
MRI magnetic resonance imaging
MTA1 metastasis-associated protein 1
NAFLD non-alcoholic fatty liver disease
NASH non-alcoholic fatty liver disease
ncRNAs non-coding RNAs
NFS NAFLD fibrosis score
NITs non-invasive tests
NLR neutrophil-lymphocyte ratio
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NTS neurotensin
OPN osteopontin
PD-1 programmed cell death-1
PDC1 programmed cell death 1
PDL programmed death ligand
PIVKA II pro-thrombin induced by vitamin K absence-II
PLT platelets
PNPLA3 patatin-like phospholipase domain-containing 3
PRS polygenic risk score
PSRC1 proline/serine-rich coiled-coil protein 1
P3NP pro-peptide of type 3 procollagen
RCT randomized clinical trial
ROS reactive oxygen species
SGLT2 sodium-glucose cotransporter-2
SNP single-nucleotide polymorphisms
SVR sustained virological response
TE transient elastography
TERT telomerase reverse transcriptase
TIMP1 tissue inhibitor of matrix metalloproteinase type 1
TM6SF2 transmembrane 6 superfamily member 2
T2DM type 2 diabetes mellitus
TNFs tumor necrosis factor superfamily
Tregs T regulatory
US ultrasound
VCTE vibration-controlled transient elastography
VEGF vascular endothelial growth factor
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