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Abstract: Hepatocellular carcinoma (HCC) is a malignancy marked by heterogeneity. This study
aimed to discover target molecules for potential therapeutic efficacy that may encompass HCC
heterogeneity. In silico analysis using published datasets identified 16 proto-oncogenes as potential
pharmacological targets. We used an immortalized hepatocyte (IHH) and five HCC cell lines under
two subtypes: S1/TGFβ-Wnt-activated (HLE, HLF, and JHH6) and the S2/progenitor subtype
(HepG2 and Huh7). Three treatment modalities, 5 µM 5-Azacytidine, 50 µM Sorafenib, and 20 nM
PD-L1 gene silencing, were evaluated in vitro. The effect of treatments on the proto-oncogene targets
was assessed by gene expression and Western blot analysis. Our results showed that 10/16 targets
were upregulated in HCC cells, where cells belonging to the S2/progenitor subtype had more
upregulated targets compared to the S1/TGFβ-Wnt-activated subtype (81% vs. 62%, respectively).
Among the targets, FGR was consistently down-regulated in the cell lines following the three different
treatments. Sorafenib was effective to down-regulate targets in S2/progenitor subtype while PD-L1
silencing was able to decrease targets in all HCC subtypes, suggesting that this treatment strategy
may comprise cellular heterogeneity. This study strengthens the relevance of liver cancer cellular
heterogeneity in response to cancer therapies.

Keywords: hepatocellular carcinoma; cellular heterogeneity; targeted therapies; experimental models

1. Introduction

The global burden of hepatocellular carcinoma (HCC) contributed to around 900,000 new
cases worldwide in 2020. It ranked as the sixth most common malignancy and third most
common cancer-related death worldwide [1]. Different etiologies such as chronic viral hepatitis
B and C, alcohol abuse, metabolic syndromes, and aflatoxin exposure have been attributed
to causing HCC [2]. This type of malignancy has been described to be molecularly complex
primarily because of the heterogeneity of the tumors [3]. This heterogeneity contributes largely
to the chemoresistant nature of HCC [4]. About two-thirds of HCC cases are diagnosed in
the advanced and metastatic stages [5]. Unfortunately, only a handful of therapies can offer
significant treatment effects to HCC patients in the late-advanced stages.

To date, several tyrosine-kinase inhibitors (TKIs) are recommended for the first-line
treatment of advanced HCC, namely, Sorafenib [6] (approved in 2007) and Lenvatinib [7]
(approved in 2018). With the recent development of immunotherapy for cancer, HCC
has benefited from immune checkpoint inhibitors (ICIs) among patients with or without
prior Sorafenib treatment. Nivolumab [8] and Pembrolizumab [9], antibodies against the
programmed cell death protein (PD-1) are already approved as second-line treatments for
HCC [10]. Combinations between Atezolizumab (anti-PD-L1, a PD-1 ligand) with Cabon-
zantinib, an anti-vascular endothelial growth factor receptor (VEGFR), showed higher
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efficacy [11] prompted their use as first line treatments in advanced HCC [12]. Moreover,
ICIs against PD-L1 used on treatment-naïve patients with unresectable HCC showed an
acceptable low side-effect profile and promising antitumor activity [13]. However, despite
these improvements in HCC therapy, there are only 15% of HCC eligible for potentially
curative treatments [14], which dictates the need to discover other pharmacological or
molecular targets that will provide a better therapeutic potential.

Several clinical and histopathologic evidence describes HCC as a heterogeneous
disease, but there is still a need to provide a coherent molecular explanation for HCC
heterogeneity [15]. Several researchers have utilized -omics approaches to classify HCC,
focusing on their molecular and cellular taxonomies [15–17]. These classifications resulted
in the so-called molecular classes/subtypes that reflect the heterogeneity of the cells. Each
class/group/subtype shows distinct cellular phenotypes, (dis)activations of molecular
pathways, differentiation, and sensitivities to given treatments. This study, therefore, aimed
to look at potential targets for HCC treatment, taking advantage of these reported molecular
classifications together with bioinformatics tools. The exploration of the validity of pro-
posed targets for the treatment of HCC was assessed in experimental models comprising
different cellular classifications.

2. Materials and Methods
2.1. Selection of Targets

We looked into published datasets of HCC transcriptomic profiles as presented by
Boyault et al., and Hoshida et al. [15,16]. The two publications proposed groups and sub-
types for HCC based on the similarity of cellular and molecular signatures of tumors. Using
these datasets, a protein–protein interaction (PPI) analysis was done using Cytoscape [18]
to select common proteins from the PPI network. The gradual screening to select candidate
targets was done by excluding housekeeping genes and focusing on genes that were in-
volved in cancer promotion (proto-oncogenes). The clinical association and significance
of each proto-oncogene to LIHC (liver hepatocellular carcinoma) was plotted into data
from The Cancer Genome Atlas (TCGA) and the Genotype Tissue Expression (GTEx) por-
tals [19,20], and visualized by the Gene Expression Profiling Interactive Analysis (GEPIA)
online tool [21]. Figure 1 shows a diagram of the in silico strategy used in this study, while
the generated PPI networks from datasets are shown in Figure S1 of Supplemental Data.

2.2. Classification and Characterization of In Vitro Models

We selected representative cell lines that correspond to the different subtypes of HCC
tumors. Six cell lines, which consisted of 1 immortalized hepatocyte and 5 HCC cell lines,
were used for in vitro analysis. The HCC cell lines HLE, HLF, and JHH6 were classified
under the subtype 1/transforming growth factor beta–Wingless related integration site
(S1/TGFβ-Wnt) activated subtype, and HepG2 and Huh7 were classified as subtype 2
(S2/progenitor subtype) [3]. All cell lines were grown in their respective culture media
supplemented with 10% (v/v) fetal bovine serum (FBS), 1% L-glutamine, and 1% antibiotics.
Dulbecco’s Modified Eagle’s Medium (DMEM)-F12 medium was used for the immortalized
hepatocytes IHH with additional supplements of 1 µM dexamethasone, and 5 µg/mL
insulin. DMEM medium (high glucose) was used for HCC cells, except for JHH6 which
was cultured in Williams’ E medium. Cells were maintained at 37 ◦C in a humidified 5%
CO2 incubator. Routine cell expansion was performed using 0.05% trypsin detachment
when cells achieved 80% cell confluency. Flow cytometry analysis was used to characterize
the cell populations according to groups and subtypes that have been reported in our
previous study [22].
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targets for HCC therapy.

2.3. Evaluation of Targeted Therapies in In Vitro Models

For in vitro treatment, three targeted therapies were conducted, consisting of the
following: 5-Azacytidine (5-AZA), an epigenetic therapy acting as a DNA methyltransferase
(DNMT) inhibitor; Sorafenib (SOR), a tyrosine kinase inhibitor; and PD-L1 mRNA silencing
by small interference RNA (siR-PD-L1).

Each cell line was seeded at 25,000 cells/cm2, except for JHH6 at 12,500 cells/cm2.
Cytotoxicity experiments were performed to define the lethal concentration (LC50) of
5-AZA and SOR. For the evaluation of 5-AZA (A2385, Sigma-Aldrich, St. Louis, MO, USA),
each cell line was treated with concentrations ranging from 2 µM to 5 mM, as reported
in our previous work defining the non-toxic concentration of 5-AZA [22], while for the
evaluation of SOR (Nexavar®, Bayer, Leverkusen, Germany), the cell lines were exposed to
concentrations from 1 to 80 uM. Cell viability was evaluated after 24 h of drug exposure
using the 3(4,5-dimethyl thiazolyl-2)-2,5 diphenyltetrazolium assay (MTT, Sigma Aldrich)
to determine the LC50 of the drug to each cell line.

Gene-silencing experiments for PD-L1 were performed using 20 nM of siRNA PD-L1
(Hs siRNA against CD274 (Thermo Fisher, Waltham, MA, USA). The siRNAs were trans-
fected into cells using siLentFectTM Lipid Reagent (170–3362, Bio-Rad, Hercules, CA, USA)
according to the manufacturer’s instructions. Control siRNA (sc-37007, Santa Cruz Biotech,
Dallas, TX, USA) was included in each assay. Cells were exposed to siRNA for 48 h, fol-
lowed by cell collection for RNA and total protein extraction prior to PD-L1 gene expression
and Western blot analysis.

2.4. Collection of Total RNA and Protein from Treated Cells

Following all treatments, all cells were washed twice with cold phosphate-buffered
saline (PBS) solution and then suspended in at least 500 µL of Tri Reagent® (Sigma-Aldrich)
for RNA and protein extraction according to the manufacturer’s instruction. RNA was
quantified at wavelength 260 nm in a spectrophotometer (Beckman Coulter, Brea, CA,
USA) and RNA purity was evaluated according the Minimum Information for Publication
of Quantitative Real-Time PCR Experiments (MIQE) guidelines by measuring the ratio
A260/A280 with an appropriate purity value between 1.8 and 2.0 [23]. The integrity of
RNA was assessed on standard 1% agarose/formaldehyde gel. Protein concentration was
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determined by the bicinchoninic acid protein assay (BCA). At least three replicates were
evaluated for each cell lines and for each treatments.

2.5. Quantitative Real-Time PCR (RT-qPCR)

One microgram of purified RNA was subjected to cDNA synthesis using the High
Capacity cDNA Reverse Transcription Kits (Applied Biosystems), according to the manufac-
turer’s protocol. Real-time PCR was performed in CFX 9600 real-time PCR system (Bio-Rad)
according to the PowerUp SYBR Green mix protocol (Applied Biosystems, Waltham, MA,
USA). Briefly, gene amplification was carried out in a 15 µL PCR reaction volume containing
1X PowerUp SYBR Green mix, 250 nM of gene-specific forward and reverse primers and
25 ng cDNA. The primer sequences to analyze the 16 gene targets and the housekeeping
β-actin gene used in this study are listed in Table 1.

Table 1. List of primers.

Target Sequence F (5′ → 3′) Sequence R (5′ → 3′) Ref.

YAP1 CAATAGCTCAGATCCTTTCCT TAGTATCACCTGTATCCATCTC [24]
AURKA GAGAATTGTGCTACTTATACTG GGTACTAGGAAGGTTATTGC ts
FGR GGCCCGGCCTGCAT TTGATGGCCTGAGAGGAGAAG [25]
EGFR AGGCACGAGTAACAAGCTCAC ATGAGGGACATAACCAGCCACC [26]
MET, HGFR GGGCACCGAAAGATAAACCTCT GACATTCTGGATGGGTGTTTCC [27]
YES1 ACAGCAAGACAAGGTGCAAA GTAAACCGACCATACAGTGCAG [28]
PLZF, ZBTB16 TCACATACAGGCGACCACC CTTGAGGCTGAACTTCTTGC [29]
DCUN1D1 CTGGAGGACACCAACATG TTCACTAGATTGTGTGAAGATC [30]
ASV, SRC1 CGCTGGCCGGTGGAGTG CCAGCTTGCGGATCTTGTAGT [31]
PRKCA GTGGCAAAGGAGCAGAGAAC TGTAAGATGGGGTGCACAAA [32]
MDM2 TTATTAAAGTCTGTTGGTGCA TGAAGGTTTCTCTTCCTGAAG [33]
FOS CCGGGGATAGCCTCTCTTAC GTGGGAATGAAGTTGGCACT [34]
CBL TGCCAAAACTGCCACCTGGGG GGGCTGCGGCCAAATTCCCT [35]
FYN GGACATGGCAGCACAGGTG TTTGCTGATCGCAGATCTCTATG [36]
JUN AAGTAAGAGTGCGGGAGGCA3 GGGCATCGTCATAGAAGGTCG [37]
EPS15 CCTGTTGCAGATTTCTCTG TCATCTTGAAGATCCTGAAC [38]
ACTB CGCCGCCAGCTCACCATG CACGATGGAGGGGAAGACGG ts
PD-L1 AAAGTCAATGCCCCATACAA ACATGTCAGTTCATGTTCAGAG [39]

ts: this study.

2.6. Western Blot Analysis

Protein expressions from treated cells were evaluated using Western blot (WB) analysis.
A total of 10 µg of protein lysates was loaded onto 10% polyacrylamide sodium dodecyl–
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and then wet-transferred onto
a polyvinylidene difluoride (PVDF) membrane. Following blocking, membranes were
washed and incubated with primary antibodies against c-Src (recognizing c-Fgr) (sc-8056,
Santa Cruz Biotech) for 24 h. Anti-actin (A2066, Sigma-Aldrich) was used as a housekeeping
protein. Secondary antibodies were anti-mouse IgG HRP (Dako-p0260) and anti-rabbit
IgG HRP (Dako-p0448), depending on the first antibody. Membranes were washed and
then exposed to ECL Plus WB detection system solutions (ECL Plus Western Blotting
Detection Reagents, GE-Healthcare Bio-Sciences) to obtain peroxidase reaction. The blots
were visualized using a C-Digit blot scanner and analyzed using Image Studio™ Vers. 5.2
Acquisition software (LI-COR Biosciences). Protein relative quantification was performed
after the densitometric analysis of bands vs. actin in each sample.

2.7. Statistical Analysis

Statistical significance was calculated using software GraphPad Prism version 8.0
(GraphPad Software, San Diego, CA, USA) mRNA and protein expression data are pre-
sented as mean ± SD/SEM. The difference between groups was calculated using the t-test.
To determine statistical significance, the p-value was set to 0.05 and reported as * p < 0.05,
** p < 0.01, and *** p < 0.001.
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3. Results
3.1. Identification of Candidate Targets

We employed an in silico strategy to consider the innate heterogeneity of HCC by
gradual filtering, to discover potential drug targets that may comprise cellular heterogene-
ity. From the PPI networks (Figure S1), we identified 982 and 3659 common proteins from
Hoshida and Boyault extended classifications, respectively. Gradual selection from those
proteins, by excluding housekeeping genes and including proto-oncogenes, resulted in
26 proto-oncogene targets. From those targets, following GEPIA analysis on their clin-
ical distributions and associations according to TCGA and GTEx datasets (comprising
369 liver cancer tissues vs. 160 normal tissues), we further narrowed down the targets to
16 candidates as shown in Table 2.

Table 2. List of targets and their expression in LIHC.

UNIPROT ID Protein Name Gene Gene Name * Gene Expression

P46937 Transcriptional coactivator YAP1 YAP1 yes-associated protein 1 no difference
O14965 Aurora kinase A AURKA aurora kinase A upregulated
P09769 Tyrosine-protein kinase Fgr FGR FGR proto-oncogene down-regulated
P00533 Epidermal growth factor receptor EGFR epidermal growth factor receptor no difference

P08581 Hepatocyte growth factor receptor HGFR, MET MET proto-oncogene, receptor
tyrosine kinase upregulated

P07947 Tyrosine-protein kinase Yes YES1 YES proto-oncogene 1, Src family
tyrosine kinase upregulated

Q05516 Zinc finger and BTB
domain containing 16 PLZF, ZBTB16 zinc finger and BTB domain

containing 16 down-regulated

Q96GG9 DCN1-like protein 1 DCUN1D1 defective in cullin neddylation 1
domain containing 1 upregulated

P12931 Proto-oncogene tyrosine-protein
kinase Src ASV, SRC1 SRC proto-oncogene,

non-receptor tyrosine kinase upregulated

P17252 Protein kinase C alpha type PRKCA protein kinase C alpha upregulated
Q00987 E3 ubiquitin-protein ligase Mdm2 MDM2 MDM2 proto-oncogene upregulated

P01100 Protein c-Fos FOS Fos proto-oncogene, AP-1
transcription factor subunit down-regulated

P22681 E3 ubiquitin-protein ligase CBL CBL Cbl proto-oncogene upregulated

P06241 Tyrosine-protein kinase Fyn FYN FYN proto-oncogene, Src family
tyrosine kinase down-regulated

P05412 Transcription factor Jun JUN Jun proto-oncogene, AP-1
transcription factor subunit upregulated

P42566 Epidermal growth factor receptor
substrate 15 EPS15 epidermal growth factor

receptor pathway substrate 15 upregulated

* Data from GEPIA—Gene Expression Profiling Interactive Analysis (GEPIA); TCGA Data LIHC = 369 vs. TCGA
and GTex Data Normal = 160); LIHC—Liver hepatocellular carcinoma.

3.2. Expression of Targets in the Cell Populations

We then analyzed the baseline expression levels of the 16 targets (Table 2) in the
in vitro models, comparing their expressions in HCC cells to those in IHH. We observed
that 10 out of the 16 (62%) genes were up-regulated and 6 were down-regulated in the HCC
cell lines (Figure 2A). Further comparison of gene expressions between the two HCC cell
classifications showed that 13 out of the 16 proto-oncogene targets (81%) were up-regulated
in the S2/progenitor subtype, as compared to 10/16 (62%) in the S1/TGFβ-Wnt subtype
(Figure 2B).

3.3. Effect of Targeted Treatments on Different Cell Populations

Previously, we evaluated the experimental models used in this study using cancer
stem cells (CSC) markers to confirm the heterogeneity of the cells [22]. Results showed the
presence of epithelial cell adhesion molecule (EpCAM)-positive cells on the S2/progenitor
subtype cells (HepG2 and Huh7).

We used three different treatment strategies in the different HCC cell populations. In
our previous study, LC50 of 128 µM for HLE, 33 µM for HLF, 41 µM for IHH, 16 µM for
Huh7, 14 µM for HepG2, and 5 µM for JHH6 were determined. We chose the concentration
of 5 µM as a non-lethal concentration for 5-AZA epigenetic therapy. This concentration was
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able to inhibit the methylation activities of DNMT1 allowing the reversal of transcriptional
silencing, as seen in our previous data [22].

For the SOR, the following LC50 values shown in Figure 3A were calculated after
24 h of exposure of the cells to the drug. Cells belonging to the S2/progenitor subtype
appear to be more sensitive to SOR as compared to cells belonging to S1/TGFβ-Wnt
subtype. Noticeable morphological changes were observed in HLE, HLF, and JHH6 cells
after treatment with 50 µM SOR (Figure 3B).

PD-L1 silencing and gene knockdown by siRNA resulted in a decrease of mRNA
expression in all cell populations after 48 h of exposure to 20 nM of siR-PD-L1. Following
RNA silencing, the extent of PD-L1 mRNA reduction was 70% and 64% for Huh7 and
HepG2, respectively (p < 0.05). Higher extents of down-regulation were noticed in the
S1/TGFβ-Wnt subtype cells, for 70%, 82%, and 91% for HLE, HLF, and JHH6, respectively
(p < 0.05). PD-L1 down-regulation was also noticed for IHH cells for around 80% (p < 0.001)
(Figure 3C).
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of targets showing the upregulated and the down-regulated proto-oncogenes. (B) Distribution of
relative expression of candidate targets between the S1 and S2 cell populations. Data are presented
as the mean expression values (log2) from three independent samples of each cell lines. Statistical
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upon 24 h treatment with 1 µM to 80 µM of SOR. Dashed lines show the value of LC50. (B) Cell
morphology after 24 h treatment of 50 µM of SOR. (C) Down-regulation of PD-L1 mRNA expression
after 48 h of 20 nM PD-L1 silencing. Graphs presented as mean ± SD calculated from at least three
independent experiments. Statistical analysis: * p < 0.05, ** p < 0.01, *** p < 0.001 using Student’s t-test
(vs. mock) in each cell line. SOR: Sorafenib, siR-PD-L1: PD-L1 silencing.

3.4. Effect of Treatments on the Dysregulations of Targets

From the results of the cytotoxicity (5-AZA and SOR) and silencing experiments
(siR-PD-L1), we further evaluated the dysregulations of the 16 proto-oncogene targets in
Table 2 in the different cell populations. For the concentration of the treatments, concen-
trations of 5 µM [22] and 50 µM were selected for 5-AZA and SOR, respectively. For the
silencing, the treatment with 20 nM of siRPD-L1 was able to significantly reduce PD-L1
mRNA expression in all cell lines investigated. We further evaluated the effect of these
treatments on the target proto-oncogenes.

Among the three treatment modalities, 5 µM of 5-AZA did not show significant down-
regulation effects on proto-oncogene targets on the different cells, except for FGR and PLZF.
For SOR treatment, there were down-regulation effects in proto-oncogenes FGR, PLZF, and
FOS. Interestingly, we also observed that the 50 µM SOR treatment down-regulated proto-
oncogene mRNA expression mostly in the cells belonging to the S2/progenitor subtype.

Notably, for the immune-targeting treatment results, using 20 nM siR-PD-L1 showed
effective down-regulation in almost all proto-oncogenes in all cell lines evaluated. Figure 4
shows a representative heat map indicating the dysregulated mRNA expression of the
proto-oncogenes. Exact values of the mean relative mRNA expression with corresponding
statistical significance are shown in Supplemental Data.
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3.5. Dysregulation Effects of Various Treatments on FGR Protein Expression

For this initial analysis, we reported the effect of three treatment modalities on
the expressions of FGR/Src, as a potential target. This molecule was down-regulated
in almost all cell lines investigated after treatment with 5-AZA, SOR, and siR-PD-L1
(Figure 4 and Figure S2 of Supplemental Data).

FGR mRNA was down-regulated in at least three cell lines following all treatments.
5-AZA was able to reduce FGR mRNA expression, ranging between 52% and 99% (p < 0.05)
in four cell lines. SOR reduced its expression, ranging between 10% and 94% in three cell
lines. Notably, sir-PD-L1-treated cells showed a significant reduction of FGR expression
in all six cells lines, ranging between 51% and 89% (p < 0.001 for IHH, HLF, JHH6, and
HepG2; p < 0.05 for HLE and Huh7).

The FGR mRNA expressions were then confirmed by Western Blot analysis. As shown
in Figure 5, congruent results were noticed for both mRNA and protein expressions of Src
family (including FGR). The antibody used was able to detect the protein expression of
c-Src, c-Fgr, and other members of the Src family (50 kDa). With the exception of PD-L1-
silenced HepG2 cells, the three treatment modalities reduced the c-Src protein expressions
in almost all cell lines investigated.
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4. Discussion

Treatment options for patients with advanced HCC are limited. At present, the
available cancer therapies still offer modest effects on cancer treatment and patient survival.
Besides a rather low efficacy, patients may also develop drug resistance. Furthermore,
HCC is widely known as a vast heterogeneous tumor. Innate cellular heterogeneity of
HCC largely contributes to the success of treatments. Moreover, it had been reported that
intratumoral cellular and genetic differences exist from a slice of neoplastic tissue which in
turn can influence the sensitivity to treatments [40].

Various attempts have been made to categorize HCC heterogenous tumors and classify
them into groups that share common cellular and molecular profiles. Works of Hoshida
et al., looked into clinical parameters such as tumor size, the extent of cellular differenti-
ation, and serum α-fetoprotein levels and were able to suggest a robust subclassification
of HCC. Their analysis of the signatures proposed three subclasses: (1) S1, marked by
aberrant activation of the WNT signaling pathway; (2) S2, reflected by significant EpCAM
positivity and also MYC and AKT activation; (3) S3, tumors classified by hepatocyte differ-
entiation [15]. In parallel, Boyault et al., investigated transcriptome–genotype–phenotype
profiles of HCC tumors and proposed a classification consisting of six subgroups (G1 to
G6) based on their shared clinical and genetic profiles [16]. With these existing subclasses,
Caruso et al.’s work evaluated liver cancer in vitro models to understand the diversity of
HCC tumors and concluded that the experimental in vitro models could be reliable and
viable tools to approach challenges in HCC biomarker discovery and drug response [3].

Utilizing these sets of information on HCC -omics heterogeneity, we carried out a
strategy to identify potential putative markers for HCC treatment. Focusing our interest on
cancer-promoting genes that are shared by the subclasses and subgroups, we evaluated, at
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the transcriptome level, 16 potential targets and their responses to three different treatment
modalities on five different HCC cells.

Our study’s data confirmed the differences between subtypes of HCC, as shown from
the profile of cancer stemness markers. From baseline mRNA expression analysis of the
proto-oncogene targets on the different cell lines, our results showed that the S2/progenitor
subtype displays more upregulated proto-oncogenes compared to S1/TGFβ-Wnt. This
stratifies the existing differences between the two subtypes.

Upon further analysis, more prominent up-regulations in proto-oncogenes were noted,
such as, ASV, AURKA, and MDM2 in HCC cells compared to immortalized hepatocytes
(Figure 2). It should be noticed that the activation, mutation, or overexpression of these
genes had been reported to be involved in hepatocarcinogenesis [41–43]. We also observed
proto-oncogenes that were down-regulated in the HCC cells, such as PLZF, YAP1, and FGR.
Several publications had reported decreased expression of PLZF in HCC patients [29,44].

We then evaluated the above targets in in vitro experimental models using three
treatment modalities. For epigenetic therapy using 5-AZA, the significant down-regulations
were only noticed for FGR in three HCC cell lines. Moreover, down-regulation of PLZF
was noticed in three cell lines, IHH, HLE and HepG2, after 5-AZA treatment, with a
significant reduction only in the HepG2 cell line. Previously, it was reported that there
was no association between promoter DNA methylation and PLZF gene expression in
liver cancer [29]. However, in contrast in pancreatic cancer, the down-regulation of PLZF
was associated with promoter DNA methylation of PLZF [45]. Since we showed the effect
of DNA methylation inhibition on the gene expression of PLZF, our data might indicate
an association between DNMT1 and PLZF, at least in several HCC cell lines. However,
PLZF regulation might be influenced by other transcriptional silencing mechanisms, not
only DNA methylation. More focused studies could be explored to understand promoter
methylation of target proto-oncogenes to HCC.

Regarding SOR treatment, our study showed significant proto-oncogene down-regulations,
mostly noticed in cells belonging to the S2/progenitor subtype HepG2 and Huh7. This could
suggest that the response to Sorafenib could be cellular/molecular subtype-directed. Particular
molecular predictors, such as EpCAM and tuberous sclerosis complex-2 (TSC2), present in
specific HCC subtypes, dictate the response to Sorafenib [46]. We had previously reviewed that
cellular response to Sorafenib was affected by various factors such as genetic variants and differ-
ences in dysregulated molecules in tumor cells, eventually contributing to chemoresistance [4].

Immunotherapy is another targeted therapy that we evaluated in this study. In clinical
practice, combination between Atezolizumab, an anti-PD-L1, and Cabonzantinib (anti-VEGFR)
had shown potential as first-line treatment [12]. PD-L1, expressed primarily in cancer cells,
was related to HCC prognosis [47,48]. In this study, we directly targeted the PD-L1 gene in
cancer cells by silencing, which significantly reduced PD-L1 expression. In parallel, PD-L1
decrease was accompanied by the down-regulation of almost all investigated targets across all
hepatic cells including for both HCC cell subtypes. This demonstrated an effective advantage
of immune checkpoint (such as PD-L1) regulation compared to SOR or 5-AZA in terms of
down-regulating cancer-promoting genes, at least in our datasets. Our data showed that this
type of immune targeting was not dependent on cellular and molecular subtypes—which can
be further utilized to overcome cancer heterogeneity.

To confirm the transcriptomic data, the protein expression of FGR/Src was measured
by Western blot. The overexpression of FGR was previously reported to be significantly
associated with poor prognosis in HCC [49]. As shown in Figure 5, the results of mRNA
expression were in line with protein expression among all treatments and across various
cell lines. Our GEPIA analysis (Figure S3 of Supplemental Data) showed that even though
FGR expression was significantly down-regulated in HCC compared to normal tissues, low
FGR expression might indicate a better survival of the patients [21], also supported by our
data (Figure 2).

The FGR data presented in this study is an initial data showing the relevance of the
techniques to discover the potential target(s) in heterogeneous HCC cells. Further analysis
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of other significant targets (e.g., ASV, AURKA, MDM2, PLZF, FOS, etc.) will be equally
important to search for the most prominent markers that can influence the heterogeneity of
HCC cells.

5. Conclusions

This study strengthens the relevance of HCC cellular heterogeneity in response to
therapies and the identification of the relevant proto-oncogenes useful as new targets.
Here we demonstrated that immune-targeted therapy by gene silencing demonstrates a
treatment advantage in overcoming cellular heterogeneity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines11020342/s1, Figure S1. Protein-protein interaction
(PPI) analysis of the different HCC subtypes and groups from published datasets. Figure S2. Mean
mRNA expression data from at least three independent replicates showing the dysregulation of proto-
oncogene upon treatment from the cell lines investigated (including result of statistical analysis).
Figure S3. The relevance of FGR in clinical samples of LIHC (gene expression distribution (normal vs
LIHC) and overall survival data from GEPIA web tool).
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