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Abstract: Zika virus (ZIKV) has emerged as a significant public health threat, reaching pandemic
levels in 2016. Human infection with ZIKV can manifest as either asymptomatic or as an acute
illness characterized by symptoms such as fever and headache. Moreover, it has been associated with
severe neurological complications in adults, including Guillain–Barre syndrome, and devastating
fetal abnormalities, like microcephaly. The primary mode of transmission is through Aedes spp.
mosquitoes, and with half of the world’s population residing in regions where Aedes aegypti, the
principal vector, thrives, the reemergence of ZIKV remains a concern. This comprehensive review
provides insights into the pathogenesis of ZIKV and highlights the key cellular pathways activated
upon ZIKV infection. Additionally, we explore the potential of utilizing microRNAs (miRNAs) and
phytocompounds as promising strategies to combat ZIKV infection.
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1. Introduction

Zika virus (ZIKV) is an emerging mosquito-borne virus. It was first identified in
Uganda in 1947, where it was responsible for sporadic human cases; in 2007, the first
outbreak occurred on Yap Island, with nearly 75% of the population being infected with
ZIKV [1]. During 2013 and 2014, a second epidemic was reported in French Polynesia and
the Pacific Islands [2]. However, it was not until 2015 that ZIKV transmission reached
pandemic levels, arriving on the American continent. The first reported human case of
ZIKV infection in the Americas was in Brazil in May 2015 [2]. Subsequently, different
countries reported an increase in the incidence of infection, followed by an unexpected
reduction in Zika cases since 2017. To date, a total of 89 countries and territories have
reported the circulation of this mosquito-borne virus; however, surveillance remains limited
globally [3].

Zika virus (ZIKV) and other arboviruses, such as African swine fever virus, Crimean–
Congo hemorrhagic fever virus, dengue virus (DENV), and West Nile virus (WNV), are
primarily transmitted via arthropods [4,5]. Notably, these viruses share a common charac-
teristic of potential sexual transmission [6], with ZIKV being the most extensively studied
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in this regard. Furthermore, it has been documented that ZIKV can also be transmitted
through other means, including blood transfusion, saliva, breast milk [7], and vertically
from mother to fetus [8].

Of particular interest, ZIKV infection and vertical transmission during pregnancy
were associated, through case reports, with microcephaly [9], leading the World Health
Organization to declare a Public Health Emergency of International Concern in February
2016 [8].

2. Clinical Manifestations of ZIKV Infection

Most human infections with ZIKV are asymptomatic (50–80%) [1]. However, symp-
tomatic ZIKV infection has an incubation period of 3 to 14 days and is characterized as
a mild illness, with a duration of up to 1 week [10]. Clinical presentations include an
acute febrile illness that is frequently accompanied by headache, joint pain, muscle pain,
conjunctivitis, and maculopapular rash, often leading to the confusion of the symptoms
with other arboviral infections like dengue or chikungunya [1].

The most severe manifestations of ZIKV infection include Guillain–Barré syndrome
(GBS) in adults and congenital Zika virus syndrome (CZS) in newborns [2]. GBS is a severe
acute neuropathy characterized by progressive muscle weakness and diminished deep ten-
don reflexes in weakened limbs, often following a viral or bacterial infection. The highest
incidence of GBS following ZIKV infection has been reported through case reports [11,12]
and is characterized by lower-extremity weakness, pain, autonomic dysfunction, and facial
palsy [13]. A case-control study in French Polynesia reported that 0.25 per 1000 individuals
with ZIKV infection develop GBS [14]. However, CZS occurs in newborns exposed to
ZIKV during pregnancy. Some characteristics of this syndrome include microcephaly,
parenchymal or cerebellar calcifications, ventriculomegaly, central nervous system hypopla-
sia or atrophy, abnormal visual function, and hearing deficits [15,16]. A prospective study
collecting data showed that newborns exposed to ZIKV during pregnancy presented some
abnormalities associated with CZS [17].

3. Microcephaly Associated with ZIKV

Microcephaly is an unusual condition wherein a baby is born with an abnormally
small head, a result of the depletion of the radial glia population, either by cell death, cell
cycle arrest, or premature differentiation [18]. Prior to ZIKV infection, the potential causes
of microcephaly included infections (e.g., rubella, toxoplasmosis, or cytomegalovirus),
maternal malnutrition, drug abuse, genetic factors, or environmental exposures during
pregnancy [19]. However, the increase in the number of microcephaly cases and other birth
defects reported in northeast Brazil during the first outbreak of ZIKV in South America in
October 2015 placed ZIKV infection as a possible cause of microcephaly [20]. Initially, the
rate of microcephaly was 48 per 10,000 births in the northeast region of Brazil. Although it
has not been repeated in other Brazilian states (5.5–14.5 per 10,000 births in the southeast
and center-west, respectively) or in other countries where ZIKV has spread, the peak was
24 times higher than the average occurrence of microcephaly [21,22]. Recently, the U. S.
territories and freely associated states collected data from pregnant women with ZIKV
infection during pregnancy, and showed that some live-born children had CZS [23].

The early childhood development of children born with congenital microcephaly
who are diagnosed with ZIKV infection has been well characterized [24]. The growth and
development of such children, between birth and 26 months, have been evaluated, revealing
feeding problems, sleep difficulties, severe motor deterioration, cerebral palsy, vision and
hearing abnormalities, and seizures [25,26], suggesting that virus infection causes severe
neurological impairments during fetal development and in the first two years of life of
infected individuals. However, larger studies are needed to understand the full extent of
neurological and neuropsychological implications. Although ZIKV infection in pregnant
mothers has been widely associated with an increased incidence of microcephaly [20,27], the
mechanisms by which the virus causes microcephaly are poorly understood. Nonetheless,
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several studies have provided some molecular evidence that could explain the association
between ZIKV infection and microcephaly.

4. ZIKV Interactions with the Host Cell

ZIKV is an enveloped virus that belongs to the Flaviviridae family and the genus
Flavivirus. The ZIKV genome consists of a single-stranded positive RNA of approximately
11 Kb in length, flanked by two untranslated regions with a “cap”-type structure at the
5′ end and a single open reading frame [28]. This genome codes for a polyprotein that is
processed via viral and cellular proteases into nonstructural proteins (NS1, NS2A, NS2B,
NS3, NS4A, NS4B, and NS5) and structural proteins (prM, C, and E) [28]. Both nonstructural
and structural proteins play critical roles in the replication of flaviviruses, the assembly
of new viruses, and the evasion of the immune response [29]. ZIKV isolates have been
classified into the ancestral African lineage and the emerging Asian lineage [30]. The strains
circulating in the Americas belong to the Asian lineage [30–33].

4.1. ZIKV Dissemination Strategy

The strategy for ZIKV dissemination begins in skin fibroblasts, epidermal keratinocytes,
and dendritic cells near the site of inoculation, where the virus initially replicates. Subse-
quently, dendritic cells migrate to lymph nodes and the bloodstream, facilitating the spread
of the virus [34,35]. Notably, ZIKV exhibits broad tissue and cell tropism, infecting neural
progenitor cells, mature neurons, cord blood cells, several placental cell types, and fetal
brain, eye, spleen, and liver cells [36].

ZIKV persists in the genitourinary tract in infected patients (semen, urine, and
vaginal secretions) over extended periods and is not commonly observed in flavivirus
infections [37,38]. Further studies are required to better understand the interactions of
ZIKV with reproductive tissues, how persistent infection modifies female reproductive
functions, and the risks of enhancing non-mosquito transmissions.

4.2. ZIKV Entry

The cell biology of ZIKV entry remains relatively unexplored. ZIKV’s ability to infect
cells is related to the exposure of negatively charged lipids (phosphatidylserine) on the
viral envelope surface and the recognition of the viral E protein by host receptors [27].
In this regard, interactions of the viral E protein with the neural cell adhesion molecule
(NCAM1) have been described as a potential ZIKV receptor in the infection of astrocytoma
cells (U-251 MG) [39]. Additionally, modifications in the viral E protein contribute to better
recognition by host receptors. For instance, E glycosylation facilitates the infection of cells
expressing C-type lectin dendritic-cell-specific intercellular adhesion molecule-3-grabbing
nonintegrin (DC-SIGN, also named CD209), thus contributing to ZIKV pathogenesis [40].
Furthermore, the polyubiquitination of the E protein via the E3-ubiquitin ligase TRIM7
enhances virus attachment and entry into cells expressing the T-cell immunoglobulin mucin
receptor 1 (TIM1, also named HAVCR1) [41].

Furthermore, a ZIKV entry mechanism termed “apoptotic mimicry” has been de-
scribed, where phosphatidylserine found in the viral membrane is recognized by trans-
membrane receptors of TAM (TYRO3, AXL, and MERTK)—a tyrosine kinase family—and
TIM1. These receptors are present in phagocytic cells and differentiate phosphatidylser-
ine from apoptotic cells [42,43]. T-cell immunoglobulin and mucin 3 (TIM3) have been
proposed as entry receptors for ZIKV in monocyte-derived dendritic cells (mDCs) [44].
Additionally, tyrosine-protein kinase receptor 3 (TYRO3), CD209, and TIM1 contribute to
ZIKV entry in human dermal fibroblasts, epidermal keratinocytes, and immature dendritic
cells [35].

In placental cell cultures and chorionic villi explants, susceptibility to ZIKV infection
is mediated via AXL, TYRO3, and TIM1. In this model, AXL and TYRO3 expression
changes according to cell type, differentiation state, and gestational age, while TIM1
expression remains consistent. This suggests that TIM1 plays a critical role at the uterus-
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placenta interface and could be a target for the prevention of ZIKV infection [42]. In human
pluripotent stem cells (hPSC)-derived microglia, ZIKV infection induced the differential
expression of AXL, TYRO3, MERKT, and TIM [45]. Knockout mice for Mertk and Tyro3
were still susceptible to ZIKV and exhibited similar pathogenesis, viral replication, and
clinical manifestations compared to WT mice [46]. Nevertheless, the expression patterns of
these receptors are limited compared to AXL [47].

AXL is a phosphatidylserine receptor, a member of the TAM family of receptor tyro-
sine kinases, composed of extracellular, transmembrane, and intracellular domains. Its
extracellular structure includes two immunoglobulin (Ig)-like repeats and two fibronectin
type III (Fn III)-like repeats, which resemble neural cell adhesion molecules. The Ig motifs
are involved in the binding of AXL with its ligand Growth Arrest-Specific Protein 6 (Gas6).
Upon ligand binding, the receptor dimerizes, undergoes autophosphorylation on tyrosine
residues within its intracellular domain, and subsequently recruits downstream signal-
ing effectors [48]. AXL plays roles in several signaling pathways, including proliferation,
apoptosis inhibition, and inflammation modulation [49].

Studies using neutralizing antibodies or small interfering RNA targeting AXL have
significantly reduced ZIKV infection in human skin fibroblasts, proposing AXL as a poten-
tial entry receptor for ZIKV [35]. In glial cells, AXL is necessary for ZIKV infection. The
phosphatidylserine is recognized by GAS6, which serves as a bridge for the interaction be-
tween ZIKV and AXL, thereby promoting viral entry. Following this, ZIKV is endocytosed
via clathrin-coated vesicles, which are dependent on dynamin-2 function [50]. Also, AXL is
widely expressed during neurogenesis, being found in endothelial cells, radial glial cells
(RGCs), astrocytes, microglia, and neural stem cells (NSCs) in the human cerebral cortex
and human progenitor cells of the fetal retina at 18 gestational weeks (GWSs) [47]. AXL
expression becomes denser in microglia and RGC at more advanced stages of development
(26 GWS). AXL expression is also conserved in the embryonic cerebral cortex of mice and
ferrets, as well as in hPSC-derived cerebral organoids [50]. In line with AXL expression, the
retinal cell tropism of ZIKV coincides with the AXL-specific expression pattern in C57BL/6
ZIKV-infected embryos [51], and the inhibition of AXL expression suppresses ZIKV infec-
tion in human microglia and astrocytes [50]. However, the genetic ablation of AXL using
CRISPR-Cas9 in neural precursor cells (NPCs) and cerebral organoids was insufficient in
inhibiting ZIKV infection [52]. Knockout mice for Axl infected with ZIKV exhibited similar
viral loads, clinical manifestations, viral distributions, and survival rates compared to WT
mice [46,53], suggesting that AXL may not be an indispensable factor for ZIKV infection or
that ZIKV infection might involve multiple receptors. Furthermore, the identification of
ZIKV interactions with proteins of the caveolar pathway for endocytosis [39] suggests that
alternative entry routes into cells may exist. These findings collectively imply that ZIKV
entry into cells likely involves multiple receptors, and the differential expression of these
receptors is of significance. While not all of these receptors have been discovered, further
research is warranted.

4.3. Antiviral Response against ZIKV Infection

Following ZIKV entry, the viral genome is recognized in the cytosol via two pattern
recognition receptors (PRRs): melanoma-differentiation-associated gene 5 (MDA5) and
retinoic-acid-inducible gene 1 (RIG-I). These PRRs can identify viral double-stranded RNA
(dsRNA). Subsequently, RIG-I or MDA5 interacts with the mitochondrial antiviral adaptor
protein (MAVS) [54]. This interaction recruits multiple signaling components to MAVS,
leading to the activation of TANK binding kinase 1 (TBK1), which phosphorylates interferon
regulatory factor 3 (IRF3). Phosphorylated IRF3 translocates to the nucleus, initiating the
transcription and production of interferon (IFN) α/β (IFN-I) [55]. IFN-I is recognized on
the cell surface via IFNα/β receptors (IFNAR), which are associated with Janus kinases
(JAKs). These kinases activate the signal transducer and activator of transcription (STAT)
proteins that translocate to the nucleus and induce the transcription of interferon stimulated
genes (ISGs), which play crucial roles in antiviral defense [56].
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During mammalian pregnancy, primary human trophoblasts, which are the barrier
cells of the placenta, release IFNλ (IFN-III) to protect both trophoblast and non-trophoblast
cells from ZIKV infection [57]. IFN-I and IFN-III treatments have been suggested as thera-
peutic strategies against ZIKV infection. In ZIKV-infected pregnant mice, these treatments
reduced ZIKV infection, protected the fetal brain, and prevented embryonic death by
significantly reducing necrosis, inflammation, edema, and hemorrhage. This prevention of
fetal miscarriage was achieved through the upregulation of myxovirus resistance protein
(MX1) [58]. In the reproductive tract of female mice, IFN-I and IFN-III treatments protect
against intravaginal ZIKV infection [59]. Furthermore, during ZIKV infection, transmem-
brane protein 2 (TMEM2), a member of the interferon-inducible transmembrane protein
superfamily, enhances the antiviral response by augmenting the levels of RIG-1, MDA5,
pSTAT1, and IFN-β expression [60]. The long isoform of poly(ADP-ribose) polymerase fam-
ily member 12 (PARP12) mediates the ADP ribosylation of NS1 and NS3, triggering their
proteasome-mediated degradation. This process inhibits ZIKV replication and modulates
host defense responses [61].

In addition to the interferon response, toll-like receptors (TLRs) play crucial roles in
antiviral functions by activating factors related to interferon (IRFs) that, in turn, activate
antiviral genes. Early RNA sequencing analysis showed that NPCs infected with ZIKV
mounted an antiviral response primarily through TLRs 3/7/8 and 9. Consequently, IRF3
and IRF7 were overactivated, and the canonical NF-κB and STAT inflammation signaling
pathways were upregulated, leading to the production of inflammatory cytokines and
chemokines (Figure 1) [62]. In human primary astrocytes, dermal fibroblasts, epidermal
keratinocytes, and immature dendritic cells, ZIKV induced the transcription of TLR3, and
inhibiting it resulted in reduced viral replication [35,63]. However, knockout mice for
INFAR 1, IRF3, IRF5, and IRF7 remained susceptible to ZIKV infection and developed
neurological disorders but did not succumb to the infection. MAVS and IRF3 mice did not
experience weight loss, morbidity, or mortality, suggesting that MAVS and IRF3 might not
be required for the antiviral response to ZIKV infection in mice [64].

Microglia, resident cells in the central nervous system (CNS), serve as the primary
immune effectors to against pathogens [65]. Interestingly, microglia appear before the
onset of neurogenesis and colonize the proliferative zones of the cortex during develop-
ment [66], where they interact with NPCs [67,68]. During ZIKV infection, microglia are
highly susceptible, and it has been suggested that they serve as Trojan horses, contributing
to the dissemination of ZIKV in the brain [69]. Additionally, microglia induce cell death in
infected developing neurons [70]. They maintain cell viability by phagocytosing apoptotic
ZIKV-infected NPCs [45] and viral particles [71], as well as promoting neuroinflammation,
primarily through the secretion of cytokines such as CCR5, IL-12, IL-1β, AIF1, IL-6, CCL2,
and TNF [45,71,72]. Glial-cell-induced neuroinflammation during ZIKV infection occurs
through the activation of inflammatory signaling pathways such as ERK, p38MAPK, NF-
κB, and JAK/STAT3. Interestingly, inhibiting p38MAPK after ZIKV infection blocks the
inflammatory environment induced by ZIKV and tends to reduce viral titers [73].

Macrophages are another type of immune cell that plays a significant role in recogniz-
ing and eliminating invading pathogens. ZIKV infection inhibits macrophage migration
inhibitory factor (MIF) expression by disrupting the NF-kB-MIF positive feedback loop,
resulting in the prolonged migration of infected macrophages. The migration of infected
macrophages can boost ZIKV’s ability to cross physiological barriers and promote virus
spread [74]. Like microglia, circulating macrophages, peripheral blood mononuclear cells
(PBMCs), and THP1-macrophages infected with ZIKV display a proinflammatory profile
mediated via the interaction of ZIKV NS5 with NLRP3 through the NACHT and LRR do-
mains. This interaction promotes the oligomerization of NLRP3 with apoptosis-associated
speac-like protein containing caspase recruitment domain (ASC) and subsequently acti-
vates caspase 1, leading to the secretion of IL-1β and an inflammatory response in the brain,
spleen, liver, and kidneys of mice [75].
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Figure 1. Representative scheme of the main signaling pathways activated against ZIKV infec-
tion. ZIKV’s ability to infect cells is related to the presence of phosphatidylserine on the viral
envelope protein’s surface, which is recognized via NCAM1, DC-SIGN, and the transmembrane
phosphatidylserine receptor of the TAM family. Inside the cell, the viral genome is recognized via
two PRRs: MDA5 and RIG-1. These interact with MAVS, leading to the activation of the IRF3 pathway,
inducing the transcription and production of IFNα/β. Additionally, the antiviral response through
TLRs 3, 7, 8, and 9 is induced. Consequently, IRF3 and IRF7 are overactivated, and canonical NF-κB
and STAT inflammation signaling pathways are upregulated, resulting in the production of inflam-
matory cytokines and chemokines. ISGs: interferon stimulated genes. Created with BioRender.com
(accessed on 20 September 2023).
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4.4. Viral Mechanism to Avoid Cell Antiviral Response

There are viral mechanisms designed to counteract cellular antiviral defense. In the
context of this, the nonstructural proteins of ZIKV play a crucial role in helping the ZIKV
inhibit the host’s innate antiviral immunity, ensuring ZIKV replication and spread. ZIKV
utilizes evasion tactics at various levels.

4.5. IFN Pathway Suppression

IFN production is initiated upon activation of PRRs such as MDA5/RIG-I. Recent re-
search has revealed that ZIKV NS4A and NS4A2 proteins interfere with the activation of the
IFN-β promoter through the MDA5/RIG-I signaling pathway. They disrupt the interaction
between RIG-I and MAVS (mitochondrial antiviral signaling protein) and reduce the levels
of MAVS, TBK1, and IRF3 proteins [76]. ZIKV NS5 interacts with RIG-I and inhibits the
K63-linked polyubiquitination of RIG-I, which reduces the phosphorylation of RIG-I and its
nuclear translocation. Consequently, this leads to the suppression of IRF-3 activation [77].
NS1, NS2A, NS2B, and NS4B ZIKV proteins interact within the same pathway to block
TBK1 phosphorylation [78,79]. NS4A, in particular, prevents IRF3 phosphorylation, while
NS5′s interaction with IRF3 inhibits its nuclear translocation [79]. Intriguingly, the Asian
strain of ZIKV is more efficient in suppressing IFN-β activation compared to the African
strain, which is primarily due to a single-point mutation (A188V). This mutation enhances
the efficiency of the NS1-TBK1 complex and reduces TBK1 phosphorylation [79].

4.6. Interference with IFN Signaling

The ZIKV NS3 and NS2B3 complex disrupts the expression of IFN-β by degrading
key proteins involved in the antiviral signaling pathway. NS3 degrades MAVS through
K48-linked ubiquitination [80], while NS2B3 catalyzes K48-linked polyubiquitination to
degrade the Mediator of IFN Regulatory Factor 3 Activation (MITA). Additionally, NS2B3
inhibits K63-linked ubiquitination of MITA, which has a negative effect on the activation of
the IFN-β-related antiviral signaling [80].

ZIKV employs NS2B3 to evade the innate immune system downstream of IFN by
reducing the JAK/STAT signaling pathway through JAK1 degradation via proteasomal
mechanisms [78]. Additionally, ZIKV uses NS5 to promote the degradation of STAT2 in
humans through the proteasomal pathway [81]. It also blocks STAT1 phosphorylation,
antagonizing type I IFNAR signaling and impairing downstream ISG expression [82].

4.7. NLRP3 Inflammasome Activation Suppression

NS1, another ZIKV protein, is involved in avoiding cytokine production by inhibiting
NLRP3 inflammasome activation. Within this pathway, NS1 stabilizes caspase 1 through
USP8 deubiquitylase. Caspase 1 subsequently interacts with cyclic GMP-AMP synthase
(cGAS), a cytosolic DNA sensor that activates the type I IFN pathway. This interaction leads
to the cleavage of cGAS and dampens cGAS-STING-mediated IFN production [83]. The NS3
protein impairs NLRP3 activation and IL-1β secretion in primary bone marrow-derived
macrophages and mixed glial cell cultures. This mechanism may represent a strategy used
by the virus to evade NLRP3 inflammasome-mediated innate immune responses [72].

4.8. Interaction with Cellular Proteins

Analyzing ZIKV–human protein–protein interactions has revealed that NS5 also inter-
acts with PAF1C, a chromatin-associated complex that promotes transcriptional elongation.
The interaction between NS5 and PAF1C dampens antiviral responses (IFN I) by inhibiting
the recruitment of the transcription complex PAF1C to the promoter of antiviral genes [84].

Collectively, these strategies employed by ZIKV help it to evade the host’s innate
antiviral immunity, ultimately favoring ZIKV replication.
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4.9. Maternal Inflammation

Epidemiological studies have consistently demonstrated that inflammatory stimuli,
including viral or bacterial infections, experienced by pregnant mothers can trigger a
condition known as maternal immune activation (MIA). MIA has emerged as a significant
risk factor for the development of neurodevelopmental disorders, including schizophrenia
and autism spectrum disorder (ASD) [85,86].

Animal models subjected to MIA during gestation have shed light on its underlying
mechanisms. Acute infections in pregnant mothers can lead to transiently elevated levels
of cytokines or even initiate autoimmune processes. This, in turn, results in sustained high
levels of cytokines throughout the remainder of the pregnancy. Principal among these
elevated cytokines found in maternal serum, amniotic fluid, placenta, and fetal brain are
TNFα, IL-1β, and IL-6 [87–90]. These cytokine imbalances during pregnancy can induce
significant changes in the fetal environment and impact brain development [91].

In the context of ZIKV infection, studies conducted using human primary culture
placental cells have demonstrated that the inflammatory immune imbalances induced by
ZIKV can modify lipid metabolism in a way that may lead to placental dysfunction and
compromised barrier function [92]. This, in turn, could potentially explain the capacity of
ZIKV to spread to the fetus.

In another study involving pregnant rats, those subjected to inflammation induced
via lipopolysaccharides (LPSs) during pregnancy exhibited a dysregulation of 3285 genes.
These genes were associated with cellular stress, cell death, and nervous system develop-
ment. Interestingly, the most downregulated genes were those related to nervous system
development [87].

Further supporting these findings, experiments involving Papio anubis (olive baboons)
infected with ZIKV during mid-gestation demonstrated an inflammatory response char-
acterized by increased levels of IL-2, IL-6, IL-7, IL-15, and IL-16 in maternal plasma. The
developing fetuses displayed a range of defects, including abnormalities in radial glia,
radial glial fibers, disorganized migration of immature neurons to the cortical layers, and
signs of astrogliosis (as shown in Figure 2). Additionally, there was an increase in microglia
and IL-6 expression in the fetal brain [93].

In-depth analysis of sera from pregnant women infected with ZIKV revealed signifi-
cant changes in immune profiles. Specifically, there was an induction of 16 inflammatory
cytokines and 8 chemokines, along with the repression of 9 inflammatory cytokines and
12 chemokines. Notably, chemokines such as CXCL10, CCL2, and CCL8 were associated
with symptomatic ZIKV infection during pregnancy. Moreover, distinct immunoprofiles
were detected at different trimesters in ZIKV-infected pregnant women. Of particular inter-
est, the elevated level of CCL2, along with its inverse correlation with CD163, TNFRSF1A,
and CCL22 levels, was associated with abnormal births following ZIKV infection [94].

Recent studies conducted on PBMCs from pregnant mothers infected with ZIKV,
whether their children had CZS or not, have yielded valuable insights. These studies
indicated that T cells from mothers with asymptomatic children tended to exhibit a more
inflammatory profile, while T cells from mothers with children diagnosed with CZS tended
toward a more cytotoxic profile. This suggests that a mother’s inflammatory profile,
whether anti- or pro-inflammatory, plays a significant role in influencing neurological
abnormalities in offspring associated with ZIKV infection [95]. It is noteworthy that
certain pro-inflammatory cytokines, such as IL-6 and IL-1β, have been shown to reduce
adult hippocampal neurogenesis, providing a potential link to the observed neurological
effects [96,97].

However, ZIKV congenital infection evades immune response and may persist in the
placenta for the duration of pregnancy [98]. Placenta-specific microRNAs (miRNAs) are
thought to be a principal marker of viral resistance at the maternal–fetal interface. Placental
ZIKV infection disrupts miRNA regulatory networks, leading to altered gene expression
of key immunoregulatory pathways, suggesting ZIKV evades normal RNA interference
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and miRNA regulation mechanisms to persist in the placental niches and render fetal
pathogenesis [99].
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Figure 2. Schematic representation of maternal inflammation induced by ZIKV as a risk factor for
neurodevelopmental disorders. Acute infection in pregnant mothers increases cytokine levels or may
even initiate autoimmune processes, resulting in sustained high levels of cytokines (indicated by the
pink arrow) during pregnancy. Cytokine imbalances during pregnancy induce changes in the fetal
environment and can modify lipid metabolism, leading to placental dysfunction and compromising
the barrier function (indicated by the black arrows). This placental dysfunction and compromised
barrier function could explain ZIKV’s ability to spread to the fetus and induce damage in nervous
system development (indicated by the blue arrows). Created with BioRender.com (accessed on
21 October 2023).

These findings collectively highlight the complex interplay between maternal immune
responses, viral infections, and fetal development, particularly in the context of ZIKV
infection during pregnancy.

4.10. Signaling Pathways Regulated via ZIKV Associated with Microcephaly

ZIKV infection is associated with a range of fetal brain abnormalities, including dis-
ruptions in neural progenitor development, neuronal death, axonal rarefaction, astrogliosis,
and microglia activation [24,69,100]. NSCs and NPCs, which are undifferentiated neural
cells critical for the developing mammalian nervous system, play a central role in these
processes. They have the remarkable capacity to differentiate into various CNS neuronal
and glial cell types and possess the ability for self-renewal [101].

Studies using NSCs and NPCs as models have demonstrated that ZIKV can infect
different lineages of these cells, leading to apoptosis and the dysregulation of the cell
cycle [102]. Interestingly, the presence of the viral E protein in NSCs is sufficient to induce
cell cycle arrest, specifically in the G0 phase [103]. This dysregulation of the cell cycle is
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manifested as inhibited cell proliferation, both in NSCs and NPCs cultured in vitro, as well
as in the ventricular zone (VZ) and sub-ventricular zone (SVZ) of the developing brains of
embryonic mice (E13.5) [102,103].

Apart from cell cycle dysregulation and the inhibition of proliferation, apoptosis is
another process affected via ZIKV infection. While ZIKV can inhibit apoptosis in fibroblasts
to ensure viral replication, studies involving hPSCs have revealed that ZIKV infection
induces an increase in caspase 3 activity [62,104]. Additionally, in human NSC derived
from the H9 cell line, infection with ZIKV strains, both Asian (PVRABC59) and African
(MR766), activates cellular responses to damage. The African strain leads to increased
phosphorylation of histone H2AX and the activation of caspase 3, while the Asian strain
promotes the phosphorylation of p53, p21, and PUMA, ultimately leading to cell cycle
arrest [105]. Interestingly, in the human H9 cell line, ZIKV infection leads to an upregulation
of p65 and IRF3 in response to viral infection. However, this upregulation of NF-κB and
IRF3 has been associated with growth arrest and reduced differentiation in NPCs [106].

ZIKV infection also induces alterations in the differentiation process of neural cells.
For example, in the VZ of ZIKV-infected brains at E16.5, the virus inhibits the transition
from radial glial cells (marked by Pax6 expression) to intermediate progenitor cells (marked
by Tbr2 expression) [102]. In human NPCs (hNPCs), ZIKV infection induces early dif-
ferentiation, characterized by an increase in the expression of pro-neural genes, such as
PTN, ROBO2, SPOCK1, and DCX [103]. Interestingly, although seemingly contradictory,
reports indicate that cell differentiation occurs in a specific manner. In mouse NSCs, ZIKV
infection reduces the expression of marker genes associated with neuronal and oligoden-
drocyte progenitors while increasing the expression of markers associated with astrocyte
progenitors [107]. Similarly, in ZIKV-infected mouse embryos at E15.5, impairments in
gliogenesis are observed due to reduced cell proliferation and differentiation of oligoden-
drocyte precursor cells, resulting in less myelination and neuronal loss [108]. Studies on
Macaca nemestrina infected with ZIKV have revealed increased astrogliosis, accompanied
by a reduction in NPCs, a loss of non-cortical volume in the fetal brain, and perturbations
in neuron maturation in the hippocampus and cerebral cortex [109].

Additionally, ZIKV infection impacts the integrity of cellular adherent junctions (AJs)
in the developing mammalian brain. Researchers have observed that the viral protein
NS2A can interact with multiple AJ complexes, leading to their destabilization. This results
in poor AJ formation and abnormal scaffolding of radial glial fibers in mouse embryonic
cortices [110].

Transcriptomic analyses of ZIKV-infected hNPCs have revealed that ZIKV infection
induces changes in the expression of alternative splicing, gene isoform composition, and
long non-coding RNAs (lncRNAs) implicated in processes such as DNA replication, cell
cycle regulation, apoptosis, cell death, RNA processing, immune responses, and neuron
development [111]. This multifaceted impact on gene expression and regulatory processes
underscores the complexity of ZIKV-induced developmental abnormalities in the brain.

4.11. Unfolded Protein Response (UPR) and Autophagy during Zika Infection

During embryonic development, endoplasmic reticulum (ER) stress and the UPR
pathway can lead to a decrease in neurogenesis, ultimately resulting in microcephaly [112].
The UPR pathway is modulated via three receptors anchored to the ER membrane: en-
doplasmic reticulum kinase similar to PKR (PERK), inositol-requiring enzyme 1 alpha
(IRE1α), and activating factor of transcription 6 (ATF6) [113]. In the context of infection
with RNA viruses like ZIKV, there is a remodeling of the ER membrane, inducing stress
and subsequently activating the UPR [114]. Studies involving human fetuses at 22 weeks of
gestation (22GW), human NSCs, and mouse embryos infected with ZIKV provide evidence
that ZIKV infection triggers ER stress and the UPR in the cerebral cortex [94]. This ER stress
is associated with a decrease in the proliferation of cortical progenitors and an increase in
the apoptosis of mature neurons in the cerebral cortex [115]. In cultures of human cortical
neurons derived from induced PSCs infected with ZIKV, the UPR is activated through
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ATF4 and IRE1-XBP1. Additionally, CHOP is overexpressed in the cortical plate, VZ, and
SVZ, which triggers apoptosis in these cells [113,114].

In immortalized neuroblastoma and astrocytoma cell lines derived from AG6 mice,
ZIKV infection has been shown to activate the pIRE1-XBP1 and ATF6 pathways of the
unfolded protein response [116]. The activation of UPR via ZIKV disrupts the balance
between direct and indirect neurogenesis, resulting in fewer resident neurons in the up-
per layer of the cerebral cortex [93,94]. Furthermore, in human embryonic astrocytes
infected with ZIKV, the miRNA-30e-5p, -19b-3p, and -17-5p are upregulated, leading to
the induction of UPR and the subsequent activation of the apoptosis markers CHOP and
GADD34 [117]. Another cellular protein that undergoes changes during ZIKV infection
is the Hsp70 chaperone, which is recruited to the replication complex to facilitate proper
ZIKV replication. Additionally, Hsp70 plays a crucial role in maintaining capsid protein
stability and promoting the assembly of ZIKV infectious particles [118].

Transcriptomic analyses of ZIKV-infected hNPCs have revealed alterations in the Akt-
mTOR pathways [119]. Interestingly, NPCs from ZIKV-exposed babies are more permissive
to ZIKV replication compared to NPCs from unaffected babies, and this difference is
attributed to genes related to the Wnt and mTOR pathways. The activation of the mTOR
pathway inhibits the release of viral particles from NPCs, while the repression of the
mTOR pathway promotes viral particle release [120]. In hfNSCs, the co-expression of ZIKV
NS4A and NS4B suppresses Akt phosphorylation, leading to reduced activation of mTOR
and the induction of autophagy. This favors viral replication in hfNSCs while inhibiting
neurogenesis [121]. Therefore, inhibiting autophagy with specific drugs has been shown to
decrease ZIKV viral progeny in fibroblast cells [35].

4.12. miRNAs and Musashi 1 Interaction

ZIKV has been shown to induce significant changes in RNA metabolism, resulting
in alterations in lncRNAs, the deregulation of alternative splicing [111], and changes in
miRNA expression [103]. For instance, ZIKV infection leads to an increase in miR-9 expres-
sion in mice embryos at E12.5, mimicking the microcephaly phenotype. This upregulation
of miR-9 is associated with the downregulation of glial-cell-derived neurotrophic factor
(GDNF), a survival factor critical for NPCs and immature neurons [122]. Moreover, miR-
NAs, such as miR-1273g-3p and miR-204-3p, are upregulated in response to ZIKV infection,
and these miRNAs target genes like PAX3 and NOTCH [103]. NOTCH plays a crucial role
in expanding human cortical progenitors by promoting the increased proliferation of RGCs
in the cortex and delaying their differentiation into neurons [123,124].

Cell cycle dysregulation is another consequence of altered miRNA expression during
ZIKV infection. When hNSCs are infected with ZIKV, miR-124 levels increase. Elevated
miR-124 levels in ZIKV-infected neurospheres result in reduced neurosphere sizes due
to defects in cell proliferation. miR-124 accomplishes this by targeting the mRNA of the
transferrin receptor (TFRC), leading to reduced levels of the transcription factor FOXM1,
which plays a pivotal role in cell cycle progression [125].

Interestingly, in cortical neurons from C57BL/6J mice, miRNA-124 is downregulated,
resulting in the increased expression of its target genes [126]. In human embryonic astro-
cytes infected with ZIKV, miRNA-17-5p is upregulated. This miRNA is well known for its
role in inducing the UPR through Hsp70 [112,117].

Furthermore, in a cellular model of neuroblastoma (SH-SY5Y) and post-mortem brains
from individuals with CZS, ZIKV infection induces the overexpression of miRNA-145 and
miRNA-148. In silico analysis suggests that these miRNAs are related to processes such as
CNS function, cellular migration, and adhesion. [127]. However, the specific functions of
these miRNAs in the context of ZIKV infection during CNS development have not been
extensively studied.

Musashi 1 (MSI1) is a 3′ untranslated region (3′UTR) RNA-binding protein that plays
a role in post-transcriptional gene regulation. MSI1 is associated with maintaining stem
cell self-renewal and neurogenesis [128]. Knocking out MSI1 in mice results in abnor-
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mal brain development [129]. Additionally, MSI1 represses the translation of mRNAs
encoding proteins involved in neurogenesis and the cell cycle, such as Numb and p21 (an
endocytic adaptor protein and cyclin-dependent kinase inhibitor 1A, respectively) [130].
Bioinformatics approaches have identified Musashi binding elements (MBEs) in the 3′UTR
of ZIKV. These MBEs are predominantly found in unpaired and single-stranded structural
contexts [131]. In vitro and in vivo studies have shown that neuronal MSI1 interacts with
the ZIKV genome, facilitating viral replication [132]. Recently, an interaction between MSI1
and ZIKV has been demonstrated in the AGAA tetraloop of xrRNA2 (Xrn1-resistant RNA)
within the 3′UTR of ZIKV [133]. Interestingly, MSI1 can be negatively regulated at the trans-
lational level via miRNAs, such as miR-23a and miR-125b in NSC/NPCs [134], miR-137 in
NSCs, and miR-330-3p in gastric cancer cells [135,136]. Target prediction programs have
identified potential binding sites for miR-125b, miR-137, miR-144, miR-185, and miR-342-3p
within the MSI1 3′UTR [137]. Intriguingly, ZIKV downregulates miRNAs that repress MSI1
mRNA, including miRNA-125b, -137, -144, -342-3p, -330-3p, and -23a [125–127].

5. Therapeutic Strategies versus Zika Virus
5.1. ZIKV Vaccines Development

Various vaccine candidates for ZIKV are currently undergoing phase I/II clinical
trials. These candidates encompass a range of approaches, including inactivated whole
viruses, recombinant measles virus vector-based vaccines, DNA and mRNA vaccines, E
protein subunit vaccines, and subviral particles, as well as a mosquito salivary peptide
vaccine [138,139].

One of the key challenges in ZIKV vaccine development is determining whether it will
be feasible to create an immunogenic and safe vaccine. Given the relatively low variation
among ZIKV strains, with approximately 94% amino acid identity across the viral genome,
and the absence of different genotypes or serotypes, it is plausible that an effective vaccine
targeting one strain could confer broad protection against all circulating ZIKV strains.
Furthermore, since ZIKV outbreaks often occur in regions with high seroprevalence rates
for DENV infection and previous vaccination with yellow fever virus, a significant portion
of potential ZIKV vaccine candidates may induce preexisting cross-reactive antibodies
resulting from natural or vaccine-induced flavivirus immunity. Preexisting immunity can
influence ZIKV vaccine responses in several ways. It may boost cross-reactive immunity,
providing protection against ZIKV. Alternatively, it could enhance cross-reactive immunity
while potentially reducing protective ZIKV-specific responses, a phenomenon known as
“original antigenic sin”. There’s also the possibility of neutralizing live-attenuated ZIKV
without significantly impacting cross-reactive immunity, which is referred to as sterilizing
immunity [140]. However, it is essential to note that the preexisting antibody response
induced by flaviviruses can enhance disease severity upon ZIKV infection through a phe-
nomenon known as antibody-dependent enhancement (ADE) [141]. ADE is characterized
by non-protective cross-reactive memory antibodies that may even enhance the infection
and clinical manifestations [142]. Studies have shown that convalescent plasma from
individuals infected with DENV and WNV can enhance ZIKV infection in vitro, which
is mediated through immunoglobulin G engagement of FcγRIIA receptors. In in vivo
models, this resulted in high viremia and increased mortality in a dose-dependent manner
of convalescent plasma [143]. Understanding how the antibody response to flavivirus
infections contributes to protection versus pathogenesis is crucial in the development of a
ZIKV vaccine.

5.2. Antivirals

Currently, there are no approved antiviral strategies for combatting ZIKV infection.
However, a screening assay of FDA-approved drugs conducted in various human cell lines,
including HuH-7, HeLa, JEG3, and NSCs, as well as primary human amnion cells infected
with ZIKV, has identified 20 compounds that exhibit a significant reduction in ZIKV infec-
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tion in vitro. Notable drugs among these include ivermectin, mefloquine hydrochloride,
bortezomib, daptomycin, and mycophenolic acid [144].

Furthermore, there are candidate molecules aimed at inhibiting ZIKV replication
by targeting specific ZIKV proteins or host factors essential for ZIKV propagation. In
this context, the SEC61 translocon, a crucial host factor for ZIKV replication, has been
successfully targeted by co-translational translocation inhibitors (cotransins) CT8 and
PS3061, resulting in the inhibition of ZIKV virion production and replication [84]. Another
promising candidate is AR-12 (OSU-03012), a celecoxib derivative and kinase inhibitor
that downregulates the Akt pathway. Celecoxib has demonstrated the ability to inhibit
ZIKV in vitro infection and improve the survival rates of individuals deficient in type I
interferon receptor (A129) [145]. Furthermore, Hsp70 inhibitors, namely, JG40 and JG345,
reduce ZIKV particle production in trophoblasts and hNSCs, and provide protection to
IFNR-knockout mice against lethal ZIKV infection [118].

Metformin (MET), an FDA-approved drug, has exhibited inhibitory effects on ZIKV
infection in glioblastoma and hepatic cell lines. However, its most significant impact has
been observed in inhibiting DENV and yellow fever virus infections, rather than ZIKV. MET
treatments hinder the formation of the replicative complex by reducing cellular cholesterol
synthesis through the inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase
(HMGCR) activity [146].

Chemical compounds also offer the potential for inhibiting ZIKV replication by target-
ing viral proteins essential for the virus’s life cycle. Sofosbuvir, a class B FDA-approved
antiviral used against hepatitis C virus, has been demonstrated to inhibit ZIKV RNA poly-
merase activity in various cell lines, including Huh-7, SH-SY5Y cells, NSCs, and brain
organoids [147]. Ouabain, a cardiotonic steroid, disrupts ZIKV genome replication by bind-
ing to regions associated with ATP hydrolysis (NTPase domain), RNA binding domain,
and RNA-dependent RNA polymerase (RdRp) domain of NS5 [148].

Furthermore, high-throughput virtual screening studies have facilitated drug discov-
ery, with several commercial compounds, such as CD11575, CD03173, HTS04601, HTS03171,
HTS07252, JFD01698, and KM10383, emerging as potential inhibitors of NS2B/NS3 ZIKV
proteins [149]. Another chemical compound, (2E)-N-benzyl-3-(4-butoxyphenyl) prop-2-
enamide (SBI-0090799), inhibits ZIKV infection by preventing the formation of membranous
compartments in the ER, where ZIKV RNA replication occurs, through the suppression of
NS4A activity [150]. At the endosomal–lysosomal compartment level, bafilomycin A1, a
V-ATPase inhibitor, holds potential as an antiviral target due to its ability to reduce ZIKV
release by interfering with viral maturation [151].

The field of antivirals presents a promising avenue for combatting ZIKV infection, with
strategies targeting multiple steps in the virus replication cycle or host proteins essential
for the virus’s survival. However, it is crucial to exercise caution when inhibiting host
proteins, as they often play intricate roles in signaling pathways. Additionally, the proposed
compounds should be evaluated in in vivo models.

5.3. Phytocompounds

Phytocompounds are emerging as a promising strategy for controlling ZIKV infec-
tion. In vitro screening assays have identified several plant extracts, such as lycorine,
pretazettine, narciclasine, and narciclasine-4 O-β-D-xylopyranoside, that exhibit antiviral
activity against ZIKV [152]. 6-deoxyglucose-diphyllin (DGP), a bioactive phytoconstituent
molecule derived from the medicinal plant Justicia gendarussa, has demonstrated the ability
to block ZIKV infection in cultured cells. Importantly, it also prevented ZIKV-induced
mortality in a mouse model lacking IFNAR. DGP achieves this by preventing the acidi-
fication of endosomal and lysosomal compartments, inhibiting ZIKV fusion and thereby
preventing the delivery of viral RNA into the cytosol of the target cell [153]. Tannic acid,
found in Terminalia arjuna, interacts with the ZIKV E protein, suppressing E dimerization
and membrane fusion with host cells. Notably, tannic acid exhibits a high affinity for the
ZIKV E protein and a much less significant affinity for host cells [154]. Another molecule,
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epigallocatechin gallate (EGCG), isolated from green tea, also interacts with the ZIKV E
protein, inhibiting ZIKV entry into host cells [155].

In silico approaches have suggested potential antiviral activity by targeting interactions
with the ZIKV NSB protein. Compounds like ECGC-7-oa-glucopyranoside, isoquercetin,
rutin, and ECGC-4-oa-glucopyranoside can interact with the active site of the NS2B/3
protease complex, which is crucial for ZIKV replication [156]. Naringenin, a citrus fla-
vanone, has been found to inhibit ZIKV infection in glioblastoma cell lines and dendritic
cells, particularly against both Asian and African lineages of ZIKV. Computational analysis
suggests that this inhibition occurs through binding to the NS2B/3 protease domain, an
essential component of virus assembly [157]. Similarly, EGCG can block viral replication
by interacting with the ATPase site in the NS3 viral helicase [158].

Natural compounds from plants are being investigated as modulators of miRNA ex-
pression. For example, in breast cancer, compounds like curcumin, resveratrol, isoflavone,
EGCG, I3C, and diindolylmethane have been identified as potent agents capable of mod-
ulating miRNA expression [159]. Polyphenol-enriched fractions from blueberries and
berberine can inhibit the expression of miR-125b [160,161]. Conversely, Olea europaea leaf
extract induces the upregulation of miR-137 [162], and American ginseng promotes the
upregulation of miR-144 [163]. These compounds may hold promise in modulating miRNA
expression in the context of ZIKV infection and CNS development.

Natural products offer a rich source of potential drugs or drug-like molecules for
treating viral infections. Additionally, chemical modifications of these plant extracts can
lead to the development of new derivatives that may be optimized for improved bioavail-
ability, oral absorption, reduced toxicity, and increased antiviral activity. Given that the
major complications of ZIKV infections are associated with pregnant women, it is crucial to
identify molecules that are safe and have minimal or no side effects.

6. Conclusions

Prenatal infection with ZIKV has been associated with an elevated incidence of CZS
in newborns. In addition, retrospective studies have revealed various neurological im-
pairments in children under two years old. These observations have prompted extensive
research efforts to uncover the underlying mechanisms. Nonetheless, the precise mecha-
nisms by which the virus induces microcephaly and neurological damage remain a subject
of investigation. Studies employing cellular, animal, and human models have shed light on
ZIKV pathogenesis, revealing its broad tissue and cell tropism and its capacity to cause
severe end-organ diseases, including placental and congenital infections.

Recent in vitro and in vivo investigations have provided molecular insights into the
association between ZIKV infection, microcephaly, and neurological damage. Additionally,
studies have explored the immune response to Zika infection and how the virus evades
immune defenses. Nonetheless, numerous unanswered questions persist in understanding
the key aspects of ZIKV infection, such as the primary viral antigens, the mechanisms of
virulence, host restriction, immune evasion, and the potential for ADE in ZIKV pathogen-
esis. Furthermore, the long-term consequences of congenital ZIKV infection in humans
require further exploration.

Efforts are ongoing to develop effective preventive and therapeutic vaccines against
Zika infection. Currently, there is growing interest in the field of metabolites as regulators
of miRNA expression. It is proposed that ZIKV infections could be addressed by utilizing
phytochemical compounds with the potential to induce antiviral miRNAs or target host
proteins necessary for ZIKV replication.

In summary, this review emphasizes the significance of understanding ZIKV pathogen-
esis, especially its association with microcephaly and neurological damage. It underscores
the current knowledge gaps and the importance of ongoing research efforts aimed at eluci-
dating the complex interactions between the virus and the host. Ultimately, the goal is to
develop effective interventions to combat ZIKV infection and its associated complications.
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