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Abstract: Radiotherapy, a treatment method employing radiation to eradicate tumor cells and sub-
sequently reduce or eliminate tumor masses, is widely applied in the management of numerous
patients with tumors. However, its therapeutic effectiveness is somewhat constrained by various
drug-resistant factors. Recent studies have highlighted the ubiquitination/deubiquitination system,
a reversible molecular modification pathway, for its dual role in influencing tumor behaviors. It
can either promote or inhibit tumor progression, impacting tumor proliferation, migration, inva-
sion, and associated therapeutic resistance. Consequently, delving into the potential mechanisms
through which ubiquitination and deubiquitination systems modulate the response to radiotherapy
in malignant tumors holds paramount significance in augmenting its efficacy. In this paper, we com-
prehensively examine the strides made in research and the pertinent mechanisms of ubiquitination
and deubiquitination systems in governing radiotherapy resistance in tumors. This underscores
the potential for developing diverse radiosensitizers targeting distinct mechanisms, with the aim of
enhancing the effectiveness of radiotherapy.
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1. Introduction

Tumors not only have a low cure rate and poor prognosis but are also associated with
high morbidity and mortality rates globally, becoming one of the leading causes of death
worldwide [1]. Among the various treatment modalities for tumors that are emerging,
radiotherapy is promising with the help of real-time imaging, which can achieve precise lo-
calization; moreover, the use of radioactive rays can induce single- or double-strand breaks
(DSBs) in the cellular DNA of target tumors [2,3]. This approach kills tumor cells or inhibits
their growth in the most effective manner and causes minimal damage to normal tissues,
which benefits many patients with tumors. However, in clinical workup, not all patients
with tumors are sensitive to radiotherapy or respond well to this treatment, often because
of tumor heterogeneity [4] and dynamic changes in the tumor microenvironment [5–7].
This can lead to radiation tolerance in some patients after a period of standard radiotherapy
and, subsequently, tumor recurrence and/or distant metastasis. The regulatory network of
tumor cell radiosensitivity is intricate and complex, and the related cross-links play vital
roles, such as in DNA damage repair, cell cycle, cancer stem cells, cell signaling pathway
disorders or inactivation, the hypoxic tumor microenvironment, and related metabolic
disorders [8–11]. Therefore, exploring key molecules in the network of radiosensitivity
regulatory mechanisms, assessing effective and low-toxicity radiosensitizers, identifying
biomarkers that can predict the efficacy of radiotherapy, realizing individualized treat-
ment, and improving the local control rate of malignant tumors have always been research
directions to promote the development of radiotherapy.

In human cells, molecular modifications, such as m6A modification [12] and phospho-
rylation [13], dynamically regulate molecular function and stability in time and space by
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“remodeling” the molecular structure [14,15]. Recently, other modifications such as ubiqui-
tination and deubiquitination have attracted the attention of researchers. Ubiquitination
is a dynamic, multi-step enzymatic cascade reaction that tags proteins with ubiquitin; in
this process, ubiquitin is first activated by an E1 enzyme (ubiquitin-activating enzyme),
after which the E1 enzyme passes the activated ubiquitin to an E2 enzyme (ubiquitin-
conjugating enzyme), and the activated ubiquitin is then ligated or tagged to a substrate
protein catalyzed by an E3 enzyme (ubiquitin ligase) [16] which, in turn, catalyzes down-
stream biochemical reactions. Various ubiquitin-catalyzing enzyme systems possessing
different structures have been identified, including a wide variety of E3 ligases, indicating
the molecular specificity of the ubiquitination pathway [17] (Figure 1). These systems are
crucial for the precise regulation of cell growth, development, and stability. In most previ-
ous studies, it was demonstrated that ubiquitin molecules primarily exert their function by
binding with Lys residues, leading to different outcomes depending on the modified site.
For instance, the degradation of substrate proteins through the proteasome predominantly
hinges on K48-linked ubiquitin chains [18]. In contrast, K63 ubiquitin chains play a pivotal
role in mediating biological functions, such as DNA damage repair [19–21]. Furthermore,
recent research has confirmed that aside from Lys, modifications targeting Ser side chains
can also occur indirectly [22].

When researchers initially discovered ubiquitin [23], it was widely believed that
ubiquitination modifications primarily mediated protein degradation, regulating the levels
of cellular molecules [24]. However, through comprehensive studies on ubiquitination’s
function, it has been discovered that ubiquitin also possesses non-proteolytic functions.
It has been established that it plays widespread roles in various biological processes,
including its involvement in cell signaling pathways, DNA damage repair, cell division,
and endocytosis [25–27]. These biological processes are also pivotal in the development of
tumor cells. This significant finding suggests that ubiquitination modifications may play
crucial roles in the proliferation, migration, invasion, and even the therapeutic resistance of
tumor tissues, potentially serving as biomarkers for tumor diagnosis, therapeutic targets,
and prognosis prediction [28,29]. Notably, E3 ligase, a key enzyme in the final step, holds
promise as a drug target for tumor treatment, and investigations into potential anticancer
drugs targeting relevant components of the ubiquitination system, including E3 ligases, are
underway [30,31].

Human cells also harbor a deubiquitination system catalyzed by the enzyme deubiqui-
tinase (DUB), which removes ubiquitin from substrate proteins, thereby reversing substrate
ubiquitination [32]. The ubiquitination and deubiquitination systems work dynamically
to regulate protein stability and collectively maintain an organism’s normal biological
processes. Similarly, if the key enzymes of this dynamic system are genetically mutated or
dysfunctional, they can induce varying degrees of pathophysiological disturbances in the
organism, ultimately leading to the development of diseases [32].

This review centers on several prevalent tumors primarily treated with radiotherapy.
It delves into the effects of ubiquitination or deubiquitination modifications on specific
proteins and their influence on the radiosensitivity of these tumors (Table 1) (Figure 2).
Additionally, it outlines the clinical potential of targeting ubiquitinated or deubiquitinated
protein pathways to enhance the radiosensitivity of tumor cells.
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Figure 1. The biological processes and functions of the ubiquitination and deubiquitination sys-tems.
(A) Ubiquitin is first activated by an E1 enzyme, after which the E1 enzyme passes the activated
ubiquitin to an E2 enzyme, and the activated ubiquitin is then ligated or tagged to a substrate
catalyzed by an E3 enzyme. Deubiquitinase removes ubiquitin from the substrate, thereby reversing
the ubiquitination modification of the substrate. (B) Ubiquitin modification primarily mediates
protein degradation and regulates protein levels. Additionally, ubiquitin modification also possesses
non-proteolytic functions, including involvement in cell signaling pathways, DNA damage repair,
cell division, and endocytosis. (E1: ubiquitin-activating enzyme; E2: ubiquitin-conjugating enzyme;
E3: ubiquitin ligase; Ub: ubiquitin; ATP: adenosine triphosphate; AMP: adenosine monophosphate;
PPi: pyrophosphoric acid; DUB: deubiquitinase).

Table 1. The role of key enzymes in ubiquitination and deubiquitination in regulating the radiosensi-
tivity of solid tumors.

Cancer Types Enzyme Types Enzyme Substrate Mechanism References

Nasopharyngeal
carcinoma E3 TRIM21 GMPS

With the assistance of SERPINB5, TRIM21
mediates the ubiquitination and degradation
of GMPS, leading to the suppression of TP53

expression and subsequently inhibiting
cell apoptosis.

[33]

E3 TRIM21 VDAC2

TRIM21 mediates the ubiquitination and
degradation of VDAC2, effectively inhibiting
the release of mitochondrial DNA (mtDNA)

and consequently impairing the
radiation-induced anti-tumor immune
response–type-I interferon response.

[34]
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Table 1. Cont.

Cancer Types Enzyme Types Enzyme Substrate Mechanism References

E3 RNF8 Chk1, Chk2

Multiple factors such as Chk1 and Chk2 are
recruited and ubiquitinated by RNF8 to

regulate their activity and stability, leading to
DNA damage repair and resulting in

radiotherapy resistance.

[35]

E3 FBXW7 mTOR

FBP1 inhibits the autoubiquitination of
FBXW7, leading to the promotion of

downstream mTOR ubiquitination by FBXW7,
which in turn inhibits mTOR levels and

suppresses glycolysis, ultimately
enhancing radiosensitivity

[36]

deubiquitinase USP44 TRIM25

USP44 targets the E3 ubiquitin ligase TRIM25
for deubiquitination, leading to the

degradation of downstream Ku80 and
inhibiting DNA damage repair involving Ku80.

Additionally, USP44 regulates the cell cycle
and induces apoptosis, ultimately enhancing

radiation sensitivity.

[37]

deubiquitinase OTUD4 GSDME

OTUD4 stabilizes GSDME via
deubiquitination, thereby promoting

GSDME-mediated pyroptosis to enhance
radiation sensitivity.

[38]

Esophageal
Cancer E2 UBE2D3 hTERT

When UBE2D3 is knocked down, it not only
enhances the expression and activity of
telomerase enzyme hTERT to promote

telomere stability but also affects the cell cycle
and DNA repair capacity, thereby inducing

radiation resistance.

[39]

E3 SOCS6 c-Kit

SOCS6 catalyzes the ubiquitination and
degradation of c-Kit, affecting tumor cells’

stemness and thereby sensitizing them
to radiotherapy.

[40]

E3 RAD18 DNA-PKc

RAD18 promotes NHEJ-mediated repair of
DSBs by upregulating the phosphorylation

levels of DNA-PKc, resulting in resistance to
radiation therapy.

[41]

E3 PELI1 NIK

By inhibiting the activation of the NIK/NF-κB
signaling pathway through ubiquitination,
PELI1 promotes cancer cell apoptosis and

ultimately enhances radiosensitivity.

[42]

E3 β-TrCP TAZ

TRIB3 induces radioresistance by promoting
CSC properties through inhibiting

β-TrCP-mediated TAZ ubiquitination
and degradation.

[43]

Lung cancer E3 HDAC6 Chk1
HDAC6 mediates the ubiquitination and
degradation of Chk1, regulating radiation

sensitivity by influencing the cell cycle.
[44]



Biomedicines 2023, 11, 3240 5 of 24

Table 1. Cont.

Cancer Types Enzyme Types Enzyme Substrate Mechanism References

E3 β-Trcp Mxi1

With the assistance of S6K1, β-Trcp can
ubiquitinate and downregulate Mxi1 levels,
affecting Mxi1’s negative regulation of the

oncogene Myc, mediating radiation resistance
in lung cancer.

[45]

E3 CHIP p21

CHIP mediates the ubiquitination and
degradation of p21, inhibiting cellular

senescence induced by ionizing radiation,
thereby inducing radiation resistance.

[46]

E3 CHIP PBK
CHIP suppressed stem cell properties and the
radioresistance of NSCLC cells by inhibiting

the PBK/ERK axis.
[47]

E3 CHIP MAST1

CHIP disrupts the interaction between Hsp90β
and MAST1 and ubiquitinates and

downregulates MAST1 protein stability to
inhibit the stemness of stem cells.

[48]

E3 β-Trcp FOXN2

β-Trcp interacts with RSK2 kinase, targeting
FOXN2 for ubiquitination and degradation,
thereby promoting radiation resistance by
regulating cell cycle and cell proliferation.

[49]

E3 MDM2 BABAM2

PPDPF inhibits cell apoptosis and induces
resistance to radiation in lung cancer cells by

suppressing the MDM2-mediated degradation
of BABAM2.

[50]

E3 TRIM36 RAD51
TRIM36 promotes the ubiquitination of

RAD51, enhancing radiation sensitivity by
regulating DNA repair and cell apoptosis.

[51]

E3 FBXW7 SOX9
FBXW7 enhances radiation sensitivity by

targeting the SOX9/CDKN1A axis through
ubiquitination to inhibit cell apoptosis.

[52]

E3 UBR5 —
UBR5 suppresses the sensitivity of cancer

tissue to radiation by activating the
PI3K/AKT pathway.

[53]

E3 KEAP1 NRF2

CDK20 competitively binds the E3 ubiquitin
ligase KEAP1 to NRF2, enhances the

transcriptional activity of NRF2, and lowers
the cellular reactive oxygen species level.

[54]

E2 UBE2T FOXO1

UBE2T induces ubiquitination and
degradation of FOXO1, activating the
downstream Wnt/β-catenin signaling

pathway and promoting proliferation, EMT,
and radiation resistance in NSCLC.

[55]

Deubiquitinase USP9X KDM4C
USP9X regulates DNA damage repair by

deubiquitinating KDM4C, thereby inhibiting
cell sensitivity to radiation.

[56]

Deubiquitinase USP9X MCL1
USP9X inhibits cell apoptosis by maintaining

the stability of the anti-apoptotic
protein MCL1.

[57]
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Table 1. Cont.

Cancer Types Enzyme Types Enzyme Substrate Mechanism References

Deubiquitinase USP39 CHK2

USP39 stabilizes CHK2 via deubiquitination,
regulating cell apoptosis and the cell cycle after

DNA damage, promoting sensitivity to
radiotherapy and chemotherapy.

[58]

Deubiquitinase UCHL3 AhR

UCHL3 deubiquitinates and maintains the
stability of AhR protein, thereby increasing

PD-L1 expression and
enhancing radioresistance.

[59]

Deubiquitinase UCHL3 RAD51

Knockdown of UCHL3 can inhibit
RAD51-mediated DNA damage repair, leading

to increased sensitivity of cancer cells
to radiation.

[60]

Deubiquitinase USP14 —

Downregulation of USP14 leads to imbalances
in DSB repair pathways (NHEJ and HR),
resulting in ineffective repair of damaged

DNA and making cancer cells more sensitive
to cell death mediated by IR.

[61]

Breast cancer E3 UBE3C TP73

LINC00963 induces nuclear translocation of
FOSB and the consequent transcription
activation of UBE3C, which enhances

radioresistance by inducing
ubiquitination-dependent protein degradation

of TP73.

[62]

E2 UBE2D3 hTERT

UBE2D3 reduces the expression levels of
hTERT and cyclin D1 to regulate telomerase

activity and the cell cycle, thereby
increasing radiosensitivity.

[63]

E3 RING1 Rad51

β1-integrin regulates the protein level of
RING1, reducing the ubiquitination and

degradation of Rad51, thereby promoting
DNA damage repair and leading to

radiotherapy resistance.

[64]

E3 SKP2 PDCD4

SKP2 promotes radiation tolerance by
facilitating the ubiquitination and degradation

of PDCD4, inhibiting cell apoptosis, and
promoting DNA damage response.

[65]

E3 RNF126 MRE11

RNF126 mediates the ubiquitination of MRE11,
promoting its DNA exonuclease activity to

activate the ATR-CHK1 signaling pathway for
repairing damaged DNA, conferring resistance

to radiotherapy in triple-negative
breast cancer.

[66]

Deubiquitinase UCHL3 RAD51

UCHL3 targets RAD51 for deubiquitination,
promoting the binding of RAD51 with BRCA2
and facilitating the aggregation of RAD51 at

DNA double-strand breaks (DSBs), ultimately
leading to radiation tolerance.

[67]
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Table 1. Cont.

Cancer Types Enzyme Types Enzyme Substrate Mechanism References

Deubiquitinase USP7 CHK1
USP7 catalyzes the deubiquitination of CHK1,
promoting DNA damage repair and leading to

radiation resistance.
[68]

Deubiquitinase USP37 BLM

During DNA damage, USP37 is
phosphorylated by ATM, which in turn

promotes the deubiquitination of BLM by
USP37 to maintain the stability of BLM and

respond to DNA damage response, resulting in
decreased sensitivity to IR.

[69]

Deubiquitinase OTUD6A TopBP1

OTUD6A responds to DNA damage by
blocking the ubiquitination of TopBP1,

subsequently promoting CHK1
phosphorylation and regulating the cell cycle,

leading to resistance to radiotherapy
and chemotherapy.

[70]

Hepatocellular
carcinoma E2 UBE2T H2AX

UBE2T mediates the ubiquitination
modification of H2AX, further activating

CHK1, thereby regulating the cell cycle and
leading to radiation resistance.

[71]

E3 SOCS2 SLC7A11

SOCS2 mediates the ubiquitination and
degradation of SLC7A11, thereby promoting

ferroptosis and ultimately leading to
radiation sensitivity.

[72]

E3 RNF6 FoxA1
RNF6 can induce ubiquitination and

degradation of FoxA1 to regulate EMT
activation, leading to radiotherapy resistance.

[73]

Colorectal
cancer E3 TRAF4 JNK

TRAF4 promotes JNK ubiquitination, thereby
triggering the JNK/c-Jun signaling pathway.

c-Jun promotes the transcription of the
anti-apoptotic protein Bcl-xL, driving

radiation resistance.

[74]

E3 RAD18 —
Downregulating RAD18 promotes cell

apoptosis and enhances radiosensitivity by
activating the caspase-9-caspase-3 pathway.

[75]

E3 MDM2 p53

After being phosphorylated by RIOK1, G3BP2
is activated and promotes the

MDM2-mediated ubiquitination of p53,
leading to radioresistance through regulation

of the p53 signaling pathway.

[76]

E3 RING1b H2A

SIRT3 mediates mitophagy through the
PINK1/Parkin pathway, which subsequently
suppresses the expression of RING1b. This

suppression of RING1b inhibits H2A
ubiquitination and enhances DNA damage

repair, leading to increased resistance
to radiation.

[77]

Cervical cancer E3 FBXO6 CD147
FBXO6 mediates the ubiquitination and

degradation of CD147 to promote cancer cell
sensitivity to ionizing radiation (IR).

[78]
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Table 1. Cont.

Cancer Types Enzyme Types Enzyme Substrate Mechanism References

Deubiquitinase OTUD5 Akt
OTUD5 decreases the ubiquitination level of
Akt and affects the downstream molecules of

Akt, leading to radiosensitization.
[79]

Deubiquitinase USP21 FOXM1
USP21 activates YAP1 by deubiquitinating

FOXM1, thereby inhibiting the Hippo
signaling pathway to promote radioresistance.

[80]

Head and neck
squamous cell

cancer
Deubiquitinase BAP1 H2Aub

BAP1 mediates the deubiquitination of H2Aub,
thereby promoting DNA repair and leading

to radioresistance.
[81]

E3 UBR5 — UBR5 inhibits radiosensitivity by regulating
the P38-MAPK signaling pathway. [82]

E3 TRAF4 Akt

TRAF4 activates the Akt signaling pathway
through the ubiquitination pathway and

promotes the interaction between JOSD1 and
MCL-1, collectively enhancing the stability of
MCL-1 and conferring radiotherapy resistance.

[83]

Medulloblastoma E3 RNF8 PCNA

RNF8 mediates PCNA ubiquitination,
affecting DNA damage repair and reducing

the sensitivity of cancer cells to ionizing
radiation. It also regulates the cell cycle and

inhibits apoptosis.

[84]

Glioma E3 RAD18 —
RAD18 mediates radiation resistance by

inhibiting cell apoptosis and regulating DNA
damage repair.

[85]

E3 HACE1 NRF2

HACE1 not only competes with the E3 ligase
KEAP1 but also promotes the mRNA

translation of NRF2, collectively upregulating
the levels of NRF2. NRF2, through reducing
cellular ROS levels, decreases the response of

cells to radiation.

[86]

E3 HECTD3 PRDX1

IRAK1 inhibits the HECTD3-mediated
ubiquitination and degradation of PRDX1,
thereby stabilizing PRDX1, which in turn

promotes radioresistance by reducing
cellular autophagy.

[87]

E3 RNF168 53BP1

G0S2 regulates lipid droplet turnover, thereby
activating the mTOR-S6K signaling pathway,

attenuating the RNF168-mediated
ubiquitination of 53BP1 and promoting the

response of 53BP1 protein to ionizing radiation,
resulting in radioresistance.

[88]

Deubiquitinase USP44 H2Bub1

linc-RA1 inhibits the interaction between
H2Bub1 and USP44 to stabilize the level of
H2Bub1, thereby inhibiting autophagy and

contributing to radioresistance.

[89]

E3 RNF138 rpS3
RNF138 inhibits the cell apoptosis signaling

mediated by rpS3/DDIT3, thereby
inducing radioresistance.

[90]
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Figure 2. The same enzymes and/or mechanisms regulating radiosensitivity present in two or more
different tumor types. The same enzymes interact with different substrate proteins in different tumor
types, thereby regulating tumor radiosensitivity through various mechanisms, such as DNA damage
repair, apoptosis, and autophagy. (RNF8: Ring finger protein 8; Chk1 and Chk2: cell-cycle regulation
kinases; PCNA: Proliferating cell nuclear antigen; USP44: ubiquitin-specific protease 44; TRIM25:
tripartite motif-containing (TRIM) protein; H2Bub1: H2B K120 monoubiquitination; DNA-PKc: DNA-
dependent protein kinase complex; β-Trcp: β-transducin repeat-containing protein; Mxi1: MAX
interactor 1;AhR: aryl hydrocarbon receptor; CHIP: Carboxyl terminus of Hsc70-interacting protein;
PBK: PDZ-binding kinase; MAST1: microtubule-associated serine/threonine kinase 1).
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2. Mechanisms by Which Ubiquitination and Deubiquitination Systems Affect
Tumor Radiosensitivity
2.1. Nasopharyngeal Carcinoma

In the context of nasopharyngeal carcinoma (NPC), a prevalent malignancy among
head and neck tumors, radiotherapy stands as a cornerstone treatment [91]. Pertinent
studies have elucidated the pivotal roles played by ubiquitination enzymes and DUBs in
modulating NPC radiosensitization. Researchers have observed an elevated expression
of the E3 ligase TRIM21 in NPC which propels tumor cell proliferation. Additionally,
it was discovered that, aided by SERPINB5, radiation intensifies the TRIM21-mediated
ubiquitin degradation of GMPS. This culminates in the suppression of downstream TP53
expression, subsequently conferring radioresistance to tumor cells [33]. Another investiga-
tion unearthed an alternate mechanism through which TRIM21 hinders radiation-induced
antitumor immune responses. This occurs through its mediation of VDAC2 ubiquitination
degradation, leading to the inhibition of mitochondrial DNA release [34]. Similarly, the
E3 ligase RNF8 was shown to play a crucial role at DNA damage sites in NPC cells. By
recruiting and ubiquitinating various factors such as Chk1 and Chk2, RNF8 facilitates
DNA damage repair, consequently promoting the resistance of NPC cells to radiother-
apy [35]. Another study pointed out the interconnection between ubiquitination and
cellular metabolism in determining radiosensitivity. Specifically, HILPDA was found to
modulate mitochondrial cardiolipin levels by impeding the PINK1-mediated ubiquitin
degradation of CLS1. This process, in turn, bolstered mitochondrial autophagy, thereby
heightening the radioresistance of NPC [92]. Additionally, FBP1 was identified as an in-
hibitor of the auto-ubiquitination of the E3 ligase FBXW7, inducing FBXW7 to inhibit the
mTOR pathway. This dual action repressed glycolysis and amplified the radiosensitivity of
NPC [36]. Chen et al. discovered that the DUB USP44 exhibited a low expression in NPC
cells; however, USP44 induced the radiosensitization of NPC cells both in vitro and in vivo.
Further investigations have revealed that USP44 targets the E3 ligase TRIM25 for deubiqui-
tination, leading to the downstream degradation of Ku80. This, in turn, hampers the DNA
damage repair associated with Ku80. Simultaneously, USP44 regulates the cell cycle, and
the synergistic effect of these actions induces apoptosis and heightens the radiosensitivity
of NPCs [37]. Although it is widely accepted that radiation primarily induces apoptosis
in tumor cells [93], researchers have also noted the morphological traits of pyroptosis
in radiation-treated NPC cells. This process was subsequently found to be mediated by
GSDME and induced by radiation through the intrinsic mitochondrial apoptotic pathway.
Moreover, GSDME protein levels were found to be low in radiation-insensitive cancer
tissues. Researchers conducted a series of experiments in NPC cells, demonstrating that the
DUB OTUD4 stabilizes GSDME and heightens the radiosensitivity of NPC by promoting
GSDME-dependent pyroptosis. This research suggested a novel clinical avenue of targeting
the OTUD4/GSDME axis to induce pyroptosis, thereby enhancing NPC’s sensitivity to
radiotherapy [38].

2.2. Esophageal Cancer

Esophageal cancer, especially the predominant subtype of esophageal squamous cell
carcinoma (ESCC), is one of the most prevalent and lethal malignant tumors globally [1,94].
In the realm of ESCC treatment, particularly for locally advanced cases, radiotherapy
emerges as a highly effective tool [95]. Multiple studies have substantiated the effect of
ubiquitination-related enzymes on radiotherapy outcomes in esophageal cancer tissues,
operating through diverse pathways. For instance, the ubiquitin-conjugating E2 enzyme
variant UBE2D3 has been identified as a regulator of esophageal cancer radiosensitivity,
influencing it through various mechanisms. Notably, UBE2D3 knockdown augments the
expression and activity of telomerase hTERT, enhancing telomere stability. Simultane-
ously, it affects cell cycle control and DNA damage repair and induces radioresistance [39].
Another component, SOCS6, belonging to the E3 ubiquitin ligases, bolsters the radiosensi-
tivity of ESCC tumors. Further investigations have revealed that SOCS6 influences tumor
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cell stemness primarily by targeting the ubiquitination degradation of c-Kit, leading to
radiosensitization [40]. Previous studies have implicated the E3 ligase RAD18 in promoting
migration and invasion in ESCC [96]. Subsequent research uncovered RAD18’s role in
modulating ESCC radiosensitivity. In this case, RAD18, rather than acting as a ubiquitinat-
ing enzyme, enhances non-homologous end-joining (NHEJ)-mediated DSB repair rather
than homologous recombination (HR), favoring radiotherapy resistance by upregulating
DNA-PKc phosphorylation levels [41]. Similarly, SKP2, a substrate recognition subunit
of the SCFSKP2 ubiquitin ligase complex, boosts DNA damage repair in cancer cells by
regulating the expression of Rad51, a critical protein associated with the repair of DSBs.
This leads to cellular radioresistance; however, the precise mechanisms governing Rad51
expression require further elucidation [97]. In a study by Dai et al., an examination of cancer
tissues from 331 patients with ESCC compared with matched cancer-adjacent normal tissue
samples revealed a significant reduction in the expression of the E3 ligase PELI1 in ESCC
tissues. PELI1 was found to promote ionizing radiation (IR)-induced apoptosis. Further
probing into the molecular mechanism revealed that PELI1 curtails NF-κB-inducing kinase
(NIK) protein levels through ubiquitination, inhibiting the activation of the atypical NF-κB
signaling pathway. This promotion of cancer cell apoptosis heightens tumor sensitivity to
radiotherapy [42]. Suo et al. demonstrated that NRIP3 resisted radiation-induced cellular
damage by upregulating the expression of DDI1 and fostering the formation of a complex
combining DDI1 and RTF2. This, in turn, prompted the ubiquitination degradation of RTF2,
allowing cells to restart their replication forks [98]. Similarly, another study showcased
TRIB3’s role in promoting the cancer stem cell (CSC)-like properties of cancer cells by
inhibiting the β-TrCP-mediated ubiquitination degradation of TAZ (a key downstream
molecule of the Hippo pathway). This leads to induced radioresistance [43]. Additionally,
in ESCC, SNPH exacerbates radiation-induced oxidative damage by mediating mitochon-
drial aggregation and redistribution. However, further examination of radioresistant ESCC
cells revealed that SNPH can be ubiquitinated and degraded, contributing to cellular re-
sistance to radiation. This study posited that weakly expressed SNPH might serve as a
potential molecular indicator for predicting radiotherapy resistance, suggesting strategies
targeting SNPH to enhance the efficacy of radiotherapy in ESCC [99]. As mentioned above,
ionizing radiation induces the disruption of redox homeostasis through the generation
of reactive oxygen species (ROS), which is one of the main mechanisms underlying the
radiation-induced killing of tumor cells [100]. As confirmed in previous reports in the
literature, the LKB1-AMPK axis plays a crucial role in regulating cellular metabolism, par-
ticularly in maintaining redox homeostasis [101]. So, can the LKB1-AMPK axis regulate the
radiosensitivity of tumor cells? Researchers first found that the expression of the LKB1 pro-
tein was significantly increased in irradiated esophageal cancer cells and that LKB1 could
induce the resistance of xenograft tumors in nude mice to radiation. Further mechanistic
studies revealed that LKB1 primarily inhibits cell apoptosis and activates autophagy; both
pathways together induce radioresistance in tumor cells, and this effect requires the involve-
ment of AMPK [102]. However, another study identified an upstream regulatory molecule
of the LKB1-AMPK axis: the E3 ligase RNF146. RNF146 mediates LKB1 ubiquitination
to disrupt the formation of protein complexes between LKB1 and other proteins, thereby
inhibiting LKB1 activation, rather than exerting proteasomal degradation functions [103].
Therefore, it is reasonable to speculate that the nondegradative ubiquitination of LKB1 by
RNF146 may affect the regulation of esophageal cancer radiosensitivity by LKB1. However,
further experimental validation is required to confirm this. Within the deubiquitination
system, the DUB USP28 emerges as a regulator of cancer cell radiosensitivity through the
c-Myc/HIF-1α axis [104].

2.3. Lung Cancer

Globally, lung cancer remains a highly prevalent and lethal malignancy [1]. Recent
studies have revealed a diverse array of enzymes involved in ubiquitination, showing
aberrant expression in lung cancer development. They play pivotal roles in regulating cell
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proliferation, metastasis, and apoptosis through different pathways, as well as influencing
therapeutic resistance to achieve both carcinogenic and tumor suppressor effects [105,106].
For instance, the E3 ubiquitin ligase HDAC6 orchestrates the ubiquitination degradation
of Chk1, thereby modulating the cell cycle and subsequently influencing radiosensitivity
in non-small-cell lung cancer (NSCLC) [44]. In lung cancer tissues, Mxi1 exerts a negative
regulatory influence on the oncogene Myc. However, the E3 ubiquitin ligase β-Trcp ubiqui-
tinates and reduces Mxi1 protein levels, which leads to radioresistance in lung cancer [45].
Yang et al. made a further discovery, revealing that PRMT5 interacts with and methy-
lates Mxi1. This event promotes the β-Trcp-mediated ubiquitination degradation of Mxi1,
resulting in radioresistance [107]. Similarly, the E2/E3 hybrid ubiquitin–protein ligase
ubiquitin-conjugating enzyme E2 O (UBE2O) mediates the ubiquitination degradation of
Mxi1 [108]. The E3 ubiquitin ligase CHIP, however, impedes ionizing radiation-induced
cellular senescence by mediating the ubiquitination degradation of p21. This process ulti-
mately induces resistance to radiation in cancer cells [46]. However, a separate study found
that CHIP could inhibit NSCLC stem cell properties and enhance radiosensitivity by in-
hibiting the PBK/ERK axis [47]. Additionally, another study demonstrated that CHIP could
also regulate radiosensitivity by disrupting the interaction between Hsp90β and MAST1.
This leads to the ubiquitination and downregulation of MAST1 stability, inhibiting the
stemness of NSCLC stem cells [48]. Similarly, FOXN2 can modulate cell cycle redistribution
to influence the sensitivity of lung cancer cells to radiation. FOXN2 depletion results in an
increase in the number of S-phase cells. Further experiments revealed that the E3 ubiquitin
ligase β-Trcp interacts with the RSK2 kinase, directly targeting the ubiquitin degradation of
FOXN2. This further modulates cell cycle redistribution and cell proliferation, ultimately
promoting lung cancer radioresistance [49]. PPDPF induces radioresistance in lung cancer
cells by inhibiting apoptosis through the inhibition of BABAM2 degradation mediated
by the E3 ligase MDM2 [50]. Cui et al. discovered that the deletion of FBXL14 promotes
the expression of TWIST1 in NSCLC after radiation exposure, subsequently inducing the
epithelial-to-mesenchymal transition (EMT) to promote radioresistance in cancer cells [109].
However, in lung adenocarcinoma cells (LUAD), the E3 ubiquitin ligase TRIM36 enhances
radiosensitivity by promoting RAD51 ubiquitination and regulating DNA damage repair
and apoptosis [51]. Another E3 ligase, FBXW7, inhibits NSCLC apoptosis and enhances
radiosensitivity by targeting the SOX9/CDKN1A axis for ubiquitination [52]. Similarly,
the E3 ligase UBR5 inhibits radiosensitization in NSCLC through the activation of the
PI3K/AKT pathway [53]. Additionally, CDK20 competes with NRF2 for E3 ubiquitin
ligase KEAP1 binding, enhances the transcriptional activity of NRF2, and participates in
the oxidative stress response. This ultimately reduces ROS levels in the cells, leading to
radioresistance in lung cancer cells [54]. The E3 enzyme FBXO22 mediates the ubiquitin
degradation of PD-L1, increasing the sensitivity of NSCLC to IR and cisplatin [110]. Beyond
common E3 enzymes, the ubiquitin-conjugating enzyme E2T (UBE2T), highly expressed
in NSCLC tumor tissues, induces the ubiquitin degradation of FOXO1 and activates the
downstream Wnt/β-catenin signaling pathway. This promotes NSCLC proliferation, the
EMT, and radiation resistance [55].

In addition to ubiquitination, DUBs also play a crucial role in modulating the ra-
diosensitivity of lung cancer tissues. For instance, USP9X can inhibit the ubiquitination
degradation of its downstream target, KDM4C, through deubiquitination. This event
regulates DNA damage repair via the TGF-β2/Smad/ATM signaling pathway, ultimately
inhibiting cellular radiosensitivity [56]. Another study uncovered an alternative mecha-
nism through which USP9X regulates the radiosensitivity of cancer cells in NSCLC. USP9X
maintains the stabilization of the anti-apoptotic protein MCL1 which, in turn, inhibits
apoptosis [57]. Similarly, the DUB USP39 stabilizes CHK2 (checkpoint kinase 2) via deu-
biquitination. CHK2, in turn, promotes the sensitivity of cancer tissues to radiotherapy
by regulating apoptosis and cell cycle checkpoints after DNA damage. However, this
study also demonstrated downregulated levels of USP39 and CHK2 in lung cancer cells,
which may contribute to resistance to radiotherapy treatment in lung cancer tissues [58].
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Xu et al. were the first to discover that the DUB UCHL3 was upregulated in NSCLC
tissues and cells. UCHL3 maintains the stability of AhR proteins through deubiquitination,
resulting in increased PD-L1 expression and enhanced radioresistance of NSCLC cells.
The researchers further explored the upstream mechanism and confirmed that LINC00665
sponges miR-582-5p, thereby upregulating UCHL3. This raised the possibility of target-
ing the LINC00665/miR-582-5p/UCHL3/AhR axis to regulate radiosensitivity in NSCLC
cells [59]. Liu et al. performed DUB UCHL3 knockdown to inhibit RAD51-mediated DNA
damage repair, leading to the radiosensitization of NSCLC cells [60]. Another study found
that the downregulation of the DUB USP14 led to an increase in NHEJ and a lack of HR,
resulting in an imbalance in the DSB repair pathway and a failure to repair damaged DNA.
This made NSCLC cells more sensitive to IR-mediated cell death [61].

2.4. Breast Cancer

Breast cancer is one of the most prevalent malignancies in women, and radiotherapy
is a widely employed and effective clinical treatment, particularly for patients undergoing
breast-conserving surgery [111,112]. An analysis of the Gene Expression Omnibus (GEO)
databases GSE31863 and GSE101920 revealed the upregulation of the E3 ligase UBE3C
in breast cancer tissue samples, and its elevation correlated with adverse radiological
responses. Correlation experiments were conducted on molecules upstream and down-
stream of UBE3C; LINC00963 activates UBE3C transcription by facilitating the nuclear
translocation of FOSB, and UBE3C catalyzes the ubiquitination degradation of the tumor
suppressor TP73, thus enhancing the radioresistance of tumor cells [62]. Similarly, ubiquitin-
conjugating enzyme E2 C (UBE2C) also plays a role in regulating the radiosensitivity of
breast cancer cells, though the exact mechanism requires further exploration [113]. The
E2 family member UBE2D3 not only impacts radiosensitivity in esophageal cancer [39]
but also in breast cancer. UBE2D3 modulates telomerase activity and the cell cycle by
reducing the expression of telomerase components hTERT and cyclin D1, leading to in-
creased radiosensitivity [63]. β1-integrins have been shown to regulate breast cancer cell
migration and mediate resistance to radiotherapy [114,115]. They were found to reduce the
ubiquitylation of Rad51, a key factor in DNA damage repair, by modulating the level of
the ubiquitin–protein ligase E3 RING1. This reduction in the ubiquitination degradation
of Rad51 promotes DNA damage repair and contributes to radiotherapy resistance [64].
However, another study discovered that the DUB UCHL3 targets RAD51 for deubiquitina-
tion. Its role in this context primarily affects the function of RAD51 rather than the stability
of the protein. This occurs through the promotion of RAD51 binding to BRCA2 and the
facilitation of RAD51 aggregation at DSBs, leading to radiation resistance in cancer cells [67].
The E3 enzyme SKP2 fosters radiation tolerance in breast cancer by inhibiting apoptosis
and promoting DNA damage response through PDCD4 ubiquitination degradation [65].
In triple-negative breast cancer (TNBC), the E3 ubiquitin ligase RNF126 mediates MRE11
ubiquitination. Instead of inducing degradation, RNF126 enhances its DNA exonuclease
activity, activating the ATR-CHK1 cascade signaling for DNA damage repair. This confers
resistance to radiotherapy in TNBC. Additionally, for the first time, it was found that IR
induces the expression of RNF126 by activating the HER2-AKT-NF-κB pathway [66]. One
study found that miR-205 was downregulated in radioresistant breast cancer cells. Further
investigation revealed that miR-205 inhibits DNA damage repair by targeting ZEB1 and
Ubc13, thereby allowing radiosensitization [116]. Another study demonstrated that ENO1
was associated with radioresistance in breast cancer cells through an analysis of data from
the GEO database. Experimentally, it was shown that ENO1 enhances radioresistance
in breast cancer by regulating mitochondrial homeostasis to reduce ROS production and
inhibit apoptosis. Furthermore, LINC00663, an upstream regulator of ENO1, affects IR
resistance by enhancing the E6AP-mediated DNA damage repair of ENO1 [117]. In TNBC,
the expression of the E3 ubiquitin ligase TRIM32 is upregulated and promotes radiotherapy
resistance. Mechanistically, TRIM32 could compete with TC45 for STAT3 binding, thereby
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inhibiting the TC45-mediated dephosphorylation of STAT3 and maintaining STAT3 activity,
ultimately promoting TNBC radiotherapy resistance [118].

Additionally, deubiquitination plays a crucial role in regulating radiosensitivity. Re-
cent studies have confirmed that CHK1 (checkpoint kinase 1) can promote the EMT in
TNBC [119]. However, it has been demonstrated that the DUB USP7 catalyzes the deu-
biquitination of CHK1, facilitating DNA damage repair and leading to radioresistance.
ZEB1 promotes interactions between USP7 and CHK1 [68]. Wang et al. proposed the in-
volvement of the miR-200c/LINC02582/USP7/CHK1 signaling axis in regulating radiation
resistance [120]. Following DNA damage, the DUB USP37 is phosphorylated by ATM.
This promotes USP37 to respond to the DNA damage response (DDR) by maintaining
the stability of BLM through the deubiquitination pathway, resulting in a decrease in
IR sensitivity [69]. Similarly, the DUB OTUD6A is recruited to the site of DNA damage
after dephosphorylation by PP2A. OTUD6A responds to DNA damage by blocking Top
BP1 polyubiquitination, thus maintaining its stability. This subsequently promotes the
phosphorylation of CHK1, regulating the cell cycle and leading to tumor cell resistance to
chemoradiotherapy. Researchers also demonstrated that when OTUD6A is absent, mice
become sensitive to IR [70].

In the context of the ubiquitination system, it is worth mentioning the ubiquitin-editing
enzyme A20, which primarily regulates inflammation and immunity in an organism [121]
and has also been found to be involved in tumor development [122]. However, it has been
observed that A20 is upregulated in invasive breast cancer. When A20 is knocked down,
there is an increase in NHEJ activity and a decrease in HR, disrupting the homeostasis
of the DNA damage repair pathway. This promotes sensitivity to DNA damage and
improves the sensitivity of cancer cells to radiotherapy. Mechanistically, A20 interacts with
H2A by disrupting the E3 enzyme RNF168, thereby regulating DNA damage repair and
maintaining genome stability [123].

2.5. Hepatocellular Carcinoma

Radiotherapy serves as a localized treatment option for hepatocellular carcinoma
(HCC), one of the prevalent types of solid malignancies. The E2-conjugating enzyme UBE2T
modulates cell cycle arrest by facilitating H2AX ubiquitination modification. This action
activates CHK1, leading to the radioresistance of HCC cells [71]. Pro- and anti-apoptotic
proteins coexist within tumor tissues [124]. Specifically, in P53-mutant HCC tissues, the E3
ubiquitin ligase CDC20 disrupts the Bax/Bcl-2 balance to avoid apoptosis and regulates
cell cycle blockage, resulting in radiation resistance in HCC cells [125]. Ferroptosis is one of
the main ways to kill HCC cells via radiation. COMMD10 disrupts Cu-Fe homeostasis in
HCC cells, thus regulating the ubiquitination degradation of HIF1α. This inhibition of the
HIF1α/CP loop enhances ferroptosis and radiosensitization [126]. Another study found
that radiation sensitizes ferroptosis which, in turn, contributes to the radiation, “reverse”
promoting the killing of HCC cells. This process involves the E3 ubiquitin ligase SOCS2,
which mediates the polyubiquitination degradation of the downstream molecule SLC7A11,
promoting ferroptosis and ultimately radiosensitizing HCC cells [72]. Previous research
indicates that FoxA1 plays a crucial role in regulating the EMT [127]. Further investigation
revealed that the E3 ubiquitin ligase RNF6 triggers the ubiquitination degradation of
FoxA1, thus activating the EMT in HCC cells and causing radioresistance [73]. The long
non-coding RNA NEAT1 is a source of radioresistance in HCC cells. Specifically, NEAT1v1
protects these cells from radiation-induced oxidative stress by boosting the mitochondrial
localization of PINK1 and upregulating Parkin expression. This activates PINK1/Parkin
pathway-mediated ubiquitin-dependent mitochondrial autophagy and protects HCC cells
from radiation-induced oxidative stress, involving key factors such as GABARAP (a key
factor in mitochondrial autophagy) and the antioxidant enzyme SOD2 [128]. In both HCC
and colon cancer, PXR promotes MDM2 auto-ubiquitination, impairing MDM2-mediated
ATF3 protein degradation. This enhances ATF3-mediated ATM activation in response
to DNA damage, leading to radiation resistance [129]. Lastly, CPS1 is a key enzyme in
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the hepatic urea cycle, and its expression is downregulated in HCC cells. CPS1 silencing
contributes to radiation resistance via c-Myc stability mediated by the ubiquitin–proteasome
system [130].

2.6. Colorectal Cancer

Colorectal cancer is one of the gastrointestinal tumors with the highest incidence.
Owing to atypical early symptoms, most patients are diagnosed at an advanced stage [131].
Radiotherapy plays a crucial role in treating patients with colorectal cancer, particularly
those with advanced cases. Elevated levels of ubiquitinated proteins in human colorectal
cancer SW620 cells follow C-ion irradiation. Treatment with proteasome inhibitors could
enhance cell sensitivity to C-ion irradiation [132]. This suggests that ubiquitination and
deubiquitination modifications potentially play significant roles in modulating the efficacy
of radiotherapy in colorectal cancer. For instance, in rectal cancer, UBE2B can decrease
cellular sensitivity to radiation by modulating DNA damage repair [133]. It has been
shown that radiation in colorectal cancer prompts the E3 ligase FBW7 to target Mcl-1 for
ubiquitination degradation. However, in the absence of the E3 ligase Skp2, this process can
be facilitated, thereby enhancing the sensitivity of colorectal cancer (CRC) cells to radiother-
apy. The exact mechanism underlying how Skp2 deficiency promotes interactions between
FBW7 and Mcl-1 needs further exploration [134]. Another study revealed that the E3 ligase
TRAF4 promotes Jun N-terminal kinase (JNK) ubiquitination, subsequently triggering
the JNK/c-Jun signaling pathway. This leads to the activation of the transcription of the
anti-apoptotic protein Bcl-xL, which drives radioresistance in CRC cells [74]. In addition to
apoptosis, cellular autophagy plays a crucial role in colorectal cancer development [135].
ATG3 plays a pivotal role in the cellular autophagy pathway [136]. Further studies have
revealed that in colorectal cancer, the long non-coding RNA (lncRNA) SP100-AS1 regulates
cellular autophagy by modulating the level of ATG3 ubiquitylation. This stabilization of
the ATG3 protein level attenuates the radiosensitivity of colorectal cancer. This experiment
also suggested another mechanism by which SP100-AS1 affects autophagic activity—by
acting as a sponge for miR-622 to directly stabilize ATG3, while miR-622 targets ATG3
mRNA [137]. Researchers initially examined pre-treatment specimens from patients with
locally advanced rectal cancer. They found that patients with low levels of the E3 ubiq-
uitin ligase RAD18 responded better to neoadjuvant chemoradiotherapy (nCRT). This
suggests that RAD18 may potentially serve as a predictor of nCRT efficacy. Further inves-
tigation confirmed that the downregulation of RAD18 enhances cell radiosensitivity and
5-Fu sensitivity, promoting apoptosis by activating the caspase-9-caspase-3 pathway [75].
Chen et al. demonstrated that the activation of G3BP2 by RIOK1-mediated phosphory-
lation modulates the p53 signaling pathway by promoting the ubiquitination of p53 by
MDM2. This culminates in colorectal cancer’s context of radioresistance [76]. In colorectal
cancer cells with mitochondrial dysfunction, SIRT3 mediates mitochondrial autophagy
through the PINK1/Parkin pathway. It also inhibits the expression of the ubiquitin lig-
ase RING1b, further suppressing RING1b-mediated H2A ubiquitination and promoting
DNA damage repair, resulting in radiation resistance in tumor cells [77]. In colorectal
cancer, RBBP6 heightens radiation resistance. These researchers suggest that RBBP6 may
regulate radiosensitivity, in part, by modulating the MDM2-mediated degradation of p53
ubiquitination [138].

2.7. Cervical Cancer

Cervical cancer, prevalent among middle-aged and elderly women, underscores the
importance of radiotherapy in comprehensive treatment. Previous studies have shown
that the ubiquitin system exhibits abnormal immune expression in HPV-positive cervical
cancer tissues [139]. In this process, the E6-associated protein (E6AP) acts as an E3 ligase,
mediating the degradation of p53 through the proteasome, thereby influencing the pro-
gression of cancerous tissues [140]. Further research revealed that upstream miR-375 can
downregulate the ubiquitin ligase E3A (UBE3A), that is, E6AP, which subsequently affects
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the expression of the downstream factor p53, ultimately promoting the radiosensitization
of cancer cells [141]. Moreover, in cervical cancer cells, the E3 ubiquitin ligase FBXO6
orchestrates the ubiquitination degradation of CD147. This promotes sensitivity to IR in
radiotherapy-resistant cancer cells. However, heat shock protein 90 (HSP90) hinders this
process, mediating radiotherapy resistance [78]. In addition to the ubiquitination system,
the deubiquitination system also holds significance. It has been demonstrated that the DUB
USP53 upregulates DDB2, facilitating DNA damage repair. Conversely, USP53 regulates
the expression of the cell-cycle-associated protein CDK1, leading to radioresistance [142].
Additionally, the DUB OTUD5 leads to radiosensitization by decreasing the ubiquitination
level of the signaling molecule Akt. This, in turn, affects Akt downstream molecules. How-
ever, further studies are needed to target downstream regulatory molecules [79]. Similarly,
the DUB USP21 activates YAP1 by negatively regulating the ubiquitination of FOXM1. This
inhibits Hippo signaling, thereby promoting radioresistance [80].

2.8. Head and Neck Squamous Cell Carcinoma (HNSCC) (Excluding NPC)

In head and neck squamous cell carcinoma, researchers found that the DUB BAP1
targets the substrate H2Aub for deubiquitination. This activity leads to radioresistance by
promoting DNA damage repair [81]. Another research team specifically studied laryngeal
cancer and discovered that the E3 ligase UBR5 inhibits radiosensitization by modulating
the P38-MAPK signaling pathway [82]. In a separate study focused on laryngeal squamous
cell carcinoma (LSCC), a significant increase in the expression of the DUB USP7 was ob-
served in irradiated LSCC cells. This suggests that USP7 may influence the effectiveness of
LSCC radiotherapy. As most patients with LSCC carry p53 mutations, which are important
downstream genes of USP7, researchers examined the role of USP7 in radioresistance. They
found that knocking down USP7 increased the radiosensitivity of p53-mutant LSCC cells
but decreased the radiosensitivity of p53 wild-type cells. Further exploration is needed to
understand how the USP7-p53 downstream pathway regulates radiosensitization [143].
In the case of oral squamous cell carcinoma, the E3 ligase TRAF4 activates Akt through
the ubiquitination pathway, inhibits GSK3β activity and MCL-1 phosphorylation, and
enhances the regulatory effects of the DUB JOSD1 on MCL-1. This series of actions ulti-
mately increases the stability and expression of MCL-1, conferring cellular resistance to
radiotherapy [83].

2.9. Central Nervous System (CNS) Tumors

Studies on central nervous system (CNS) tumors, specifically medulloblastoma, have
shown that the E3 ubiquitin ligase RNF8 mediates PCNA ubiquitination. This action affects
DNA damage repair and decreases the sensitivity of cancer cells to ionizing radiation, and
it can regulate cell cycle and inhibit apoptosis [84]. In gliomas, two mechanisms have
been identified. First, the E3 enzyme RAD18 confers radiation resistance to glioma cells by
inhibiting apoptosis and regulating DNA damage repair [85]. Second, the E3 ligase HACE1
enhances the protein stability of NRF2 by competitively binding to NRF2 with another
E3 ligase, KEAP1, and it also promotes the IRES-mediated translation of NRF2 mRNA
together with the upregulation of NRF2. NRF2 reduces glioma cells’ sensitivity to radiation
by decreasing cellular ROS levels. However, the above biological process is notably inde-
pendent of HACE1’s E3 ligase activity [86]. Additionally, IRAK1 promotes radioresistance
by inhibiting the E3 ubiquitin ligase HECTD3-mediated ubiquitination degradation of
PRDX1. This stabilization of PRDX1 reduces cellular autophagy, contributing to radiore-
sistance [87]. Similarly, linc-RA1 inhibits the interaction between H2Bub1 and the DUB
USP44 to stabilize H2Bub1 levels, thereby inhibiting autophagy and contributing to glioma
radioresistance [89]. A study focusing on glioma stem-cell-like cells found that G0S2 regu-
lates lipid droplet turnover and inhibits the E3 enzyme RNF168-mediated ubiquitination
of 53BP1 through the mTOR-S6K signaling pathway. This promotes 53BP1’s response to
ionizing radiation, enhancing DNA damage repair and glioma radioprotection [88]. In
highly malignant glioblastomas, the E3 ubiquitin ligase RNF138 has been shown to mediate
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ribosomal protein S3 (rpS3) ubiquitination, thereby inhibiting rpS3/DDIT3-mediated apop-
totic signaling when stimulated by radiation and inducing radioresistance in glioblastoma
(GBM) cells [90]. A comparison of various glioblastoma cell lines revealed that the DUB
USP9x affects cell survival by regulating Mcl-1 levels in some cell lines. However, in
others, USP9x’s role in radiosensitization was found to be independent of Mcl-1 levels.
Researchers thus concluded that USP9x can regulate cellular radiosensitization through
both Mcl-1-dependent and Mcl-1-independent mechanisms [144].

3. Discussion

Radiotherapy stands as a cornerstone in the personalized treatment of patients with
cancer. However, inherent or acquired resistance to radiation is a major cause of the low
efficacy of radiotherapy and significantly limits its effectiveness. Extensive research has
shown that enzymes orchestrating ubiquitination and deubiquitination processes play
pivotal roles in governing tumor behaviors, such as proliferation, migration, invasion, and
therapeutic resistance. Ubiquitination, a widespread protein modification, hinges on three
distinct enzymes for the covalent attachment of ubiquitin to substrate proteins, a process
counteracted by DUBs.

This review delves into the advancements surrounding enzymes within the ubiqui-
tination/deubiquitination system in modulating radiosensitization. This understanding
paves the way for innovative strategies in radiosensitization, showing immense clinical
potential. A prime example is the clinical application of the proteasome inhibitor borte-
zomib in treating multiple myeloma [145], underscoring the feasibility of targeting the
ubiquitin–proteasome pathway in cancer therapy. Nevertheless, there remain challenges
to be addressed through comprehensive future investigations. Firstly, ubiquitin catalytic
enzymes, particularly E3 enzymes, exhibit vast diversity and are extensively involved in
diverse biological processes. Mutations, inhibition, or overexpression in these enzymes
can have far-reaching impacts on downstream biological processes, potentially leading
to disease. Thus, when proposing treatment targeting a pivotal enzyme, its involvement
in normal activities must be carefully considered. Secondly, while proteasome inhibitors
in the ubiquitination system have gained traction in basic research for treating malignant
tumors, especially hematological malignancies, their clinical application in solid tumors
remains relatively limited [146]. Further in-depth clinical studies are imperative to validate
their broader biological functions for effective translation into clinical practice. Moreover,
studies examining whether these drugs influence radiosensitivity and whether they syn-
ergize with radiotherapy are scarce and in the early stages. For instance, the proteasome
inhibitor MG132 has been shown to enhance the radiosensitivity of lung cancer cells [147],
but this warrants verification through clinical experiments. Additionally, radiotherapy
inevitably inflicts irreversible radiation damage on surrounding normal tissues. Conse-
quently, changes in the activity of enzymes mediating ubiquitination/deubiquitination
after radiotherapy raise questions about potential links to radiation damage. Can these en-
zymes be targeted to minimize radiation-induced harm? Lastly, given the intricate network
of mechanisms involving ubiquitination/deubiquitination in regulating radiosensitivity,
it is evident that for the same tumor, such as lung cancer, multiple enzymes collectively
regulate radiosensitivity. However, the same enzyme may function through a variety of
substrate proteins; even for different tumors, the same enzyme can regulate radiosensitivity
(Figure 2). The influences of the factors are intricate and complex, suggesting that if we
want to intervene in radiosensitivity, the effect of targeting a certain enzyme individually
may yield unsatisfactory results. Therefore, it is reasonable to posit that identifying a
more upstream or downstream co-factor may yield superior outcomes. In the future, we
also hope to explore a broader spectrum of key enzymes to intervene in radiosensitivity,
benefiting a larger number of patients.

While significant strides have been made in ubiquitination/deubiquitination research,
the clinical translation of therapeutics targeting ubiquitination is still a journey fraught
with challenges. It necessitates concerted efforts from researchers. In the future, delving



Biomedicines 2023, 11, 3240 18 of 24

into the undiscovered mechanisms through which various ubiquitinating enzymes and
DUBs influence radiosensitivity remains paramount. This involves further exploration
of their upstream/downstream target molecules. Identifying meaningful ubiquitinating
enzymes and DUBs as prognostic indicators for radiotherapy or as targets for antitumor
drugs holds promise for future advancements in cancer treatment.

4. Conclusions

Radiation resistance has always been a detrimental factor in the efficacy of radiother-
apy. Increasing the radiation dose may improve local control in patients, but this approach
is often abandoned due to increased damage to surrounding normal tissues. Promoting
the radiosensitivity of tissues may be a favorable approach for local control. Here, we
emphasize that the enzymes involved in ubiquitination/deubiquitination are important
factors in regulating radiosensitivity. On the one hand, most studies indicate that the
expression of certain catalytic enzymes can mediate the development of radioresistance
in tumors. On the other hand, some enzymes increase radiosensitivity through various
pathways. This suggests that the ubiquitination/deubiquitination system has the potential
to become a target for enhancing the effectiveness of radiation therapy and a biomarker
for predicting the efficacy of combination therapy. We believe that with the continuous
advancement of technology, drugs targeting the ubiquitination/deubiquitination system
can be reasonably applied in clinical practice, benefiting more cancer patients.
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