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Abstract: Alzheimer’s disease (AD) is characterized by progressive accumulations of extracellular
amyloid-beta (Aβ) aggregates from soluble oligomers to insoluble plaques and hyperphosphorylated
intraneuronal tau, also from soluble oligomers to insoluble neurofibrillary tangles (NFTs). Tau and Aβ

complexes spread from the entorhinal cortex of the brain to interconnected regions, where they bind
pattern recognition receptors on microglia and astroglia to trigger inflammation and neurotoxicity
that ultimately lead to neurodegeneration and clinical AD. Systemic inflammation is initiated by
Aβ’s egress into the circulation, which may be secondary to microglial activation and can confer
both destructive and reparative actions. Microglial activation pathways and downstream drivers
of Aβ/NFT neurotoxicity, including inflammatory regulators, are primary targets for AD therapy.
Osteopontin (OPN), an inflammatory cytokine and biomarker of AD, is implicated in Aβ clearance
and toxicity, microglial activation, and inflammation, and is considered to be a potential therapeutic
target. Here, using the most relevant works from the literature, we review and contextualize the
evidence for a central role of OPN and associated inflammation in AD.

Keywords: Alzheimer’s disease; osteopontin; Spp1; microglia

1. Introduction

Alzheimer’s disease (AD), the fifth leading global cause of death, is a neurodegen-
erative condition that, along with subcortical vascular cognitive impairment (SVCI), is
responsible for 75% of all dementia cases [1–3]. Current estimates place the global pop-
ulation of dementia at 57.4 million, and this is predicted to grow to 152.8 million by the
year 2050 in parallel with aging populations, becoming a correspondingly greater public
health concern [4,5]. There is no cure for AD, and its progressive course, along with the
limited efficacy of current disease-modifying treatments, severely impacts the quality of life
of those who are afflicted, with potentially devastating familial, social, and economic conse-
quences. The clinical progression of AD is marked by episodic memory loss and impaired
learning, followed by heterogenous changes in executive and visuospatial function [3]. The
2020 Lancet Commission on dementia prevention, intervention, and care identified a set
of modifiable risk factors for late onset AD that include, but are not necessarily limited to,
hypertension, smoking, obesity, physical inactivity, diabetes, alcohol, traumatic brain injury,
and air pollution, and suggest that interventions that target such factors could prevent up
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to 40% of dementia prevalence [6–8]. Whereas age is the main risk factor for AD, more
than 50 genetic risk loci are known, which include genes that regulate lipid homeostasis
and inflammation, [9–12] with the strongest association being that with the ε4 allele of
ApoE (ApoE4) [13–15]. In keeping with the genetic risk factors that predispose to AD,
inflammation and oxidative stress feature prominently in such modifiable lifestyle factors.

AD remains an urgent unmet clinical need, with multiple ongoing clinical trials and
an increasingly diverse range of potential therapeutic targets in the pipeline. One of these
is osteopontin (OPN), an inflammatory cytokine and diagnostic marker of AD that is
implicated in the regulation of activated microglia associated with AD. Here, we review
current knowledge and recent advances in the involvement of OPN with established
neuropathological pathways of AD. The literature supports central albeit complex roles
of OPN in regulating autophagic and inflammatory responses to amyloid-beta (Aβ) and
tau accumulations in the brain that coincide with AD progression and represent possible
new therapeutic targets. However, such therapeutic application is tempered by complex
interactions of OPN with both pro- and anti-inflammatory microglial subtypes as well as
other cell types, and the possible switching of OPN actions between neurodegeneration and
neuroprotection in a disease-stage-dependent manner. These possibilities are discussed,
and our overall assessment supports a cautious approach to the clinical translation of
anti-OPN strategies.

2. Aβ/NFT Pathway

Despite the high prevalence of AD that has driven intense clinical and translational
research efforts over the past 30 years, the complex pathophysiology remains poorly un-
derstood. The amyloid-beta (Aβ) and tau pathways proposed in the late 1980s and early
1990s have become hallmarks of AD [16]. The Aβ component involves the deposition
of extracellular senile plaques of Aβ, products of cleavage of a larger amyloid precursor
protein (APP) by β- and γ-secretases [16–18] (see Figure 1), that is naturally produced in
the brain by neurons, vascular and blood cells, and astrocytes. APP is involved in multiple
neuronal functions including neurite outgrowth and axonal guidance, the regulation of
synaptic function and plasticity, early nervous system development, and neuroprotec-
tion [19]. Aβ aggregates progress from soluble oligomers and protofibrils to insoluble
fibrils and plaques, all of which may be neurotoxic [20]. The second component involves
accumulations of abnormally phosphorylated tau, a protein codified by the alternative
splicing of the microtubule-associate protein tau (MAPT) gene that is enriched in axons
of mature neurons, where it stabilizes the microtubules required for neuronal transport
and structure. Hyperphosphorylated tau with a reduced affinity for tubulin becomes
detached from microtubules and aggregates into paired helical filaments that spread and
form cytoplasmic neurofibrillary tangles (NFTs) within neurons [20,21]. Neuropathological
evidence indicates that increased levels of intracellular Aβ, parenchymal Aβ plaques, and
NFTs are first seen in neurons of the entorhinal cortex (EC) [22–24]. Indeed, earlier work in-
dicated that EC LII-neurons may be the first cortical neurons to degenerate in the course of
AD [25,26]. Using molecular PET scanning in longitudinal clinical studies of subjects with
varying Aβ burden and AD severity, Sanchez et al. described tau deposition in the medial
temporal lobe of subjects many years prior to Aβ [27]. Tauopathy was initially detected
in clinically normal people near the rhinal sulcus, and spread in association with Aβ to
the neocortex of the temporal lobe and then to extratemporal regions. Pathogenically acti-
vated Aβ proteins and NFTs interact with neurons to synergistically disrupt synapses and
neuronal networks [18,20,28,29]. Neuropathological, genetic, and in vivo biomarker-based
evidence from animal models and humans indicate a latency period wherein accumulations
of Aβ precede the spreading of plaques and NFTs, neuronal loss, and clinical manifes-
tations of AD by 20–30 years [30–34]. However, increased deposits of pre-fibrillar tau
and soluble Aβ show a strong correlation with cognitive decline, suggesting that sub-
stantial toxic assemblies of Aβ-peptides and tau exist outside of visible deposits [35,36].
During the latent period, physiologic responses to soluble and insoluble Aβ aggregates
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and NFTs within AD brains include the activation of lysosomal/endolysosomal systems
and increased numbers of autophagosomes that may help to maintain homeostasis, miti-
gate neurodegeneration, and precede the complex cellular innate immune responses that
characterize neurodegeneration and clinical decline [29,37,38].
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Figure 1. Hallmarks of Alzheimer’s Disease (AD), include cytoplasmic neurofibrillary tangles (NFTs)
and extracellular amyloid beta (Aβ) plaques. β- and γ-secretases cleave the amyloid precursor
protein (APP) into Aβ fragments that, along with hyperphosphorylated tau, generate neurotoxic
aggregates and eventually insoluble plaques.

The determination of the causes of Aβ and NFT accumulation, spreading, activation,
and the propagation of neurotoxicity are fundamental to understanding the molecular
etiologies of both early and late-onset AD and to identify new therapeutic targets. Tge
accumulation of Aβ involves both the overproduction and blocked clearance of patho-
logical APP fragments with the generation of more toxic isoforms such as Aβ42, a major
component of both Aβ aggregates and NFTs that is prone to misfolding and aggregation.
β- and γ-secretases cut APP into Aβ fragments of different lengths, mainly of 40 and
42 amino acids [39]. High ratios of Aβ42 versus Aβ40 are associated with increased tau
phosphorylation and exacerbated dissociation from microfilaments [40]. Toxic soluble Aβ

oligomers (AβOs) form before Aβ plaques and may be responsible for the early cognitive
decline of AD patients [41]. Accumulations of Aβ and hyperphosphorylated tau synergisti-
cally trigger prion-like spreading, wherein abnormally folded proteins migrate to adjacent
neurons and form seeds that convert normal proteins into pathological forms [20,42,43].
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The combined effects of accumulation and dispersal drive the spread of incipient Aβ extra-
cellular plaque and tau/NFT aggregates to interconnected areas throughout the brain over
time [16,20,33,44–47]. Secondary to the accumulation and spread of Aβ/NFT aggregates,
much evidence supports roles for lipid dysregulation and inflammation as driving the
pathological phenotype and progression to clinical AD [48]. Contributions of ApoE4 to
AD progression are well established, and recent work indicates important roles for the
low-density lipoprotein receptor (LDLR) and LDLR-related protein 1 (LRP1) in regulating
tau uptake and spread, establishing important roles for lipid regulators in AD progression
and possible therapeutic targets [49–51]. By polarizing microglia towards an M2 phenotype
with anti-inflammatory and phagocytic properties, OPN has also been linked with the clear-
ance of Aβ plaques as well as neuroprotection by delivering pro-survival, anti-apoptotic
signals [52–54].

3. Etiology: Molecular Genetic and Epigenetic

Genetic evidence strongly supports the hypothesis that Aβ/tau initiates the early-onset
form of AD. Large-scale genetic analyses of AD pedigrees identify highly penetrant muta-
tions in APP, and genes encoding the subunits of the γ-secretase APP cleavage enzymes
presenilin 1 and 2, as causal for dominantly inherited early-onset AD [55–58]. Mutations in
the microtubule-associate protein tau (MAPT) gene that confer the abnormal production
and aggregation of tau leading to NFT are also dominantly inherited and cause early-onset
frontotemporal dementia [58]. The results are consistent with Aβ/NFT as diagnostic for
AD. Whereas no causal genetic mutations are known for late-onset AD, that does not follow
Mendelian inheritance, significant heritability is apparent, with evidence that the risk of
AD may be as much as 80% dependent on heritable factors [9–11,59]. The expression of the
ε4 allele of the ApoE gene (ApoE4) confers the highest risk for late-onset AD [10]. However,
large-scale genome-wide association studies identified multiple additional critical genetic
risk factors associated with more than 50 susceptibility gene loci including CLU, PICALM,
CR1, BIN1, MS4A, CD2AP, CD33, EPHA1, and ABCA7 [60–63]. Many of these genes are
linked directly to Aβ and tau homeostasis and include genes involved in inflammation
and immune response pathways, cellular trafficking, lipid metabolism, and ubiquitination
pathways [59]. Such studies revealed strong associations of variants in genes for immune
receptors, TREM2 (triggering receptor expressed on myeloid cells 2) [64], and CD33 [65,66]
with late AD. The results further corroborate the links between activated Aβ/tau, inflam-
mation, and AD progression. By blocking the clearance of Aβ, vascular dysfunction is also
implicated in AD progression and may be the mechanism whereby cerebral small vessel
disease (CSVD) exacerbates AD [67–70]. Through its differential regulation of integrin-
mediated signaling and neuroinflammation, OPN has long been known to have central
roles in inflammatory CNS diseases including MS and AD, driving both neurodegenerative
and protective pathways (reviewed in [54]).

4. ApoE and LDLR

ApoE, the primary lipid and cholesterol transporters in the central nervous system,
facilitate the transport of lipids by binding to LDLR and LRP1 [71]. ApoE is abundantly
expressed in astrocytes, microglia, vascular mural cells, and choroid plexus cells, where
it differentially modulates neuronal intracellular signaling pathways, including synaptic
homeostasis, glucose metabolism, and cerebrovascular function [72]. Of the three ApoE
isoforms expressed in the human brain, the presence of ApoE4 correlates with rapid AD
onset and neurodegenerative decline and poses the highest genetic risk for AD, whereas
ApoE2 is protective [13–15]. Amino acid substitutions on the N- and C-terminus of the
proteins that, respectively, contain LDLR and lipid binding sites of ApoE proteins are
responsible for the differences [73]. A large body of evidence indicates that ApoE4 binds
more strongly to Aβ, promoting the aggregation, stabilization, and deposition of fibrillar
plaques and reducing clearance, whereas ApoE2 binds weakly, reduces Aβ aggregates and
NFTs, and enhances Aβ clearance by microglia [74,75]. Compelling evidence from patients
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and mouse models also indicates that ApoE4 drives tau accumulation and redistribution
to neuronal cell bodies in a manner that promotes pathological microglial activation and
neuroinflammation. Whereas these effects appear to be mediated by the direct interaction
of ApoE with tau independently of Aβ, the precise mechanisms are unclear [48,76–78]. The
results are consistent with roles for ApoE subtypes in the binding and/or activation of
microglia during AD progression.

Only non-lipidated ApoE binds Aβ plaque. Reducing the total ApoE levels in the brain
or increasing its lipidation state markedly reduced the Aβ plaque burden and associated
inflammatory phenotypes in mouse AD models [75,79–82]. Such restricted control of the
Aβ/NFT burden to non-lipidated ApoE is also consistent with the established roles of the
LDLR and LRP1 in regulating ApoE and Aβ plaque. For example, the overexpression of
LDLR in APP/PS1 transgenic mice (ADtg) that reproduce AD features robustly and age-
dependently markedly reduced ApoE, suppressed microglial activation, and ameliorated
neurodegeneration [51]. Similar regulation was conferred by the expression of the ATP-
binding cassette transporter A1 (ABCA1) gene, the principal vehicle for lipid transfer to
ApoE and another genetic AD marker. Therapeutic benefit can be achieved in mouse ADtg
models by reducing ApoE with antibodies, antisense oligonucleotides or ApoE siRNAs, or
by engineering the overexpression of LDLR and/or LRP1, and can represent a promising
clinical strategy [49,51,82–85].

5. Inflammation

Neuronal microgliosis (migration of local macrophages, astrocytes, and microglia)
constitutes the principal inflammatory response to Aβ plaque deposition and correlates
closely with the onset of brain cell damage and cognitive decline [86,87]. However, mouse
models and patient studies also implicate significant peripheral immune cell infiltration of
the brain parenchyma during different stages of AD [88]. Systemic inflammation driven
by Aβ egress into the circulation via two-way transport systems such as the LDLR associ-
ated factors that circumvent the blood–brain barrier (BBB) [89,90] may contribute to AD
progression by interfering with the clearance of Aβ by microglia, triggering tau hyperphos-
phorylation and the spread of NFT, as well as by promoting BBB breakdown [29,91–94].
Systemic myeloid cells and inflammatory cytokines can access the brain via humoral and
vascular signaling pathways and confer both destructive and reparative actions [94–96].
However, during active AD inflammation, Aß plaques and regions of the brain with high
tau accumulation are frequently found surrounded by CD11b+, Iba1+, and CD45+ immune
cells that originate mostly if not entirely from microglia [51,97–99]. The primary function
of such microglial migration is to repair and clear Aß plaque through phagocytosis and
autophagy, but in the context of late-stage symptomatic AD, effective clearance fails. The
reasons for failure are not understood but presumably involve overwhelmed clearance
systems, due in part to the relatively late appearance of phagocytic/anti-inflammatory
microglia (see below), inhibitory cytokines, and adaptive responses to the long latent period
of Aβ/NFT evolution, and the continued presence of toxic AβOs [41,99].

Activated microglia can be neurotrophic or neurotoxic depending on the activating
stimuli, immune milieu, and surrounding environment [48,100,101]. M1 or inflammatory
microglia are usually activated via Toll-like receptors and γ-interferon signaling, produc-
ing pro-inflammatory cytokines such as interleukins (IL-1β) and tumor necrosis factor
alpha (TNF-a) and chemokines, and expressing NADPH oxidase and matrix metallopro-
teinases [96,98]. Anti-inflammatory M2 microglia are neuroprotective, secrete growth
factors, and promote the release of anti-inflammatory cytokines (reviewed in [3,102]). OPN
interacts with both M1- and M2-activated microglia, showing synergistic detrimental and
protective functions, respectively [52,54]. Studies in human patient and ADtg mice identi-
fied a protective disease-associated type of microglia (DAM) with an increased expression
of lipid metabolism and phagocytic-related genes (Trem2, Tyrobp, Cst7, CD9) and anti-
inflammation properties [103]. DAMs were reported to be associated with phagocytic Aβ

clearance particles and generated at advanced stages of AD progression, such that they may
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determine the time of onset and the rate of disease progression. Other studies identified
microglial TAM receptor tyrosine kinases Axl and Mertk, as necessary for microglia to
bind and phagocytose Aβ plaque [104], but TAM-deficient ADtg mice developed lower
Aβ high-density plaque loads compared with WT ADtg mice with normal microglial TAM.
This unexpected and confusing result suggested to the authors that TAM-driven microglial
phagocytosis of Aβ does not inhibit but rather promotes dense-core plaque development
via pathways that may involve the lysosomal and microglial re-deposition of high-density
Aβ material that was previously phagocytosed by exocytosis and/or microglial death path-
ways [105]. Yet, other studies identified an APOE-TREM2 pathway that mediated a switch
of microglia from a homeostatic to a neurodegenerative phenotype that was initiated after
the phagocytosis of apoptotic neurons [106]. Consistent with these works, molecular and
transcriptome studies reveal the presence of multiple human and mouse microglial subsets
involved in homeostasis, proliferation, interferon response, and antigen presentation that
include subsets expressing enriched neurodegenerative disease genes related to AD [107].

Microglia are increasingly understood to play flexible and sometimes opposing roles
in AD pathogenesis by eliminating toxic Aβ aggregates, enhancing neuronal plasticity and
conferring anti-inflammatory signals, or by producing proinflammatory cytokines, ROS,
and neurotoxicity [108]. Microglia express cell-surface receptors that differentially activate
innate immune responses and mediate protective and destructive responses to Aβ aggre-
gates. For example, different studies implicate CD36, CD33, and Toll-like Receptor 4 (TLR-4)
in mediating inflammatory cytokine release in response to damage-associated molecular
patterns (DAMPs). CD36, a recognized marker of AD, binds cholesterol, modulates in-
nate immunity, and protects against inflammation and oxidative stress [109–111]. CD33
regulates innate immunity by binding sialic acids of glycoproteins and glycolipids and im-
munoreceptor tyrosine-based inhibition motifs, thereby restricting immune responses [110].
TLR-4 regulates both innate and adaptive immune responses through signaling cascades
that lead to the upregulation of cytokines, chemokines, growth factors, and other inflam-
matory mediators. TLR4 binds Aβ aggregates and activates pro-inflammatory microglia
with increased phagocytosis and cytokine production [108].

Investigations of the roles of microglia and inflammatory mediators on the deposition
and clearance of Aβ plaques are mixed and complex, with evidence for the amelioration
and exacerbation of aggregates. For example, the gene-therapy-mediated suppression
of brain anti-inflammatory interleukin 10 (IL10) in ADtg mice was shown to increase
Aβ42 aggregates and the plaque burden [112], whereas the KO of IL10 in the same ADtg
model had the opposite effect, reducing Aβ aggregates [113]. In one study, a depletion
of microglia from ADtg mice did not affect Aβ plaque deposition or clearance [114]. The
results indicate the overriding effect of disease stage and physiologic/pathological context;
subsets of microglia with different receptors and inflammation mediation pathways are
activated at different stages of the cellular response to AD and can confer benefit or injury in
stage-dependent and quantitative manners. Molecular genetic analyses of age-related gene
expression in AD brains indicate that aging predisposes the brain to inflammatory processes
consistent with an age-dependent selection of microglial subsets [115]. Taken together, the
results suggest that AD pathology is defined at least in part by age-dependent changes in
the activation of myeloid cells and microglia and the context-dependent balance of pro
versus anti-inflammation phenotypes of infiltrating myeloid and resident microglia [102].

6. Osteopontin

OPN is a negatively charged acidic phosphoprotein that circulates as a pro-inflammatory
cytokine [116]. Variously referred to as early T-cell activation protein (ETA-1), bone sialopro-
tein (BSP-1), and secreted phosphoprotein (SPP-1), OPN is multifunctional, with different
functional domains exposed through thrombin or metalloprotease cleavage [3,54] (see
Figure 2). Thrombin cleavage generates an N-terminal OPN fragment that binds integrins
and mediates cell adhesion and migration, bone marrow immune responses, and inflam-
mation [3]. OPN is found in the bone matrix, kidney, placenta, and blood vessels and
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contributes to multiple physiologic and pathologic processes, including bone mineraliza-
tion, oxidative stress, remyelination, inflammation, immunity, and wound healing [116,117].
OPN, secreted by T cells and tissue-resident macrophages, has been shown to regulate
macrophage functions, including migration, reparative and degenerative phagocytosis,
and chemotaxis in different peripheral tissues [118–120]. In the brain, OPN expression is
precisely regulated in a spatiotemporal and cell-type specific manner, depending on con-
text, age, and brain region, where it regulates responses of immune cells to injury [95,121].
OPN levels may be elevated in the plasma, urine, cerebrospinal fluid (CSF), and brain of
subjects with neurodegenerative disease, including AD [3,95,122–125], multiple sclerosis
(MS) [116,122,126], Parkinson’s disease [116,122], amyotrophic lateral sclerosis [3,127], HIV-
associated neurocognitive disorder [4,128], and mild cognitive impairment (MCI) [129].
Increased OPN after neuronal damage coincides with glial cell recruitment and the influx of
inflammatory cytokines [130]. In a manner that parallels the context-dependent, opposing
actions of microglial subtypes, different studies report that OPN can promote inflammatory
damage or neuroprotection and repair [54].

1 
 

 

Figure 2. Multifunctionality of osteopontin (OPN) and its roles in recruiting and maintaining
disease-associated microglia (DAM). Elevated levels of the C-fragment of OPN in cerebrospinal
fluid (CSF) mark the progression of patients with mild cognitive impairment (MCI) to clinical
Alzheimer’s disease (AD). Rosmus et al., Wirths et al., Cappellano et al., Sun et al., Simonsen et al.,
Carecchio et al. [3,21,54,116,126,130].

Early evidence for roles of OPN in neurodegenerative disease reported an association
with severe intracranial calcification, wherein calcification within the basal ganglia and
cerebellum, including type 3 capillary calcospherites, express elevated OPN [117]. Similarly,
OPN is found to be associated with the TGFβ signaling factor phosphor-SMAD2/3 and
collagen-1 in calcified vessel walls of the cerebral cortex of patients with cerebral amyloid
angiopathy [131]. Subsequently, increased OPN expression was described in the pyramidal



Biomedicines 2023, 11, 3232 8 of 21

neurons of the CA1 region of the hippocampus associated with Aβ plaque of symptomatic
AD patients [44]. Proteomic analyses of CSF from patients with stable MCI versus MCI
with AD identified the phosphorylated C-terminal thrombin cleavage fragment of OPN as
a biomarker of MCI that progressed to AD [126]. Positive correlations between the levels of
the OPN C-terminal fragment in the CSF and elevated inflammatory markers suggested a
mechanistic link between OPN and increased inflammation and gliosis as MCI progressed
to AD [126] (see Figure 2). Consistent with this, increased levels of OPN in the CSF were
found to distinguish AD patients from those with frontotemporal dementia (FTD), and
correlated with the severity of cognitive impairment, consistent with OPN as a prognostic
indicator of AD progression [44]. Parallel conclusions were derived from MS patients
where elevations of OPN in the brain, CSF, and serum coincided with MS stage [44]. Early
immunocytochemical studies that located OPN exclusively in the cytoplasm of pyramidal
neurons of AD patients [44] appear to be at variance with multiple subsequent studies
that locate OPN with multiple neuronal cell types, including hippocampal perivascular
macrophages, astrocytes, and microglia (see below).

Elevated OPN expression in the astrocytes and microglia of ADtg mice was shown to
correlate with similarly elevated levels of inflammation and oxidative stress markers [21].
OPN, GFAP, Cathepsin D, Toll-like receptors (TLRs), and TGFβ-1 correlated with the
progressive age-dependent loss of CA1 pyramidal neurons, axons, and quantitative deficits
in cognitive and motor performance. The results identified OPN as a marker of astrocytes
and microglial activation and inflammation [21]. Consistent with this, and in agreement
with the proteomic analyses described above [126], elevated OPN levels in CSF are also
increased in patients with mild cognitive impairment (MCI) that progress to AD, but
not in patients with stable MCI [116] (see Figure 2). Plasma and CSF OPN are currently
recognized biomarkers of both AD and vascular cognitive impairment [4]. Taken together
with studies that localize OPN to areas of high Aβ plaque and activated microglia, the
results are consistent with diagnostic, prognostic, and functional roles for OPN in AD [116].

In support of pro-inflammatory, neurodegenerative roles of OPN, represented in
Table 1 and Figures 3 and 4, one study highlighted that the antibody-mediated activation
of the TREM2 receptor in ADtg mice displayed enhanced survival and proliferation of mi-
croglia and ameliorated Aβ-induced pathology and the downregulation of OPN [132,133]
(See Figure 3). TREM2 is a receptor for microglial lipids and a genetic risk factor for AD.
The results identified OPN as a marker of inflammation that correlates positively with neu-
rodegeneration and negatively with protective microglia migrations to sites of Aβ plaque.
Consistent with this, De Schepper et al. report that OPN secreted by hippocampal perivas-
cular macrophages (PVM), the primary responders to toxic agents and pathogens that cross
the BBB, transformed microglia into phagocytic cells that engulf synapses in ADtg mice
and possibly AD patient tissues [121]. OPN was found to upregulate multiple phagocytic
markers including C1qa, Grn, and Ctsb in microglia associated with Aβ oligomers (see
Figure 4). This study also showed that the genetic ablation of OPN results in less synaptic
loss but a resilient high Aβ burden. The mechanism of increased OPN production was
unclear, but may involve signals from Aβ deposited along the vasculature associated with
elevated TGF-β. Because there is no obvious physiological benefit to destroying synapses,
the pathway defines OPN-mediated phagocytic and endolysosomal pathways designed to
eliminate Aβ plaque that become self-destructive and drivers of AD progression [121,134].
Elevated OPN is associated with other neurodegenerative disease models including ALS
and may be part of a conserved molecular response to perturbed perivascular homeostasis
beyond Aβ pathology [121].
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Conversely, as highlighted in Table 1 and Figures 3 and 4, in other mouse ADtg
models and in human AD brains, elevated OPN expression correlated with protective,
anti-inflammatory phenotypes and accelerated Aβ clearance [95]. When ADtg mice were
injected with glatiramer acetate (GA), an immune-modulating medication used to treat
MS patients, the OPN expression associated with monocytes and macrophages of systemic
origin engaged in Aβ clearance and tissue repair and was found in areas of high Aβ plaque.
Infiltrating OPN-expressing cells included subpopulations of CD115+CD11b+Ly6Chigh
monocytes and CD11b+Ly6C+CD45high monocyte/macrophages. Similar effects were
achieved by delivering peripheral blood enriched with bone marrow (BM)-derived CD115+
monocytes. Correlation matrix analyses indicated a strong linear correlation between
cerebral OPN levels and macrophage infiltration, and an inverse relation between OPN and
Aβ plaque burden. In vitro studies corroborated the findings, showing that GA directly
upregulates OPN expression in BM-derived macrophages and promotes a phenotypic shift
to phagocytic, anti-inflammatory effect with an increased uptake of Aβ fibrils [95] (see
Figure 3).
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Consistent with neuroprotection by elevated OPN, Quan et al. [135] reported that the
heterozygous deletion of the myeloid differentiation factor 88 (MyD88) gene, an essential
mediator of innate immunity, selectively in microglia of ADtg mice at a late stage of
disease, decreased cerebral Aβ load and improved cognitive function, coincident with
reduced microglia and inflammatory gene expression. The effects were paralleled by the
up-regulation of microglial OPN and elevated LRP1 in cerebral capillaries (see Figure 4).
The authors suggest that MyD88 deficiency inhibits the activation of pro-inflammatory
microglia but enhances microglial response to Aβ. Other laboratories have reported that
MyD88 confers Aβ clearance and neuroprotection [136], while the deletion or disruption
of MyD88 signaling attenuates Aβ pathology [137], or is without effect [138]. The authors
speculate that the responses are disease-stage-specific.

It is noteworthy that OPN C- and N-terminal fragments were previously shown to
predict the presence of AD conversion in MCI patients [116,126]. Taken together, these
studies suggest that the microglial expression of OPN is associated with pro-inflammatory,
neurodegenerative pathways during AD, whereas OPN expressing systemic monocytes
confers protective/reparative functions. Further, extracellular OPN can transform subpop-
ulations of microglia to a phagocytic pro-inflammatory subset that engulfs and destroys
synapses while BM-derived monocytes are converted to phagocytic anti-inflammatory
states that engulf and remove Aβ. Therefore, the actions of OPN depend on the context,
cell types, stage of disease, and prevailing biochemical interactions. Protection from AD
progression in OPN-ablated ADtg mice suggests a net pathological/neurodegenerative
effect. These complex properties with apparently opposing functions in different cells at
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disease stages make OPN a challenging target for AD therapy that will require physical
and temporally restrictive exposure to modulating drugs, and/or interventions that target
downstream signaling molecules.

In another approach to unravel the role of OPN in microglial activation, Qiu et al.
identified a subset of CD11+ microglia that are the sole source of OPN in ADtg mice [139]
(see Figure 5). The genetic deletion of OPN in ADtg mice markedly reduced proinflamma-
tory microglia, Aβ plaques, and dystrophic neurites, while conserving cognitive function.
OPN production in the periplaque areas was found to differentiate DAM into two distinct
subpopulations, including a protective CD11c+OPN− subset with an increased expression
of activated lysosomal markers that robustly takes up Aβ in a noninflammatory manner,
and a pathogenic CD11c+OPN+ subset that produces proinflammatory cytokines including
TNF-α, expresses reduced periplaque levels of TREM2, and does not ingest Aβ fibrils.
Both subsets of microglia localized around plaques. The authors went on to demonstrate a
threefold increase in CD11c+ OPN+ microglia in brain sections from AD patients compared
with normal controls or MCI patients. In human studies, they report strong correlations
between CD11c+ OPN+ microglia and CDR score, and a density of neuritic plaques and
neurofibrillary tangles, highlighting the strong correlation of CD11c+ OPN+ microglia with
AD severity in patients. Finally, the authors show that weekly intravenous injections of
anti-OPN mAb into 6-month-old ADtg mice significantly reduced TNF-α+ CD11c+ mi-
croglia and total plaque burden after 2 months of treatment, despite having to traverse the
BBB. The work may resolve some of the controversy over OPN’s contribution to microglial
actions and neurodegeneration. Indeed, the results may help to resolve another quandary
involving microglia that confer alternate beneficial and injurious roles in MS and wherein
osteopontin has also been identified as a potential candidate for regulating the switch [140].
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Table 1. Chronologic list of publications on osteopontin in Alzheimer’s disease studies.

Author Title Major Findings

Fujita (2003) [117] Immunohistochemical examination on intracranial
calcification in neurodegenerative diseases

Neurodegenerative diseases have increased
intracranial calcification (within basal ganglia
and cerebellum) wherein the type 3 capillary
calcospherites express increased OPN.

Wung (2007) [44]

Increased expression of the remodeling- and
tumorigenic-associated factor osteopontin in
pyramidal neurons of the Alzheimer’s
disease brain

Increased OPN expression in pyramidal
neurons of the Ca1 region of the hippocampus
are associated with Aβ plaque of symptomatic
AD patients.

Simonsen (2007) [126]

Novel Panel of Cerebrospinal Fluid Biomarkers for
the Prediction of Progression to Alzheimer
Dementia in Patients with Mild Cognitive
Impairment

The phosphorylated C-terminal thrombin
cleavage fragment of OPN is a biomarker of
MCI that progresses to AD and is also
associated with increased inflammation
and gliosis.

Wirths (2010) [21]

Inflammatory changes are tightly associated with
neurodegeneration in the brain and spinal cord of
the APP/PS1KI mouse model of
Alzheimer’s Disease
(mouse study)

Identifies OPN as a marker of astrocyte and
microglial activation and inflammation.

Sun (2013) [116] Elevated osteopontin levels in mild cognitive
impairment and Alzheimer’s disease

Elevated OPN levels in CSF are increased in
patients with mild cognitive impairment (MCI)
that progress to AD, but not in patients with
stable MCI.

Rentsendorj (2018) [95]

A novel role for osteopontin in
macrophage-mediated amyloid-β clearance in
Alzheimer’s models
(mouse study)

Elevated OPN expression correlated with
protective, anti-inflammatory phenotypes of
systemic macrophages that accelerated Aβ

fibril clearance.

Wang (2020) [133]

Anti-human TREM2 induces microglia
proliferation and reduces pathology in an
Alzheimer’s Disease model
(mouse study)

Antibody-mediated activation of the TREM2
receptor decreases Aβ-induced pathology
while being associated with a proliferation of
protective microglia and downregulation
of OPN.

Quan (2021)
[135]

Haploinsufficiency of microglial MyD88
ameliorates Alzheimer’s pathology and vascular
disorders in APP/PS1-transgenic mice.
(mouse study)

Heterozygous deletion of MyD88 gene
decreases cerebral Aβ load and improves
cognitive function, while being associated with
the upregulation of microglial OPN.

De Schepper (2023) [121]

Perivascular cells induce microglial phagocytic
states and synaptic engulfment via SPP1 in mouse
models of Alzheimer’s disease
(mouse study)

OPN secreted by hippocampal perivascular
macrophages (PVM), the primary responders
to toxic agents and pathogens that cross the
BBB, transformed microglia into phagocytic
cells that engulf synapses in ADtg mice. This
may represent phagocytic pathways that
become self-destructive and drive
AD progression.

Qiu (2023) [139]

Definition of the contribution of an
Osteopontin-producing CD11c(+) microglial
subset to Alzheimer’s disease
(mouse study)

Identifies a subset of CD11+ microglia that are
the sole source of OPN in ADtg mice:

• Protective CD11c+OPN− subset;
• Pathogenic CD11c+OPN+ subset.

7. Conclusions, Perspectives, and Emerging Treatment Options

The presence of multiple isoforms of microglia with protective and disease-associated
phenotypes, and the property of microglial subtypes to switch phenotypes depending on en-
vironmental/cellular cues, suggest that OPN directs pro-inflammatory or anti-inflammatory
signals depending on the myeloid and/or microglial cells with which it interacts, and with
the disease stage, and context of the targeted cells. The neuroprotective actions of OPN-
associated bone marrow leukocytes described by Rentsendorj et al. [95] associated with
advanced Aβ plaque deposits suggest that OPN confers neuroprotective and/or reparative



Biomedicines 2023, 11, 3232 13 of 21

functions via systemic immunity at late-stage AD when neuronal damage is established
and ongoing. The work is consistent with previous reports that macrophages derived from
the BM phagocytose Aβ plaques more efficiently than resident microglia [141–143]. How-
ever, OPN-mediated neurotoxicity by multiple pathways involving microglia appears to
predominate via pathways that include the enhanced formation and toxicity of Aβ plaques
and NFTs, increased activities of APP cleavage enzymes, interference with Aβ clearance,
and the delivery of proinflammatory cytokines. OPN can promote toxic tau accumulation
and NFT fibers and contribute to disrupting the BBB, allowing the access of additional
inflammatory mediators, immune cells, or pathogens to enter the brain [144]. Recently,
the interrogation of human iPSC-derived microglia by CRISPR-based functional genomics
identified an SPP1+ microglial subtype with a neurodegenerative disease-specific state
that was targeted and neutralized by PLX3397, a selective inhibitor of colony-stimulating
factor-1 [101]. PLX3397 was previously shown to be protective in neurodegenerative mouse
models [145,146]. In another cell-based therapeutic approach, human neural-crest-derived
turbinate stem cells were shown to neutralize Aβ neurotoxicity by suppressing OPN expres-
sion in a human cerebral organoid model of AD and in ADtg mice [147]. Thus OPN/Spp1 is
considered to be a negative DAM-associated gene and AD therapeutic target. However,
because of possible OPN-directed protection mediated by systemic immunity, the outcome
of OPN blockade in late-stage AD cannot be predicted.

The Aβ/tau pathway has stood the tests of time and remains the predominant hy-
pothesis for AD progression and a promising pharmacological target, as evidenced by the
recent FDA approval of two monoclonal antibodies (mAb), aducanumab and lecanemab,
that target Aβ plaques and soluble AβO protofibrils, respectively [148,149]. Donanemab,
an antibody that targets a modified form of deposited Aβ, is expected to receive FDA
approval by the end of 2023 [12,150]. Tau antisense oligonucleotides currently in a phase
1b trial appear promising [151]. Despite this, and in part because of uncertainty over
the extent of the therapeutic efficacy of Aβ/tau biologics to combat AD [94,152], a large
proportion of AD drug development efforts are currently directed towards upstream and
downstream targets of Aβ/tau, at accessory molecules that regulate production, activation
and/or clearance, tau phosphorylation, and NFT spreading (reviewed in [153]). These
include but are not limited to apolipoprotein (ApoE) pathways, neurotransmitter receptors,
inflammation, oxidative stress, metabolism, vascular factors, growth factors and hormones,
synaptic plasticity, and neuroprotection [153,154].

In the anti-inflammation category, at least 21 drugs are currently in phase 2 or 3 clinical
trials, including small molecule and antibody inhibitors of signaling pathway interme-
diates/receptors (c-Kit, JAK-STAT, Src, P38-MAPK, mTor, GM-CSF, CD38, leukotriene
receptor) and inflammatory cytokines (TNFα, IL-1, IL-6, and IL-12) (reviewed in [153]). Mi-
croglial target drugs include AL002, a pharmacological activator of TREM2 that is expected
to slow AD progression by stimulating anti-inflammatory microglia [133]. Senicapoc is an
inhibitor of the potassium calcium-activated channel subfamily N member (KCa3.1) that is
a regulator of the activation, migration, and proliferation of T-lymphocytes, microglia, and
macrophages. KCa3.1 is increased in the brains of AD patients and senicapoc is expected to
attenuate Aβ deposition, neuroinflammation, and AD pathology [155]. TB006 is a human-
ized monoclonal antibody that targets galectin-3 (Gal3), a TREM2 ligand that is upregulated
in patients with AD and ADtg mice. Gal3 is a key regulator of TREM2-mediated microglial
activation by fibrillar Aβ [156] and TB006 is expected to reduce inflammation, decrease Aβ

load, and improve cognitive behavior (NCT05476783).
In the lipid category, an open-label Phase 1/2 trial will test LX1001, an AAV vector that

expresses human APOE2 delivered to patients via the spinal canal. Overexpressed APOE2
is expected to antagonize neuronal APOE4 (NCT05400330). Obicetrapib is a cholesteryl
ester transfer protein inhibitor that reduces LDL in the presence of a statin. Epidemiologic
studies suggest that statins decrease the risk of AD by reducing the cholesterol interactions
that exacerbate neurodegeneration [157]. Obicetrapib is currently in a Phase 2 open-label
exploratory proof-of-concept clinical trial (NCT05161715). Following the compelling preclin-
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ical results described above [101,139,147], further testing of antibody, stem cell, and small
molecule therapies targeting OPN+ microglia are anticipated. The links between Aβ, lipid
regulators, and inflammation extend beyond AD to other age related conditions including
MS [140] and cardiovascular disease [158], and other work, including from the author’s
group, implicates OPN related pathways and LDLR in the pathologies of renal disease and
heart failure [159,160], such that OPN is a potential target for multiple conditions involving
ageing, lipid dysregulation, and Aβ-related vascular inflammation.
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