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Abstract: Down syndrome arises from chromosomal non-disjunction during gametogenesis, resulting
in an additional chromosome. This anomaly presents with intellectual impairment, growth limitations,
and distinct facial features. Positive correlation exists between maternal age, particularly in advanced
cases, and the global annual incidence is over 200,000 cases. Early interventions, including first
and second-trimester screenings, have improved DS diagnosis and care. The manifestations of
Down syndrome result from complex interactions between genetic factors linked to various health
concerns. To explore recent advancements in Down syndrome research, we focus on the integration
of artificial intelligence (AI) and machine learning (ML) technologies for improved diagnosis and
management. Recent developments leverage AI and ML algorithms to detect subtle Down syndrome
indicators across various data sources, including biological markers, facial traits, and medical images.
These technologies offer potential enhancements in accuracy, particularly in cases complicated by
cognitive impairments. Integration of AI and ML in Down syndrome diagnosis signifies a significant
advancement in medical science. These tools hold promise for early detection, personalized treatment,
and a deeper comprehension of the complex interplay between genetics and environmental factors.
This review provides a comprehensive overview of neurodevelopmental and cognitive profiles,
comorbidities, diagnosis, and management within the Down syndrome context. The utilization
of AI and ML represents a transformative step toward enhancing early identification and tailored
interventions for individuals with Down syndrome, ultimately improving their quality of life.

Keywords: Down syndrome; neurodevelopment; cognitive impairment; comorbidity; diagnosis;
management; artificial intelligence; machine learning; neurological disorders; intellectual disability

1. Introduction

Down syndrome, first described by John Langdon Down in 1866, is a genetic disorder
characterized by the presence of an additional chromosome 21 due to non-disjuntioning
during gametogenesis and is reportedly the most common chromosomal abnormality in
humans [1–4]. Down syndrome is a genetic disorder characterized by the presence of an
extra copy of chromosome 21. It manifests in three main types: trisomy 21, translocation
Down syndrome, and mosaicism [5]. Trisomy 21, accounting for the majority of cases,
involves an extra copy of chromosome 21 in every cell [6]. Translocation Down syndrome
occurs when the extra copy is attached to another chromosome [7]. Mosaicism, the least
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common type, involves a mixture of cells with two and three copies of chromosome 21 [7–9].
Patients suffering with this disorder show mild to moderate intellectual disability, retarded
growth besides other peculiar facial features [10].

The incidence of Down syndrome, ranging from 1 in 319 to 1 in 1000 live births, esca-
lates with advanced maternal age, surpassing 200,000 cases annually globally [11,12]. It is
established in the scientific literature that the occurrence of other autosomal trisomy is much
more common than trisomy 21 but owing to their poor postnatal survival, Down syndrome
takes a lead in being the most frequently occurring live born aneuploidy (trisomy 21) [13].
Differences in the incidence and presentation of Down syndrome based upon the ethnic and
geographic background are also reported [14]. Besides the occurrence of non-disjunction
in chromosome 21 during gametogenesis, there are other factors that can lead to trisomy
21, including Robertsonian translocation, isochromosome formation, and the presence of a
ring chromosome [6]. Isochromosome formation entails the simultaneous separation of two
long arms, as opposed to one long and one short arm, and this phenomenon is observed in
approximately 2% to 4% of patients [15,16]. In cases of Robertsonian translocation, the long
arm of chromosome 21 becomes fused with another chromosome, typically chromosome
14 [17].

Children with Down syndrome exhibit a range of malformations in addition to cogni-
tive impairments resulting from the presence of extra genetic material from chromosome
21 [18,19]. Although the phenotype varies, common characteristics that can lead experts to
suspect Down syndrome includes reduced muscular tone (hypotonia), a brachycephalic
head shape, a flat nasal bridge, epicanthal folds, the presence of Brushfield spots in the iris,
a small mouth, small ears, excess skin at the back of the neck, upward-slanting palpebral
fissures, a short fifth finger, a single transverse palmar crease, clinodactyly (abnormal
curvature of the fifth finger), and wide spacing between the first and second toes, often
accompanied by a deep groove between them [20,21]. The neurodevelopmental and cogni-
tive profiles observed in individuals with Down syndrome are characterized by significant
diversity, presenting unique challenges and opportunities for diagnosis, management,
and support [22]. Comorbidities associated with Down syndrome further contribute to
the complexity of providing comprehensive care to this population [23–25]. Cognitive
impairment in individuals with Down syndrome can range from mild (with an IQ between
50 and 70) to moderate (with an IQ between 35 and 50), and occasionally, it can be severe
(with an IQ between 20 and 35) [26,27]. Additionally, individuals with Down syndrome
face a significant risk of experiencing hearing loss (75%), obstructive sleep apnea (50% to
79%), otitis media (50% to 70%), eye-related issues (60%) including cataracts (15%) and
severe refractive errors (50%), congenital heart defects (50%), neurological dysfunction
(ranging from 1% to 13%), gastrointestinal atresias (12%), hip dislocation (6%), and thyroid
disorders (ranging from 4% to 18%) (Table 1) [28].

Artificial intelligence (AI) and machine learning (ML) have emerged as powerful
tools with the potential to revolutionize various fields, including healthcare [29–31]. ML,
as a subset of AI, focuses on enabling computers to learn from data and improve their
performance on specific tasks without explicit programming [32]. While AI is a broader
concept, ML plays a crucial role in the implementation of intelligent systems [33–35]. In
recent years, AI and ML have gained significant attention in healthcare due to their potential
to enhance diagnosis, prediction, and treatment planning for various conditions, including
DS [36]. These technologies can analyze complex medical data, identify patterns and trends,
and provide valuable insights for healthcare professionals and families affected by DS [36].
ML holds promise in the field of Down syndrome by facilitating early diagnosis, predicting
associated medical conditions, and enhancing educational interventions [37]. By leveraging
ML algorithms to analyze large datasets of genetic and clinical information, researchers
and healthcare professionals can gain valuable insights that contribute to personalized
care and improved outcomes for individuals with Down syndrome [36]. Given the diverse
neurodevelopmental and cognitive profiles in individuals with Down syndrome and the
complexities posed by associated comorbidities, this review aims to comprehensively
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analyze the existing literature. It specifically focuses on neurodevelopmental and cognitive
features, comorbidities, and current approaches to diagnosis and management in Down
syndrome. Additionally, it explores the potential role of ML and AI in enhancing Down
syndrome care, emphasizing the need for careful evaluation and further research. By
synthesizing the available information, this review aims to inform and guide healthcare
practitioners in their efforts to provide effective and individualized care to individuals with
Down syndrome.

Table 1. Down syndrome associated complications.

S. No. Down Syndrome Associated Complications Occurrence

1. Cataracts 15%

2. Congenital heart ailments 40–50%

3. Dental eruption (Delayed) 23%

4. Gastrointestinal atresias 12%

5. Hearing issues 75%

6. Hip dislocation 6%

7. Neurological Impairment 1–13%

8. Otitis media 50–70%

9. Refractive errors 50%

10. Sleep apnea (Obstructive) 50–75%

11. Thyroid disorders 4–18%

12. Vision impairments 60%

2. Diagnostics

The prospective for the growth and socialization of Down syndrome affected indi-
vidual has now been realized and improved with early intervention techniques, thereby
timely support for DS affected children is extensively implemented [38–40]. With the intro-
duction of first trimester screening, the options of diagnostics for Down syndrome have
improved significantly. In addition to maternal age, the assessment includes nuchal translu-
cency ultrasonography, along with the measurement of maternal serum human chorionic
gonadotropin and plasma protein A in relation to the pregnancy [41–43]. The second-
trimester screening incorporates the maternal age-related risk and involves measuring
maternal serum hCG, unconjugated estriol, α-fetoprotein (AFP), and inhibin levels [44–46].
The first-trimester screening achieves a detection rate for Down syndrome ranging from
82% to 87%, while the second-trimester screening achieves an 80% detection rate. When
both the first and second-trimester screenings are combined, often referred to as integrated
screening, the detection rate increases to approximately 95% [47–49]. Early diagnosis, inter-
vention, and ongoing support are crucial for individuals with Down syndrome to reach
their full potential and lead fulfilling lives [50]. Early childhood intervention programs,
involving a multidisciplinary approach, provide comprehensive support in areas such as
speech, motor skills, cognition, and social-emotional development [50,51]. Individualized
education plans (IEPs) tailor educational goals and accommodations to each child’s unique
needs, promoting inclusive learning and skill development [9,50]. Medical management,
including regular check-ups and proactive care for associated health conditions, ensures op-
timal health outcomes [52–54]. By emphasizing the importance of early interventions and
support strategies, we highlight the need to empower individuals with Down syndrome
and promote their development across multiple domains [9,50].
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2.1. Prenatal Diagnostics

Parental awareness plays a crucial role in the context of Down syndrome, as it is
essential for parents to possess a comprehensive understanding of the potential conditions
associated with Down syndrome [55,56]. Such awareness can significantly contribute to the
accurate diagnosis and appropriate treatment of this disorder [57,58]. The introduction of
cell-free prenatal screening and the parallel sequencing of maternal plasma cell-free DNA
(cfDNA) has brought about a profound transformation in the standard approach to prenatal
Down syndrome diagnosis [47]. The utilization of non-invasive prenatal screening has the
potential to reduce the need for invasive tests such as amniocentesis or chorionic villus
sampling [59]. Furthermore, soft markers, including the absence or small size of the nasal
bone, increased nuchal fold thickness, and enlarged ventricles, can be detected through
ultrasound examinations performed between the 14th and 24th weeks of gestation [60,61].
An elevated fetal nuchal translucency measurement is indeed associated with an increased
risk of Down syndrome. Increased fetal detection of Down syndrome offers important
benefits despite the limited need for fetal or neonatal intervention in most cases [62].
Early detection enables comprehensive prenatal counseling, facilitating informed decision-
making for expectant parents and access to specialized care and support. It respects
individual autonomy, allowing families to make choices aligned with their values [63].

Moreover, increased detection contributes to research and advancements in prena-
tal care and treatments, driving improved outcomes for individuals with Down syn-
drome [50,62,63]. By accumulating data and insights, it enables the development of
innovative interventions, early interventions, and support strategies. Therefore, advo-
cating for increased fetal detection is crucial, as it empowers parents, facilitates specialized
care, respects personal choices, and fuels research advancements [63]. In addition to these
advancements, various methods are employed for prenatal diagnosis, with traditional
cytogenic analysis remaining widely used in many countries. Nevertheless, some rapid
molecular assays, such as fluorescent in situ hybridization (FISH), quantitative fluorescence
PCR (QF-PCR), and multiplex probe ligation assay (MLPA), are also utilized for prenatal
diagnosis [7]. Prenatal diagnosis provides valuable information about the chromosomal
abnormality, but it does not directly inform us about the specific cognitive and neurodevel-
opmental traits that individuals with Down syndrome will exhibit [1]. Understanding this
variability requires comprehensive research that explores cognitive profiles, strengths, and
challenges in individuals with Down syndrome, considering environmental influences and
personalized experiences [22,64]. It is crucial to acknowledge that while prenatal diagnosis
provides valuable information about the chromosomal abnormality, it does not directly
inform us about the wide variability in neurodevelopmental and cognitive characteristics
that will be unique to each person with Down syndrome [65]. Indeed, the neurodevel-
opmental and cognitive profiles in individuals with Down syndrome exhibit significant
diversity [66,67]. While the presence of an extra copy of chromosome 21 contributes to
shared characteristics, such as intellectual disability and certain physical features, the spe-
cific cognitive abilities, strengths, and challenges can vary widely among individuals [68].
Factors such as genetic variations and individual differences contribute to this variabil-
ity. In order to provide a comprehensive understanding of Down syndrome, it is crucial
to consider beyond prenatal diagnosis [69]. Additional assessments, evaluations, and
ongoing monitoring are necessary to capture the individual’s specific cognitive and neu-
rodevelopmental traits. This includes evaluating cognitive abilities, language skills, motor
development, adaptive functioning, and social-emotional aspects [69]. It emphasizes the
need for personalized and individualized interventions that address the unique strengths,
challenges, and needs of each person [65]. By considering the wide range of cognitive
and neurodevelopmental profiles, practitioners can provide more effective and tailored
support for individuals with Down syndrome [65,66]. Many countries have chosen to
incorporate prenatal diagnosis into their healthcare systems, offering prospective parents
an opportunity to make informed choices aligned with their personal values [70]. This
encompasses decisions regarding whether to proceed with a pregnancy or consider ter-
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mination of pregnancy (TOP). The integration of prenatal diagnosis respects individual
autonomy by empowering families to navigate complex decisions in accordance with their
unique values and beliefs. In recognizing the diversity of international practices, it is
important to emphasize that the availability of prenatal diagnosis is not universally linked
to the sole option of termination. Rather, it serves as a means to provide comprehensive
information, fostering an environment where families can make decisions that align with
their individual circumstances and ethical considerations [71,72].

2.2. Artificial Intelligence (AI)-Based Diagnosis

Medical lab tests, investigation of medical history, and genetic testing are all com-
monly used methods to diagnose Down syndrome. To help with the diagnosing process,
artificial intelligence (AI) and machine learning (ML) approaches can be quite useful [30,35].
A variety of clinical data can be analyzed using AI and ML algorithms, which can be
trained to identify patterns that might be symptomatic of Down syndrome. Incorporating
ML techniques into Down syndrome detection holds significant potential for enhancing
accuracy, efficiency, and accessibility [64,68,73]. The integration of machine learning (ML)
into cell-free prenatal screening and maternal plasma cell-free DNA sequencing for Down
syndrome diagnosis will present a transformative paradigm with significant motivations
and potential enhancements. Early detection may be improved, and the potential for
reduced false positives addresses concerns related to unnecessary interventions. ML’s adap-
tive nature ensures continuous improvement, contributing to the evolution of more precise
and reliable prenatal Down syndrome predictions. ML algorithms enable the analysis of
large datasets encompassing clinical and genetic information, potentially identifying subtle
markers and patterns that improve detection accuracy beyond traditional methods [74].
Integrating multiple data sources, including maternal age, biochemical markers, and ul-
trasound measurements, ML-based predictive models can yield more sophisticated risk
assessments and enable precise counseling for expectant parents [35]. ML methods offer
broader accessibility and cost-effectiveness compared to invasive procedures like amnio-
centesis or chorionic villus sampling, as they primarily rely on non-invasive data sources
such as maternal blood samples and medical records. Furthermore, ML techniques can
be automated and scaled, facilitating widespread implementation and reducing the eco-
nomic burden associated with DS screening [35,74]. While current diagnostic methods
for Down syndrome exhibit high accuracy rates, incorporating ML methods can provide
additional advantages in terms of improved accuracy, risk assessment, counseling, and
broader accessibility. By leveraging ML algorithms to analyze comprehensive datasets,
healthcare providers can enhance DS detection and deliver more personalized care [35].
These motivations and benefits of ML methods in Down syndrome detection will be further
emphasized in the revised manuscript, supporting the advocacy for their integration. ML
and AI can help with the diagnosis in the following ways:

2.2.1. Facial Recognition

AI programs can be trained to identify facial characteristics that are commonly linked
to Down syndrome [75]. ML models can recognize distinct features like an upward slope
in the eyes, a flattened face profile, and a tiny nose by looking at facial images. These algo-
rithms may precisely identify these features, assisting in diagnosis of Down syndrome [76].

2.2.2. Genetic Screening

AI and ML can help with the analysis of genetic algorithm data to identify the early
risk of Down syndrome [77]. Medical experts may input a person’s genetic sequence into an
ML model, which can then compare it with a very large dataset of genetic profiles known
to be associated with Down syndrome [36]. The system can assess the likelihood of Down
syndrome and accurately identify biological markers.
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2.2.3. Analysis of Medical Data

AI algorithms can process patient medical records [78] to find patterns and links with
Down syndrome. This analysis includes historical test results, developmental milestones,
and symptoms. A huge collection of patient information can be used to train machine
learning models to spot patterns or warning signs that are typical of the ailment [79]. It can
thus aid medical professionals in developing more precise and effective diagnosis [80].

2.2.4. Support for Prenatal Diagnosis

AI and ML can also help with Down syndrome prenatal diagnosis [49]. Artificial intel-
ligence (AI) systems can spot possible indicators of Down syndrome in a growing fetus by
examining ultrasound images [81] or blood test data. Because of the early detection, parents
and medical professionals can better anticipate and support the child’s requirements.

2.2.5. Decision Support Systems for Healthcare

By making timely and accurate recommendations based on patient data, AI and ML
can serve as decision support tools for healthcare professionals [82]. ML models can predict
the risk of Down syndrome through incorporating clinical and genomic data analysis,
enabling healthcare practitioners to make well-informed decisions about additional diag-
nostic procedures or specialist referrals [83]. It is significant to remember that a medical
practitioner should always validate the final diagnosis [84]. The purpose of AI and ML in
the diagnosis of Down syndrome is to support medical practitioners by offering insightful
information and improving the precision and effectiveness of the diagnostic procedure.

3. Cognitive Challenges in Down Syndrome

Cognitive functioning is the collective term for a variety of mental processes, such as
retention, acquisition, reasoning, problem-solving, adaptability, and attention. Cognitive
functioning, which ranges from profound to borderline intellectual capacity, is a hallmark
of Down syndrome (DS) [8,85–87]. Most Down syndrome sufferers have moderate to
severe intellectual disabilities. Cognitive growth goes on all the way through childhood,
adolescence, and the first few years of adulthood. The loss of skills that are commonly
associated with dementia gradually follows this. When compared to visual information,
people with Down syndrome consistently have trouble understanding verbal information.
Learning, memory, and language problems that cause mild to severe intellectual disability
are characteristics of Down’s syndrome [85,86,88,89].

3.1. Speech, Mental Abilities, and Memory Retention

The cognitive profiles of those with the disease differ, with maintained visuospatial
short-term memory, associative learning, implicit long-term memory, poor morphosyntax,
verbal short-term memory, and explicit memory. Individuals with Down syndrome are
better at pictorial tasks equated to verbal short-term memory tasks [8,90]. Although infants
show less vocal response and environmental alertness than older children and adults, early
language milestones are often met within an age-expected range. It has been shown that
youngsters acquire their first words later than anticipated [85,86]. At the outset, it is usu-
ally recognized as a characteristic to have a small vocabulary, thoughtful communication,
and pragmatism in language. The usage of multi-word sentences is delayed as linguistic
demands rise, and strange communication patterns emerge. Persistent language problems
are noticed after a child is five. The language profiles of school-aged children reveal a
noteworthy lag in the progression of expressive language when compared to receptive
language. This discrepancy is most pronounced in the domains of expressive syntax and
phonological processing, where the most substantial delays are observed [87,91,92]. Syntac-
tic insufficiency is mainly evident in late infancy and the start of puberty. Adults have less
phonological processing, morphosyntax, and articulation issues with language, but their
semantic, pragmatic, and communicative goals remain largely unaltered. Learning, mem-
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ory, and other cognitive processes can all suffer from impaired language comprehension
processing [86,88,93,94].

3.2. Processing Speed, Inhibition, and Attention

The executive functions (EFs), which control behavior and cognition, include things
like attention, inhibition, and processing speed. Higher level executive function includes
skills like strategic planning, impulse control, systematic search, flexibility of thought and
action, and the ability to blend what one wants with what they can do [94]. Teenagers with
Down syndrome perform worse on tests of attention, perceptual quickness, response time,
and motor control when compared to peers with similar mental ability. These limitations
persist as individuals age, making it more challenging to allocate tasks, retain attention,
and respond reliably to situations [95,96]. Poor response inhibition is evident across the
whole developmental lifespan, with vocally mediated inhibition tasks being more difficult
and having poor inhibition of irrelevant information. Response time assessments yield
contradictory results, with faster reaction times compatible with intellectual functioning
but slower than those with mental age matching individuals who possess intellectual
disability [87,93].

3.3. Short-Term Auditory Memory

The visuospatial working memory system is more developed than the auditory work-
ing memory system, and verbal working memory deficits go beyond those seen in those
who have difficulty hearing and speaking well [93,97]. Lack of engaged learning may
contribute to diminished verbal memory retention in scholastic age adolescents and kids.
The ability to recall information correlates with syntax interpretation in both modalities,
illustrating the relationship between working memory and linguistic acquisition. When
compared to verbal working memory, tasks requiring less information or when the visual
and spatial components are assessed separately still have little impact on visual and spatial
short-term memory [98,99]. Children with Down syndrome have trouble with problem-
solving techniques, and as they become older, they take longer to complete planning
activities, even when the results are similar to those of children whose mental ages are
matched. Multitasking and time shifting are exceedingly challenging for children and
persons with Down syndrome, especially when it comes to vocally mediated tasks [100].
People with Down syndrome commonly experience verbal comprehension, self-monitoring,
and executive function deficits, in contrast to other genetic ID-related disorders. Addition-
ally, they erroneously and more slowly assimilate information [93,101–103].

3.4. Organization, Spatial Cognition, and Self-Monitoring

Children with Down syndrome frequently experience difficulties with integrating
new knowledge and problem-solving techniques, which delays down their developmental
progress. As individuals age, scheduling tasks take longer to accomplish, but their efficiency
is comparable to that of mental age matched controls [104]. For kids and people with Down
syndrome, multitasking and setting changing are extremely difficult, especially when it
comes to vocally mediated activities. Additionally, people with Down syndrome struggle
with verbal comprehension and self-awareness, frequently failing to indicate when they
have understood something [105,106]. Due to poor monitoring for intrusion mistakes and
problems avoiding irrelevant information from interfering with cognitive processes, adults
with Down syndrome still have trouble self-monitoring. The profile of visual-spatial ability
in people with Down syndrome is uneven, with some parts matching average cognitive
capacity and others falling short of projected developmental levels. Though cognitive
function is deteriorating, visuospatial abilities are still mostly intact [86,107,108].

3.5. Learning and Long-Term Memory

Children with Down syndrome have distinct degrees of learning ability, with dimin-
ished short-term and long-term memory learning abilities [109,110]. They do better at
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combining rewards with objects and with observational learning, but exhibit trouble with
instrumental learning [111,112]. They are more socially inclined and receptive to positive
reinforcement, enhancing the success in socially oriented learning. Visual learning is more
efficient than verbal learning, which shows that interpersonal abilities are robust. Problems
in attention and a high demand for processing contribute to long-term memory problems in
Down syndrome at the encoding and retrieval levels [113]. These deficits might be intrinsic
in origin rather than just a symptom of a language processing disorder. These inadequacies
persist throughout life, but they worsen with advancing years [103].

3.6. Associated Conditions and Disorders

People with Down syndrome are more likely to have a number of different health
issues, such as Dementia, autism spectrum disorders, hormonal, glandular issues, sensory
impairments, sleep disruption, seizures, and cardiac abnormalities [114,115]. Celiac disease,
hypothyroidism, leukemia, congenital heart abnormalities, and diabetes are additional
illnesses with increased occurrence in this group [85,86,116,117]. Many people with Down
syndrome are born with congenital heart defects, such as atrioventricular septal defect or
ventricular septal defect. These heart conditions may necessitate surgical intervention [114].
Hearing issues, including conductive or sensorineural hearing loss, are frequently observed
in individuals with Down syndrome. Regular hearing assessments are crucial for early
intervention [115]. Ocular problems like cataracts, strabismus (crossed eyes), and refractive
errors are more common among those with Down syndrome [118]. Hypothyroidism, which
is an underactive thyroid gland, is more prevalent in people with Down syndrome. Routine
monitoring of thyroid function is of utmost importance [117].

4. Discussion

Down syndrome, caused by a genetic anomaly (trisomy 21), manifests in character-
istic physical features and cognitive delays [9]. Individuals often contend with a range
of comorbidities, including heart defects, gastrointestinal issues, and increased suscepti-
bility to infections. These additional health concerns necessitate comprehensive medical
care and early interventions to address associated challenges and optimize overall well-
being [8,9]. Numerous co-morbidities (Figure 1) identified such as congenital heart defects,
celiac disease, gastrointestinal defects, seizures, thyroid disease, hematological disorders,
autism, and emotional and behavioral disorder (EBD) are known to affect the quality of
life in children with Down syndrome [8,119]. Table 2 presents the various specific disor-
ders/diseases as subcategories of these co-morbidities. Individuals with Down syndrome
are also predisposed to sleep disorder breathing (SDB) which includes central sleep ap-
nea (CSA), hypoxemia disorder, hypoventilation disorder, and obstructive sleep apnea
(OSA) [120,121]. Central airway anatomical features such as small oropharynx, mid-facial
hypoplasia, narrow nasopharynx, and macroglossia contribute DS towards increased sus-
ceptibility for SDB [122,123]. Many previous studies have reported SDB high prevalence
associated with Down syndrome condition compared to the general population [124–126].
Douglas Bush et al., in a retrospective large cohort study (n = 1242), identified high in-
cidence (28%) of pulmonary hypertension with associated co-morbidities such as OSA,
chronic hypoxia, recurrent pneumonia, and aspiration in patients with DS [127]. Early
management of respiratory disorders contributes towards improved condition and reduced
susceptibility of pulmonary hypertension in individuals with Down syndrome. Reports
based on co-morbidity epilepsy (seizure disorder) showed increased prevalence in indi-
viduals (8.1–26%) with Down syndrome compared to general population (1.5–5%) [128].
Major biological and metabolic factors present in Down syndrome patients contributing
to increased seizures include dyskinesia of dendrites, frontal/temporal lobe hypoplasia,
abnormal neuronal lamination, glutamatergic receptor GluR5 alteration, and congenital
heart disease [129,130]. Following seizures, there is a profound connection with other
associated co-morbidity i.e., dementia in Down syndrome patients. Hithersay et al., in a
prospective longitudinal study, found individuals in older age and late-onset of epilepsy
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were associated with increased risk of developing dementia in Down syndrome cases [131].
Another cross-sectional study by Bayen et al. determined high prevalence of dementia in
DS adults above 65 years with marked risk of developing Alzheimer disease (AD) [132].
Further, a neuroimaging study by Pujol et al. based on adults with DS showed significant
volume reduction in hippocampus and substantia innominata of brain anatomy specifi-
cally linked to cognitive impairment and dementia progression [133]. Early diagnosis of
dementia and AD in DS individuals is not possible due to pre-existing behavioral and intel-
lectual disorders. Recently, a study by Dekker et al. based on behavioral and psychological
symptoms of dementia in Down syndrome (BPSD-DS) scale identified behavioral changes
such as anxiety, agitation, depression, sleep disturbance, and apathy had significantly high
scores in DS+AD (Down syndrome with AD) compared to DS+Q (Down syndrome with
questionable dementia) and without dementia individual study groups [62,134]. Based
on other behavioral studies, individuals with DS presented symptoms such as sleep dis-
turbance, anxiety, depression, and apathy as alarming signs for developing AD [135–137].
Other neurodevelopment disorders associated with DS include autism spectrum disor-
der (ASD) and attention deficit hyperactivity disorder (ADHD), as investigated in recent
population based cohort study showing 42% ASD and 34% ADHD prevalence in DS indi-
viduals [138]. Pre-existing intellectual disability associated with Down syndrome might be
the facilitating factor for the characteristic heterogeneity in ASD symptoms. Congenital
heart defects (CHDs) are one of the profound co-morbidities associated with DS as the
prevalent cause of infant mortality [139–143]. Baban et al. investigated the frequency of
Down syndrome infants (N = 859) for CHD subtypes based on a single center study, report-
ing a high proportion with CHDs (72.2%) and 4.7% with atypical CHDs [144]. Following
research for DS-CHD (DS associated with CHD) trend in infants present less frequency
mainly due to selective abortion of fetus or diagnostic improvement for managing antenatal
CHD [113,145]. Patients with DS are reported to present two common types of cardiac
defects such as atrioventricular septal defect (45%) and ventricular septal defects (20–30%),
respectively [71,146]. The prevalence of different co-morbidities associated with Down
syndrome varies across the geographical population [147,148]. Further, the majority of
co-morbidities generally requires clinical and psychiatric management with not much effect
on mortality, except CHD and epilepsy. Future management of patients with DS thus
requires proper understanding of the co-morbidities associated for providing appropriate
help they need [147,148].
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Table 2. Co-morbidities and corresponding disorders/diseases.

Co-Morbidity Disorder/Disease

Neurological Disorders

• Alzheimer disease
• Dementia
• Excessive flexibility
• Intellectual disability
• Learning disability
• Lennox–Gastaut syndrome
• Less concentration
• Seizures

Congenital Heart Defects

• AVS defect
• Isolate PDA
• SA defect
• Tetralogy of Fallot
• VS defect

Musculoskeletal Disorders

• Broad small hands
• Decreased bone mass
• Growth retardation
• Hypotonia
• Short fingers
• Short height
• Vitamin D deficiency
• Small feet

Gastrointestinal Disorders

• Celiac disease
• Chronic constipation
• Duodenal atresia
• Gastroesophagal reflux
• Hirschsprung disease
• Imperforate anus
• Intermittent diarrhea
• Intestinal obstruction

Possible Genetic Anomalies
• Mosaicism
• Translocation
• Trisomy 21

Endocrinological Disorders

• Ambiguous genitalia
• Cryptorchidism
• Delayed puberty
• Micropenis
• Hyperthyroidism
• Hypothyroidism

Hematological Disorders

• Leukemia
• Myelopoiesis
• Neutrophilia
• Polycythemia
• Thrombocytopenia

Distinct Facial Features

• Flattened face and nose
• Palmer/Siamese crease
• Palpebral fissures
• Protruding tongue
• Short neck
• Slanting eyes
• Small head, mouth, and ears

ML algorithms have been employed to analyze large datasets of genetic and clinical in-
formation to gain insights into Down syndrome and improve patient care. Down syndrome
is a genetic disorder caused by the presence of an extra copy of chromosome 21, leading to
cognitive and developmental delays [8]. ML techniques have been used to identify biologi-
cal markers and patterns associated with Down syndrome. By analyzing genomic data from



Biomedicines 2023, 11, 3284 11 of 18

individuals with Down syndrome and comparing it with data from typically developing in-
dividuals, ML algorithms can identify specific genetic variations or expression patterns that
are characteristic of the condition [74,149]. These studies present pioneering applications
of artificial intelligence (AI) and machine learning (ML) in Down syndrome (DS) research.
Another study employs ML to scrutinize clinical records of 106 DS subjects, successfully
identifying key features associated with intellectual disability (ID). The models, including
random forest and gradient boosting, showcase high accuracy, spotlighting variables linked
to cognitive impairment, encompassing hearing, gastrointestinal health, thyroid function,
immune system, and vitamin B12 levels [74]. In a second study, addressing executive
function decline in adults with DS, data-driven techniques pinpoint constructive praxis,
verbal and immediate memory, planning, and written verbal comprehension as crucial
predictors for inhibition capacity in 188 adults, providing insights for tailored interven-
tions [149]. This can aid in early diagnosis, genetic counseling, and personalized treatment
strategies. Furthermore, ML algorithms can assist in the development of predictive mod-
els for assessing the risk of certain medical conditions commonly associated with Down
syndrome [73,150]. Another study addresses the frequent occurrence of obstructive sleep
apnea (OSA) in individuals with Down syndrome. Using a Logic Learning Machine, the
study develops a predictive tool with a cross-validated negative predictive value of 73% for
mild OSA and 90% for moderate or severe OSA. This cost-effective model includes survey
responses, medication history, anthropometric measurements, vital signs, age, and physical
examination findings, offering potential improvements to sleep-related healthcare [73].
ML also plays a role in improving educational interventions and therapies for individuals
with Down syndrome [74]. By analyzing data from educational programs, ML algorithms
can identify effective teaching strategies, personalize learning approaches, and provide
recommendations for individualized educational plans [74]. Additionally, ML-based tech-
nologies, such as speech and language processing algorithms, can assist in speech therapy
and communication interventions for individuals with Down syndrome [68]. This study
provides an in-depth analysis of AI-driven solutions that enhance communication and edu-
cation for disabled children, concluding with considerations for future developments and
ethical concerns associated with these technologies [68]. Together, these studies showcase
the multifaceted applications of AI and ML in advancing understanding, diagnosis, and
care for individuals with DS. It is important to note that the application of ML in Down
syndrome research and healthcare requires careful consideration of ethical and privacy
considerations. Ensuring the responsible use of data, protecting privacy, and addressing
potential biases in algorithms are crucial aspects that need to be addressed to fully harness
the potential of ML in improving the lives of individuals with Down syndrome [151]. These
studies collectively illuminate the transformative potential of artificial intelligence (AI)
and machine learning (ML) in diverse fields. From enhancing Down syndrome diagnosis
by pinpointing key cognitive indicators and predicting inhibitory capacity to predicting
sleep apnea risk and advancing assistive technologies for children with special needs,
the application of AI and ML showcases promising avenues for precision, efficiency, and
innovative solutions. Additionally, these studies also underscore the indispensable role of
AI in addressing data challenges across industries, offering valuable insights and strategies
for effective implementation. Furthermore, these findings collectively underscore the sig-
nificant impact of AI and ML in reshaping research, diagnosis, and intervention strategies
across various domains.

The present review extends prior research by providing a comprehensive exploration
of Down syndrome’s multifaceted dimensions. By synthesizing insights into neurodevel-
opmental aspects, associated comorbidities, and the integration of artificial intelligence
(AI), this study offers a significant extension of existing knowledge. The implication of our
review lies in its potential to steer future research, emphasizing the need for sophisticated
knowledge and technological advancements in AI for a more precise understanding of
Down syndrome. The ultimate goal is to leverage AI’s potential to enhance diagnostic accu-
racy, intervention strategies, and therapeutic advancements. However, challenges persist,
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notably in data quality, interpretability, and ethical considerations. While highlighting AI’s
transformative merits and potential clinical applications, we acknowledge the limitations
and call for future research focusing on refining methodologies and ethical frameworks to
maximize AI’s benefits in Down syndrome research and care pathways. These technologies
can improve screening, diagnosis, and personalized interventions, ultimately benefiting
individuals with Down syndrome. However, the responsible and ethical use of ML and AI
in Down syndrome care requires ongoing research, validation, and careful consideration of
privacy and fairness concerns. This line of research holds immense significance in reshaping
our approach to Down syndrome, paving the way for impactful innovations and improving
the lives of individuals affected by this condition. By harnessing the power of ML and AI
responsibly, practitioners can improve outcomes and provide better care for individuals
with Down syndrome. The continued collaboration between researchers, healthcare prac-
titioners, policymakers, and the Down syndrome community will drive further progress
towards enhancing the lives and prospects of individuals with Down syndrome. Future
studies should delve into these complexities to inform tailored interventions and support
systems that promote positive outcomes for individuals with DS and their families.

5. Conclusions

In conclusion, this comprehensive review has highlighted the neurodevelopmental
and cognitive characteristics observed in individuals with Down syndrome. The findings
underscore the diverse nature of this population, emphasizing the importance of tailored
interventions and support techniques. Moreover, emerging research has demonstrated
the potential of ML and AI algorithms in accurately identifying individuals at risk of
Down syndrome, aiding healthcare practitioners in early detection and intervention. While
individuals with Down syndrome may face cognitive challenges, it is crucial to recognize
and nurture their unique skills and qualities. By promoting inclusive environments and
providing customized support, we can empower individuals with Down syndrome to
reach their full potential and enhance their overall quality of life. Looking towards the
future, ongoing advancements in research and therapeutic interventions offer promising
prospects for individuals with Down syndrome. By further understanding the underlying
mechanisms and exploring innovative approaches, we can develop targeted interventions
that address specific cognitive and behavioral aspects. This, in turn, will enable individuals
with Down syndrome to attain greater levels of autonomy and well-being. Societal progress
and awareness play pivotal roles in fostering an inclusive and supportive environment for
individuals with Down syndrome. By prioritizing the cultivation of an inclusive society,
we can create opportunities for meaningful participation, education, and employment
for individuals with Down syndrome. This will contribute to their social integration and
overall quality of life.
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