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Abstract: Background: M1 macrophages involved in pro-inflammatory processes can be induced
by low-density lipoproteins (LDL), giving rise to foam cells. In the atheroma plaque, it has been
identified that males present more advanced lesions associated with infiltration. Therefore, our
study aims to investigate sex-related changes in the transcriptome of M1 macrophages during the
internalization process of LDL particles. Methods: Peripheral blood mononuclear cells (PBMCs) from
healthy male and female subjects were separated using Hystopaque, and monocytes were isolated
from PBMCs using a positive selection of CD14+ cells. Cells were stimulated with LDL 10 µg/mL, and
the transcriptional profile of M1 macrophages performed during LDL internalization was determined
using a Clariom D platform array. Results: Chromosome Y influences the immune system and
inflammatory responses in males expressing 43% of transcripts in response to LDL treatment. Males
and females share 15 transcripts, where most correspond to non-coding elements involved in oxidative
stress and endothelial damage. Conclusions: During LDL internalization, male monocyte-derived
M1 macrophages display more marked proinflammatory gene expression. In contrast, female M1
macrophages display a more significant number of markers associated with cell damage.

Keywords: LDL internalization; M1 macrophages; sex-related; transcriptional profile; chromosome Y;
female; atherosclerosis

1. Introduction

Cardiovascular disease (CVD) still represents the leading cause of death in Mexico [1],
where atherosclerosis, considered a progressive condition characterized by the accumulation
of lipids and fibrous components preferentially in the large arteries, represents the leading
cause of CVD. The progressive chronic inflammatory process in the lamina of the arteria
results in atheroma plaque, initiated by the subendothelial retention of low-density lipopro-
teins (LDL). Otherwise, the accumulation of macrophages (MACs) in the endothelium
induces an inflammatory response [2], which promotes the progression of the atherosclerotic
process. In addition, the LDL uptake by endothelial cells triggers the production of several
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pro-inflammatory molecules, including macrophage colony-stimulating factor (M-CSF) and
adhesion molecules [3,4].

Interestingly, although it has been recognized for some time now that the presence of
autoimmune disease in women increases the risk of coronary artery disease compared to
men, women are less likely to develop atherosclerosis [5]. Atherosclerosis in women has
been associated with autoimmune diseases such as rheumatoid arthritis, systemic lupus
erythematosus, and systemic sclerosis. These findings have promoted the concept that men’s
immune mechanisms that lead to coronary artery disease are different from those in women.
For instance, the presence of atheroma lesions in men has been associated with a higher
infiltration of M1 macrophages and higher levels of iron stores in the blood, unlike in women [6].

Macrophages belong to a group of pleiotropic cells [7] whose activation is identified by
markers such as CD163, sCD14, Gal3BP, sCD25, and sCD166 [8]. In the atherosclerotic plaque,
two groups of macrophages coexist, mainly M1 and M2. M1 macrophages are known to be ac-
tivated by lipopolysaccharides (LPS) and inflammatory cytokines such as interferon-gamma
(IFNγ) and synthesize a series of chemokines to recruit additional leukocytes. Moreover, M1
macrophages produce high inducible nitric oxide synthase (iNOS) and pro-inflammatory
cytokines such as IL-1, IL-6, IL-12, and tumor necrosis factor-alpha (TNF-α). Activation by
IL-4 and IL-3 generates the polarization of monocyte/macrophages to be converted to M2
macrophages, which promote anti-inflammatory responses characterized by an increase in
arginase 1 (Arg1) and the expression of the CD206 mannose receptor [7].

Several studies investigating atherosclerotic plaque recognized a high content of M1
macrophages and lower content of M2 macrophages, located far from the lipid core and con-
taining fewer lipids [9], where the phenotype control resides on the lesion microenvironment.
Moreover, unlike M2 macrophages, M1 macrophages are present in symptomatic patients
with unstable plaque [10]. In atherosclerosis, it has been well-defined that chemically modi-
fied lipoproteins associated with oxidative stress trigger an innate immune response carried
out by macrophages that subsequently undergo an adaptive immune response influenced by
the presence of cholesterol, phenotypic plasticity, metabolism, age, and sex [11].

Since, nowadays, although the literature presents scattered data, there is still a lack
of information that might integrate the M1 macrophage into the development of gender-
related atherosclerosis, the present study analyzes differences found during LDL internal-
ization according to sex.

2. Materials and Methods
2.1. Study Design

This study was designed to investigate sex-related variations in the transcriptome of
M1 macrophages during the LDL internalization process. Healthy plasma donors were
recruited in an anonymized form at the Institute’s central blood bank. The study was
approved by the National Institute of Genomic Medicine (25/2011/I).

2.2. Low-Density Lipoprotein (LDL) Isolation

LDL was isolated from the fasting plasma of normolipidemic volunteers. LDL was sep-
arated by discontinuous density gradient ultracentrifugation at 657,000× g for 2.5 h at 10 ◦C.
The supernatant was diluted 1:4 in PBS (Gibco, 70011, Waltham, MA, USA) and centrifuged
at 657,000× g for 2.5 h at 10 ◦C. Lipid fraction was resuspended in 2 mL of PBS. Finally,
LDL was washed by ultracentrifugation at 657,000× g for 2.5 h at 10 ◦C and resuspended
in 1 mL of PBS (Gibco, 70011, MA, USA). LDL was quantified using the 2D-Quant KIT
(GE, 80648356, Arlington Heights, IL, USA) according to the manufacturer’s instructions.
The LDL fraction was confirmed by HPLC (Supplementary Materials; Figure S1). Briefly, a
1:10 dilution of the LDL/PBS sample was performed, and the dilution was filtered (0.2 µm,
Nalgene,171-0020, Rochester, NY, USA). An HPLC (Waters, 2695-2996-2475, Milford, MA,
USA) and a Bio-Sil Gel Filtration column (Bio-Rad, 125-0062, Heracles, CA, USA) were
used with an isocratic PBS gradient at a flow rate of 1 mL/min, 1000 psi, 25 ◦C, detected at
220 or 280 nm while scanning within 110–350 nm. Validation was carried out employing
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an LDL/DiI complex (Invitrogen, L3482, Waltham, MA, USA) employed using the exact
same conditions (excitation 554 nm and emission 571 nm). LDL was quantified using the
2D-Quant KIT (GE, 80648356, IL, USA) according to the manufacturer’s instructions.

2.3. In Vitro Isolation and Cultivation of Monocytes

Peripheral blood mononuclear cells (PBMC) were separated by centrifugation at
1,222,533× g for 10 min in a Sorvail Legend RT Centrifuge (Thermo Scientific, 75004367,
Waltham, MA USA) when the three phases were formed: aqueous (plasma), interface
(buffy coat), and precipitate (erythrocytes). The buffy coat was collected in a new tube to
which 10 mL of PBS (Gibco, 70011, MA, USA) was added. Previously, 3 mL of Hystopaque
(Sigma, 10771, Medford, MA, USA) was placed in another new tube and the mixture was
added taking care not to break the phases; it was centrifuged without brake at 1509.3× g
for 30 min at 10 ◦C. The PBMC fraction was collected and subsequently placed in a new
tube, 10 mL of PBS was added and centrifuged at 167.7× g for 1 min, then the supernatant
was decanted, and the washing was repeated 3 times.

The monocytes were isolated from PBMCs using EasySep™ Human CD14 Positive Se-
lection Kit II (STEMCELL TECHNOLOGIES, 17858, YVR, Vancouver, BC, Canada), obtaining
purity greater than 97%. After isolation, cells were cultured at 37 ◦C in RPMI + L-Glutamine
(Gibco, 21127, MA, USA) supplemented with 10% Fetal Bovine Serum (ATCC, 30-2020, Manas-
sas, VA, USA) and 1% antibiotic (Pen Strp. Gibco 15140, MA, USA) in 6-well plates (CellBind
Surface, Corning, 3335, Somerville, MA, USA). After 4 h, non-adherent cells were removed,
and RPMI + L-Glutamine (Gibco, 21127, MA, USA) supplemented with 10% Fetal Bovine
Serum (ATCC, 30-2020, VA, USA), 1% antibiotic (Pen Strp. Gibco 15140, MA, USA), and
5 ng/mL M-CSF (Sigma, M6518, MA, USA) was added and maintained for seven days. Subse-
quently, the macrophages were polarized to subpopulation M1 by adding interferon-gamma
(INFγ) 20 ng/mL (Millipore, IF002, Burlington, MA, USA) and lipopolysaccharide 100 ng/mL
(SIGMA, L4391-1MG, MA, USA).

2.4. Macrophage Differentiation and LDL Treatment

To M1 macrophage polarization, monocytes culture medium was removed and re-
placed with RPMI + L-Glutamine medium (Gibco, 21127, MA, USA) with 10% Fetal Bovine
Serum (ATCC, 30-2020, VA, USA), 1% antibiotic (Pen Strp. Gibco15140, MA, USA), supple-
menting with interferon-gamma (INFγ) 20 ng/mL (Millipore, IF002, MA, USA) lipopolysac-
charide 100 ng/mL (Sigma, L4391-1 MG, MA, USA) maintaining the standard conditions
of 36.5 ◦C and 5% CO2 for 24 h.

M1 macrophages were further stimulated with a single dose of LDL (10 µg/mL) and
the transcriptome was evaluated at different times (0, 24, 48, and 72 h) in each study
group. RPMI 1640 supplemented with 5% FBS, and IFN-γ (20 ng/mL) lipopolysaccharide
100 ng/mL (Sigma, L4391-1MG, MA, USA) maintaining the standard conditions of 36.5 ◦C
and 5% CO2. The confluence in each technical replicate was 200,000 cells per well and
they were performed in triplicate for each volunteer. Cell counts were performed using the
TC20™ automated cell counter (Bio-Rad, 145-0102, CA, USA).

2.5. Microarray Expression and Analysis

Total RNA was isolated with TRIzol™ (Invitrogen, 15596018, MA, USA) according to
the manufacturer’s instructions. RNA was quantified spectrophotometrically with Nan-
oDrop (Thermo Fisher Scientific, ND2000CLAPTOP, MA, USA). The quality of RNA was as-
sessed with an Agilent 2100 Bioanalyzer (Agilent Technologies, G2939BA, Santa Clara, CA,
USA). Isolated total RNA was amplified, labeled, and hybridized using the Clariom D Clar-
iom™ D Human Array de Affymetrix, (Thermo Fisher Scientific, 902923, MA, USA) follow-
ing the manufacturer’s instructions. Raw data were analyzed using Affymetrix Expression
Console and Transcriptome Analysis Console Software. RNAs with ≥ 2-fold-change (FC),
p < 0.05, and FDR < 0.7 were selected as being significantly differentially expressed. For the
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technical validation of the microarray, a Q-PCR analysis was performed for the CD36, FAB,
and IL1β genes. (Supplementary Figure S2).

2.6. Ingenuity Pathway Analysis (IPA)

Ingenuity Pathway Analysis software (IPA, QIAGEN, Hilden, Germany) was used to
identify enriched pathways between males and females (cutoff values: FDR < 0.01; FC > 2,
p < 0.05), canonical pathways with enrichment score and p < 0.05 with greater than 10 gene
members and to identify differentially enriched pathways among treatment-time (cutoff
values: FDR < 0.05; fold-change >2).

2.7. Statistical Analyses

FDR was computed using the Benjamin–Hochberg algorithm. All other data are
presented as means ± SEM. For comparison of multiple conditions, data were analyzed
by one-way analysis of variance (ANOVA) (95% confidence interval) with Holm–Sidak
correction (for multiple comparisons) or Dunnett’s correction (for multiple comparisons
to a single control). For comparison of two conditions, data were analyzed by two-tailed
unpaired Student’s t-test (with Holm–Sidak correction for multiple testing). Statistical
analyses were performed using R 4.1.0. Three subjects were used per group in each
experiment, and experiments were performed at least three times. To denote significance,
* p < 0.05, ** p < 0.01, *** p < 0.001. Graphs were plotted using Database for Annotation,
Visualization, and Integrated Discovery (DAVID) online tool version 6.8 and IPA software
(IPA, QIAGEN, Hilden, Germany).

3. Results
3.1. Transcriptomic Profile of M1 Macrophages Stimulated with LDL Associated with Sex

To observe sex-dependent changes in LDL internalization in activated M1 macrophages
becoming foam cells, the transcriptome of M1 macrophages treated with 10 µg/mL of LDL
obtained from healthy males was compared under the same conditions to M1 macrophages
obtained from healthy females. Differentially expressed genes as twofold values are shown
in Table S1. One hundred eighteen genes were found to be differentially expressed between
males and females: Multiple Complex 37; Coding 37; Pseudogene 2; Non-coding 28; Pre-
cursor microRNA 3; and unassigned 11. Table 1 shows gene expression in chromosome
Y. Genes encoding cellular adhesion molecules (NLGN4Y), cellular exocytosis (TXLNGY),
associated with the induction of IFN-α (DDX3Y), cellular apoptosis (EF1AY), and preven-
tion of protein degradation (USP9Y) are shown to be expressed in agreement with the
pathophysiology of atherosclerosis.

Table 1. Transcripts expressed in Y chromosome.

Function Genes Fold Change

Histone demethylase and inductive activity of INF-α DDX3Y 254.51
Cellular apoptosis and translation factors EIF1AY 108.43
Ribosomal protein translation RPS4Y1 44.91

Unknown

ANOS2P, merbo, RP11-424G14.1, sybo, yohiru, blabo, nabo, tobo, zeybu,
blerbo, Serbar, nyby, Shabo, tybo, ZFY-AS1; AC006157.4, pabo, Sharbo,
zobo, gyby, pleybo, Shorbo, TC0Y00006490.hg.1, rarsybo, skeybo, vubo,
TC0Y00007072.hg.1, korbo, rawby, skybor, warbo, TC0Y00007073.hg.1,
rorbor, Snubar, wubo, TC0Y00007286.hg.1, lorby, RP11256K9.1, Sorbo,

TC0Y00007293.hg.1, TC0Y00007306.hg.1, Y_RNA.

38.99

Chromatin organization UTY, KDM5D, 26.3
Transcription regulator UTY, ZFY 13.26
Long noncoding RNA TTTY15, LINC00278 6.5
Prevention of protein degradation USP9Y 4.73
Cellular exocytosis TXLNGY 2.92
Adhesion molecules NLGN4Y (Neuroligin 4 Y-Linked) 2.24

One-Way Repeated Measure ANOVA (paired) Fold Change (linear) <2 or Fold Change (linear) >2 ANOVA p-value
(Condition pair) <0.05.
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3.2. Pathways in M1 Macrophages Stimulated with LDL Associated with Sex and Time

Subsequently, it was evaluated whether there were differences in gene expression
dependent on exposure to LDL (Figure 1a). The main functions associated with the
atherosclerotic process were the activation and chemotaxis of leukocytes involved in cell
trafficking and the inflammatory response (Figure 1b). The transcripts involved in these
biological processes were CD14, IL6, MICA, CXCL2, EDN1, CCL18, CXCL3, HLA-DOA,
IL1R2, SMAD6, and PRKX.
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downregulation. (b) Gene ontology (GO) enrichment between men and women. Top 20 significantly
enriched GO. p.adjust (adjusted p-value): Red < purple < blue. Graphs were plotted using Database
for Annotation, Visualization, and Integrated Discovery (DAVID) online tool version 6.8.

3.3. Gene Network between Men and Women in M1 Macrophages Stimulated with LDL

Using the Ingenuity Pathway Analysis (IPA) software, we investigated the most
significant gene network of M1 macrophages stimulated with LDL between males and
females. Interestingly, it was found that under these conditions, the network is organized
around the INFγ gene (Figure 2). The top functions related to the INFγ gene correspond to
molecules involved in the immune response, cellular movement, cell signaling, and molec-
ular transport. Genes MSR1, CCL2, and CXCL known to be involved in the development
of atherosclerosis through the activation of LXR/RXR and PPARα were upregulated.
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3.4. Biological Processes Associated with Cellular Functions

Continuing with the analyzes to biologically explain the differences in gene expression,
we performed a classification based on the co-occurrence of genes to discover biological
processes associated with cellular functions and pathways, DAVID 6.8 allowed us to
perform it in Gene Ontology Term Enrichment (Figure 3).
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Figure 3. Chord plot of the top 10 Gene Ontology (GO) terms. In each chord diagram, genes
contributing to their respective enrichment are shown on the left, and enriched GO clusters are
shown on the right. Downregulated mRNAs are displayed in blue, whereas upregulated mRNAs
are displayed in red. Each GO term is represented by one colored line. Graph was plotted using
Database for Annotation, Visualization, and Integrated Discovery (DAVID) online tool version 6.8.

4. Discussion

Recently, interest has grown in studying sexual dimorphism in the cardiovascular
system. Chromosome Y differs from all other human chromosomes in several ways; some
examples are that it (1) is the chromosome involved in determining sex (male); (2) does
not present recombination; (3) presents a common ancestry, and (4) presents a meiotic
relationship with chromosome X [12]. Although an association between gene expression
and sex-based differential selection has been previously recognized, it is limited to animal
studies due to the lack of large-scale transcriptome sequencing in humans [13,14].

The present study identifies genes already classified in the atherosclerosis process as
genes that codify for encoding cellular adhesion molecules (NLGN4Y), cellular exocytosis
(TXLNGY), induction of IFN-α (DDX3Y), cellular apoptosis (EF1AY), and prevention of
protein degradation (USP9Y) [15]. In addition, an expression profiling study based on
new-onset heart failures demonstrated that DDX3Y, EIF1AY, and USP9Y are upregulated in
male subjects [16].

Evidence indicates that immune and inflammatory responses are influenced by chro-
mosome Y, resulting in programmed susceptibility in men to diseases with immunological
components [17]. The present study identifies several genes associated with the immune
system, including CXCL3 and CXCL2, linked to immunoregulatory and inflammatory
processes; IL-6, which codifies for a cytokine that regulates the inflammation process and
maturation of B cells; INHBA, encoding for TGF-β (transforming growth factor-beta),
whose function is to regulate the secretion of the follicle-stimulating hormone (FSH) associ-
ated with the development of atherosclerosis in postmenopausal women [18]; UTY, whose
downregulation in macrophages has been associated with coronary artery disease [19];
DDX3Y, expressed in blood cells that encode for the human male-specific minor histocom-
patibility antigen [20]; and KDM5D, increased in several atherosclerotic models [21].

On the other hand, long non-coding RNAs (lncRNAs) have been implicated in is-
chemic heart diseases [22]. The present study shows that chromosomal-Y lncRNA TTTY15
and lncRNA XIST (X-inactive specific transcript) are upregulated. Interestingly, while
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lncRNA TTTY15 preserves cardiomyocytes from hypoxia-induced cell injury, silencing
lncRNA TTTY15 inhibits cell apoptosis and preserves cell migration [23]. Regarding XIST,
this lncRNA serves as scaffolding for protein recruitment and as a master regulator of X
inactivation in mammals. Furthermore, it has been demonstrated that the knockdown of
XIST protects endothelial cells from ox-LDL-induced injury and apoptosis [24].

Our canonical pathway and gene network analysis revealed that “chemokine sig-
naling” was an important pathway modulated by upregulated male genes. One crucial
gene network was identified around IFN-γ, considered a pro-atherogenic cytokine that
promotes the expression of pro-inflammatory cytokines, adhesion molecules, and several
chemokines. This gene has also been reported to modulate macrophage differentiation to
M1. The present study indicated that around the IFN-γ network, CCL2 and CXCL11 were
upregulated, and TNFSF10 (also known as TRAIL), transmembrane receptor SELL, and
DPP4 were downregulated. CCL2 is one of the first chemokines identified in atheroscle-
rotic lesions and is mainly produced by monocytes, macrophages, endothelial cells, and
smooth muscle cells [25]. CXCL11 can be detected in all stages of plaque development, and
evidence suggests that together with chemokines, CXCL9/MIG and CXCL11/ITAC, it regu-
lates T-cell trafficking in atherosclerosis [26,27]. In humans, TRAIL induces apoptosis when
associated with the death receptor-4 and -5. TRAIL is mainly expressed in the endothelium,
smooth muscle cells, and macrophages within plaques and attenuates atheromatous lesion
formation. The underlying mechanism is that TRAIL promotes vascular cell apoptosis in
response to a mild dietary fat stimulus [28].

Meanwhile, SELL, also known as CD62L, is a cell surface component that is a member
of a family of adhesion/homing receptors that mediates the initial attachment of leuko-
cytes to activated endothelium, representing the first step of leukocyte migration into
sites of inflammation [29]. Lastly, DPP4 inhibition may reduce monocyte migration to
atherosclerotic plaque in response to TNFα and soluble DPP4. However, inhibition of
DPP4 also exacerbates cardiovascular disease by enhancing sympathetic activation and
angiogenesis [30].

Another of the gene networks identified was around ADIPOQ, known to inhibit
CXCR3 ligand production in macrophages. MSR1 and CCL2 were also upregulated around
ADIPOQ. MSR1 participates in cell adherence, activation, and foam cell formation, pro-
cesses involved in atherosclerosis development and progression [31].

When LDL internalization was evaluated, 15 genes were shared along the time course
evaluated, and nearly half were non-coding. As mentioned above, EIF1AY, XIST, DDX3Y,
KDM5C, and RPS4Y1 have been shown to participate in employing several atherosclerotic
models. Septin 4 is a cytoskeleton component implicated in oxidative stress-induced
endothelial cell injury. A knockdown model has demonstrated that Septin 4 significantly
relieves endothelial apoptosis [32].

Our data add to the evidence that human chromosome Y plays an important role in
cardiovascular disease in a sex-specific manner and therefore provides a novel insight into
potential new therapeutic targets for atherosclerosis. Some of the limitations of the present
study correspond to the fact that it is a descriptive study based on transcripts analyzed
limited to the Clariom D microarray, which contains many genes whose function is still
unknown.

5. Conclusions

During LDL internalization, male monocyte-derived M1 macrophages display more
marked proinflammatory gene expression. In contrast, female M1 macrophages display a
more significant number of markers associated with cell damage.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biomedicines11020490/s1, Figure S1: Evaluation of the purity
of native LDL isolation by high-resolution liquid chromatography. Table S1: Total differential
transcripts between men and women. Microarray validation of the, Figure S2: Q-PCR CD36, FAB,
and IL1β genes.
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