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Abstract: It has increasingly been recognized that electrical currents play a pivotal role in cell
migration and tissue repair, in a process named “galvanotaxis”. In this review, we summarize the
current evidence supporting the potential benefits of electric stimulation (ES) in the physiology
of peripheral nerve repair (PNR). Moreover, we discuss the potential of piezoelectric materials
in this context. The use of these materials has deserved great attention, as the movement of the
body or of the external environment can be used to power internally the electrical properties of
devices used for providing ES or acting as sensory receptors in artificial skin (e-skin). The fact
that organic materials sustain spontaneous degradation inside the body means their piezoelectric
effect is limited in duration. In the case of PNR, this is not necessarily problematic, as ES is only
required during the regeneration period. Arguably, piezoelectric materials have the potential to
revolutionize PNR with new biomedical devices that range from scaffolds and nerve-guiding
conduits to sensory or efferent components of e-skin. However, much remains to be learned
regarding piezoelectric materials, their use in manufacturing of biomedical devices, and their
sterilization process, to fine-tune their safe, effective, and predictable in vivo application.

Keywords: peripheral nerve; repair; electroactive scaffolds; electrospinning; piezoelectric polymers;
piezostimulation; biodegradables; biomedical devices; surgery; 3D printing

1. Introduction

The piezoelectrical effect was discovered in 1880 by the French scientists Jacques and
Pierre Curie. They observed that piezoelectrical materials can transfer electrons when
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pressed and/or twisted, and receive back these electrons when distended or relaxed, allow-
ing the generation of electric dipoles. The observation that pressure on certain materials
(single-crystal quartz in the original description) generated an electrical charge led to the
term “piezoelectricity” being coined (“piezo” means “pressure” in Greek). Piezoelectricity
results from the conversion of mechanical energy (mechanical strain and vibration) into
electric polarization without the need of applying an external voltage. Since its original
description, its use has become extensively widespread, and there now exist numerous
applications of this effect in industrial, military, domestic and health care settings [1–3].

The qualification of the piezoelectric effect can be made through the Piezoelectric
Coefficient, which can be defined as the charge (expressed in Coulombs) developed on the
surface of the piezoelectric material per unit force applied on it (expressed in Newtons).
Hence, in the SI system, the unit becomes coulomb/Newton. Notwithstanding, since the
charge developed per unit of force is small, the Piezoelectric Coefficient is more conveniently
expressed as pC/N [4].

Interestingly, more recently it was noted that piezoelectricity was ubiquitous in nature
and particularly in living beings. It can be observed in the various degrees of nature’s
hierarchical organization, from the amino acid and protein levels to DNA molecules,
viruses, tissues, organs, skeletons, and even jungles and seashores [5–9].

Moreover, it has increasingly been realized that electrical currents may play a pivotal
key role in cell migration and tissue repair. Hence, the heightened interest in piezoelectrical
materials, particularly in the realm of peripheral nerve repair (PNR), where the contempo-
rary reconstructive strategies present frequently dismaying results, leaving those affected
with permanent motor, sensory and/or autonomic disability. Furthermore, these patients
are often stricken with neuropathic pain whose treatment is often difficult and incom-
plete [10–13]. Therefore, peripheral nerve injuries (PNI) exert a significant psychosocial
and economic burden on both individuals and society [13,14].

This is all the more important taking into consideration that PNI are relatively
common from birth to old age, occurring in multiple contexts, namely compressive
neuropathies, multiple types of trauma, as a result of tumor treatment, in anesthetic
procedures, infections or degenerative diseases [14–19]. Up to one in every 1000 children
are born with a significant PNI (brachial plexus palsy) [20]. It is estimated that in
Sweden alone, each year there are 13.9 new cases for each 100,000 people of serious
PNI mandating hospitalization [14]. In the USA, the mean annual incidence of PNI
is 16.9 per 100,000 for the upper extremity, and 13.3 cases per million for the lower
extremity [10]. In this country, more than 200,000 trauma-related nerve injuries occur
each year [21]. Worldwide, the incidence of PNI in the head, neck and trunk regions is
also significant, although difficult to quantify [22].

In this review, we will summarize the current evidence supporting the potential
benefits of electric stimulation (ES) in the physiology of PNR. Subsequently, we will discuss
the materials with piezoelectrical properties available for producing devices with potential
use for PNR. Next, we will review the devices already described using piezoelectrical
properties for PNR. Finally, we will discuss future perspectives concerning the use of
piezoelectrical materials in this context.

2. Role of Electrical Stimulation in the Physiology of Peripheral Nerve Repair

It has been known for more than 150 years, since the seminal works of Luigi Gal-
vani and later on of those of Emil Du-Bois Reymond, that after tissue injury there is a
local disturbance in electric charges, generating endogenous electrical fields and electric
current [23–25]. These, in turn, create electric dipoles that guide and promote the migra-
tion of numerous cell types in process named “galvanotaxis” or “electrotaxis” [24,26–28].
Numerous animal studies have shown that galvanotaxis is initiated immediately after
injury, helping coordinate all the processes (hemostasis, inflammation, proliferation and
remodeling) that lead to definitive tissue repair [24,26–28]. Under the influence of electric
fields, peripheral nervous system neurons extend protrusions and migrate towards the
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cathodic pole [26,29]. This type of behavior has also been observed in human fibroblasts,
lymphocytes, macrophages [30], and endothelial cells, all of which are known to be im-
portant in peripheral nerve repair [30–33]. Piezoelectric materials can generate electrical
charges in response to mechanical strain, thus stimulating axonal regeneration by galvan-
otaxis following nerve injury [34,35]. To increase the amount of electricity produced by
piezoelectric materials, some authors have applied external ultrasound sources to internally
placed devices that are used in PNR [36–38].

In 1952, Hoffman noted enhanced peripheral nerve regeneration after applying ES
stimulation in nerve roots [13,39]. Subsequent studies on rabbit and rat hindlimb models
confirmed the regenerative-inducing potential of ES in the peripheral nervous system [40–43].

The reason why the application of ES either intra-operatively or post-operatively has not
yet become broadly accepted is probably because its mechanisms of action have remained
largely elusive until recently. In fact, only in the past years have several technological
advances allowed accurate electrophysiological measurements close to the injury site and
contributed to the unravelling of the underlying physiological mechanisms behind enhanced
PNS recovery after ES [13,23,26,44,45].

However, even today multiple questions remain unanswered. The most primordial
and pressing question probably pertains to the mechanisms that allow cells to sense electrical
charges [23]. Notwithstanding, several studies have suggested that asymmetrically distributed
cell receptors, namely, integrins and receptors of acetylcholine, epidermal growth factor and of
concanavalin A, probably play a role in the electrotactic response [23,34,35,46–53].

Experimental data suggest that ES is transduced by the second messenger molecules
cyclic AMP, Rho-associated protein kinase and phosphoinositide-3 kinase [29]. Addition-
ally, ES causes up-regulation of brain-derived neurotrophic factor, T alpha-1 tubulin, growth-
associated protein 43 (GAP-43), as well as other regeneration-associated genes, resulting in axon
regeneration [35,45,54–56]. Globally, all these events lead to increased neuronal cell adhesion,
proliferation, migration, and protein synthesis, particularly of neuronal cytoskeletal proteins,
hastening the outgrowth of PNS axons across the injury site [11,12,23,35,43,45,54,57,58]. Addi-
tionally, ES promotes remyelination of elongating axons by Schwan cells [45,59]. Furthermore, in
a mouse model, ES has been shown to induce differentiation of neural stem cells and progenitor
cells into neurons and glial cells [26,60].

Clinically, ES has been studied sparsely for the past decades. Most studies are related
to its percutaneous application for prevention of muscular atrophy after PNS injury [61].
There have been four randomized clinical trials on the use of ES in the clinical setting,
all presenting positive results. Two of them report postoperative ES after carpal tunnel
and cubital tunnel surgical release [62,63]. Another study describes the prevention of
accessory nerve dysfunction after oncologic neck dissection using intraoperative ES [64].
Lastly and most revealingly, there is paper on the brief post-surgical low frequency
ES of surgically repaired digital nerves which had been accidentally sectioned. This
work showed accelerated axon outgrowth across the repair site and hastened target
reinnervation [54].

All these data spurred the recent enthusiasm over the use of electrical currents to
treat different types of pathologies, including PNS lesions. This, in turn, led to the term
“electroceuticals” being coined [26,34,35]. Lack of sound data regarding the treatment of
PNI with ES, namely concerning the best method of delivery of ES, its frequency, duration
or intensity, the occasional discomfort associated with its use in awake patients, the need
for multiple interventions, and its feasibility in critical nerve gap injury have generally been
enumerated as reasons for the lack of general acceptance of this method [12,23,26,32,34,35].
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In a significant number of PNI cases, there is a gap between the nerve stumps that
precludes their surgical suture. In these cases, it is necessary to apply a conduit to “bridge”
the nerve defect. In fact, after a nerve section there is a latency period of up to 30 days in
which the proximal axons do not elongate in the direction of the distal nerve stump [32]. If
the nerve gap was not protected and bridged, the surrounding connective tissue would
proliferate in this period and physically block most of the elongating axons from the proxi-
mal stump from reaching the distal nerve stump. Traditionally, autologous dispensable
nerves or veins are used to bridge nerve defects [65–67]. More recently, allogenic nerve
grafts and artificial nerve-guiding conduits (NGC) were introduced, and are in widespread
use [13,32]. However, none of these options is perfect. Autologous alternatives entail
non-negligible donor site morbidity. Allogenic nerve grafts have been associated with
inflammatory reactions akin to rejection responses. Generally, both allogenic nerve grafts
and NGC have been associated with worse functional results than autologous nerve grafts
or flaps, particularly for longer nerve defects [13,16,32,35,65–68].

Hence, great effort has been put into developing better NGCs, ideally with ES prop-
erties. In this context, the use of piezoelectric materials has deserved great attention, as
the movement of the body could be used to power internally the electrical properties of
the device, avoiding toxic batteries which eventually need to be removed or exchanged
surgically [69–74].

The authors propose that there is enough evidence to believe that piezoelectric materi-
als may play a significant role in the treatment of PNI. In this paper, the authors will try to
provide a critical appraisal of the literature on this subject.

3. Piezoelectrical Materials

There is a plethora of both inorganic and organic strongly piezoelectric materials
available to construct NGCs and other PNI repair devices [5,74]. When choosing these
materials, it is fundamental to have a sound grasp of not only their piezoelectric properties,
but also their safety profile, their biocompatibility, their biostability, and their degradation
products inside the body. Moreover, it is also important to understand the techniques
available to shape them into the desired geometrical configurations. Finally, their ductility,
resistance and softness should also be controlled, in order for the devices to be fixed with
sutures and tolerated inside the body [35,74] (Table 1).
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Table 1. Summary of features of different piezoelectric materials used in peripheral nerve repair.

Type Materials Biocompatibility Biodegradability Mechanical Properties Pyezolectric
Properties References

Inorganic
Aluminum Nitride (AlN), + + ++, rigid, brittle + [75]
Barium titanate (BaTiO3) + + +++, hard, fracture resistant +++ [76]

Lead zirconate titanate (PZT-5H) + ++ +++, hard, fracture resistant +++ [77]
Polyvinylidene fluoride (PVDF) ++ + ++, flexible ++ [74]

Graphene (G)
Organic

Natural

Amino acids

Glycine +++ +++ +, readily soluble in the body; hard and brittle ++ [5]
Cysteine +++ +++ +, readily soluble in the body; hard and brittle + [5]
Alanine +++ +++ +, readily soluble in the body; hard and brittle + [5]

Threonine +++ +++ +, readily soluble in the body; hard and brittle + [5]
Diphenylalanine +++ +++ +, readily soluble in the body; hard and brittle + [5]

Proteins
Collagen +++ +++ ++ + [78]

Silk +++ ++ +++, exceptional mechanical strength and
flexibility + [79]

Polysaccharides

Cellulose +++ ++ +++, excellent strength and flexibility + [80]
Chitin +++ ++ +++, high strength and stiffness + [81]

Chitosan +++ ++ ++, pliable ++ [82]
Alginate +++ ++ +, fragile + [83]

Synthetic

Poly-lactic acid (PLA), +++ ++ ++, rigid and brittle + [84]
Polyvinyl alcohol (PVA) +++ +++ +++, soft + [85]
Polycaprolactone (PCL) +++ +++ +++, soft + [86]

Polyamide (PA) +++ ++ +++, flexible, resistant + [85]
Polypyrrole (PPy) + + +++, pyroelectric properties + [86]
Polyurethane (PU) + + ++, flexible, resistant + [85]

Poly(3-hydroxybutyrate-co-3-
hydroxyhexanoate)

(PHBHHx)
++ ++ ++, flexible, resistant ++ [87]

Poly-γ-benzyl-L-glutamate (PBLG) +++ +++ +++, flexible, resistant +++ [88]
Composites 1

Natural

Collagen/Tyramine Hyaluronic Acid
derivative (HA-Tyr)

Hydrogel
+++ +++ +++ +++ [89]

Silk fibroin/Alginate (SF/Alg) +++ +++ +++ +++ [90]
Chitosan/Silk fibroin +++ +++ +++ +++ [91]
Chitosan/Collagen +++ +++ +++ +++ [92]

Natural/Synthetic Collagen/PCL +++ +++ +++ +++ [93]
Chitosan/PCL +++ +++ +++ +++ [94]

Synthetic G/PCL +++ +++ +++ +++ [95]
G/PPy/PLA +++ +++ +++ +++ [96]
PVDF/PCL +++ +++ +++ +++ [97]

PVDF/G +++ +++ +++ +++ [98]

1 Composite materials have tunable compositions which allow a better match of the biological and physical properties of the devices. +, poor; ++, good; +++, excellent.
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4. Inorganic

Aluminum nitride (AlN), Barium titanate (BaTiO3), Lead zirconate titanate (PZT-
5H) are examples of biocompatible ceramic materials with a high piezoelectric response.
However, they are rigid, brittle, and contain non-degradable and toxic compounds that
limit their potential for constructing implantable devices [5,99].

One of the most commonly used inorganic polymers in PNR is polyvinylidene fluoride
(PVDF). This compound is flexible, has excellent piezoelectric properties and is biocom-
patible, allowing for direct contact with biological tissues. However, it is not degradable,
requiring a removal surgery with all the inconvenience and the risks it entails [5,74].

Graphene is another compound that, despite having piezoelectric properties, a high
surface area and high electrical conductivity, can be hazardous when inserted into the body,
as it breaks up and its fragments can accumulate inside various organs, potentially causing
severe cellular damage and disease [5,74,100].

Metals are considered too rigid to be used alone in ES devices. However, metal nanopar-
ticles, namely of gold, silver, and copper, can be used to increase the mechanical strength and
electrical conductivity of composite materials. Some metals can progressively dissolve, such
as magnesium, zinc, tungsten, iron and molybdenum, allowing the construction of “transient
electronics” [101]. However, due to the consumption of oxygen and release of byproducts in
the corrosion of these metals, which can lead to adjacent tissue necrosis, biosafety studies are
warranted before clinical trials are implemented [5,35,74,102–105].

5. Organic

Organic piezoelectric biomaterials can be of different classes, such as natural occur-
ring amino acids (e.g., glycine, cysteine, alanine, threonine, diphenylalanine), proteins
(e.g., collagen, silk), and polysaccharides (e.g., cellulose, chitin, chitosan, alginate), or
synthetic polymeric compounds, such as poly-lactic acid (PLA), Glycine-Polyvinyl alcohol
(PVA), Polycaprolactone (PCL), Polyamide (PA), and Polypyrrole (PPy) [106–108]. Since
synthetic polymers have greater mechanical qualities than natural polymers and can be
readily synthesized into 3D structures, they are frequently employed to fabricate NGCs for
PNR [109,110].

Although with a lower piezoelectric effect compared to many inorganic materials,
these organic compounds present a much more favorable biocompatibility, biosafety, and
biodegradability profile. In fact, these organic compounds are readily recognized and
naturally degraded by host cells and/or microbiome enzymes, allowing for recipient cell
invasion and progressive replacement of the device with endogenous tissues. Hence, living
tissues can easily tolerate these compounds without triggering unfavorable immunological
reactions. PA and PCL, for example, are frequently used when strength, flexibility and
durability are required [111]. Arguably, these properties make these materials the most
obvious candidates for the construction of implantable ES devices [69–71,110,112].

β-Glycine has received great attention, due to its high piezoelectric constant in its
crystalline form. Unfortunately, glycine salts are readily soluble in body fluids and are
difficult to handle, as they are hard and brittle. To circumvent these limitations, β-Glycine
crystals have been associated with Polycaprolactone to form a soft and resistant material
with a significant piezoelectric effect. This composite material has already been used with
success as devices placed inside rodents’ brains, and to produce NGC [5,74,113].

Collagen is the most common extracellular protein in animals. It makes for a good
material for PNR as it promotes cell adhesion and development and presents excellent bio-
compatibility, hydrophilicity, and low antigenicity. Moreover, it has significant piezoelectric
properties [78,114,115].

Silk fibroin is extracted from silkworm silk and has exceptional mechanical strength,
flexibility, and biocompatibility. These characteristics enable the production of silk fibroin
in a variety of shapes, including films, fibers, and scaffolds, all of which can be adjusted to
closely resemble the mechanical characteristics of peripheral nerves. Silk fibroin is a perfect
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substance for nerve tissue engineering, since it has also been demonstrated to support cell
adhesion, proliferation, and differentiation [79].

Cellulose is a biocompatible and biodegradable polymer, with piezoelectric properties,
that has been increasingly used in PNR. Cellulose has exceptional mechanical qualities,
such as high strength and stiffness, which are essential for supporting the structure of the
nerve during regeneration. This is crucial for PNR, since the material needs to be able to
endure mechanical stresses and maintain its integrity until axonal elongation is concluded.
Furthermore, cellulose has good biocompatibility. This quality is necessary to support cell
adhesion, differentiation, and proliferation—all processes that are necessary for effective
neuron regeneration. Moreover, cellulose is a sustainable and renewable substance, which
makes it an attractive choice from an environmental standpoint. Its abundance in nature
and ability to be derived from various sources, such as plants or bacteria, further contribute
to its appeal as a piezoelectric material for peripheral nerve repair [80].

Chitin can be obtained from the exoskeletons of insects, arthropods, and crustacean
shells. After cellulose, chitin is the most common natural polysaccharide. Chitosan can
be found in some fungi or be derived from chitin through the partial deacetylation of the
latter [79,116].

Chitin and chitosan possess several advantageous features, namely biocompatibility,
biodegradability, amenability to create various geometrical forms (porous scaffolds, hy-
drogels, fibers, sponges, films, etc.), chemical and enzymatic modifiability, antimicrobial
characteristics, potential for controlled release of cytokines, antibiotics and extracellular
matrix constituents, the ability to promote cell adherence and viability [82]. The character-
istics mentioned above led to multiple studies on the potential use of chitosan and chitin in
reconstruction of peripheral nerves [117].

Another interesting natural polysaccharide is alginate. This compound is present
in the cell walls of brown algae. It is characterized by its hydrophilicity, retaining large
volumes of water and forming gels in the process. Alginate is also characterized by its
biocompatibility and low toxicity. Its main disadvantages are uncontrollable and relatively
fast degradation, inadequate mechanical strength, and inadequate cell signaling [118].
Furthermore, alginate piezoelectric properties are minimal [83].

Polyvinylidene fluoride (PVDF) is a frequently utilized synthetic organic piezoelectric
material for PNR, due to its piezoelectric qualities. It possesses adequate mechanical
flexibility and strength, electrical conductivity, and biocompatibility for the production of
NGC. However, this material is naturally strongly hydrophobic, which limits its usage in
biomedical device fabrication, unless chemically modified or associated with other more
hydrophilic materials [119,120].

Alternatively, poly(lactic-co-glycolic acid) (PLGA), is a biodegradable and biocompati-
ble polymer, which possesses piezoelectric properties when aligned in a certain direction.
Its biodegradability has been exploited for the controlled release of drugs or growth factors,
further enhancing the regenerative process [121].

Additional synthetic organic piezoelectric materials used in the realm of PNR are
polyurethane (PU) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx). PU
exhibits good mechanical properties, biocompatibility, and electrical conductivity. PHB-
HHx, on the other hand, is a biodegradable and biocompatible polymer that can be electro-
spun into nanofiber scaffolds for nerve regeneration [86,87,122].

Poly-γ-benzyl-L-glutamate (PBLG) is another synthetic peptide. It is a resilient and
flexible material with good mechanical qualities, simplicity of processing, and flexibility,
which make it a good fit for applications involving PNR. In animal models, PBLG showed
enhanced axonal outgrowth and nerve regeneration. Furthermore, scaffolds based on
PBLG have been created, offering structural support to direct nerve cells and promote their
proliferation. By imitating the natural extracellular matrix, these scaffolds can be made to
encourage cell adhesion, proliferation, and differentiation [5].

The fact that most organic materials sustain spontaneous degradation inside the body
means their piezoelectric effect is also limited in duration. In the case of PNR, this is
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not necessarily problematic, as ES is only required during the regeneration period of the
PNS [69–72,74,102].

However, in general, it can be argued that hardly any given material possesses ideal
biological, piezoelectric and structural properties. For instance, naturally occurring materi-
als with piezoelectric qualities present better biocompatibility and bioactivity. Conversely,
synthetic piezoelectric materials such as PVDF and lead zirconate titanate (PZT) can be
engineered to have specific mechanical and piezoelectric features. However, synthetic mate-
rials tend to be long-lasting, often behaving as a foreign body that may entrap the growing
nerve and/or increase the risk of infection. These in turn may mandate a second surgery
for scaffold extraction, increasing cost and potential morbidity [70]. Finally, graphene and
other highly piezoelectric materials have been added to other more readily rebsorbable
materials to enhance the piezoelectric properties of the composite materials [123].

Thus, combining different natural compounds, natural and synthetic materials, or
different synthetic compounds in composite materials may allow the fine-tuning of the
composition of devices for optimal PNR. For example, a recent study showed improved
neurite outgrowth and nerve regeneration with a composite scaffold NGC made of PVDF
and collagen. While the natural collagen aided in cell attachment and tissue integration,
the synthetic PVDF supplied the required mechanical support and enhanced piezoelectric
qualities. Similar studies have been performed with a myriad of natural and/or synthetic
compounds [70,85,124–126].

6. Processing Piezoelectrical Materials

The piezoelectric effect of materials results from the regular alignment of molecular
dipoles [127,128]. In some cases, it may be useful to increment this effect, particularly
when the processing of the material diminishes the original piezoelectric effect. There are
several methods to obtain this increment, namely stretching of the material (drawing),
thermal annealing (heat treatment), application of a high external electrical field (electrical
poling) or maximizing the macroscopic alignment of fibers in the case of materials obtained
through electrospinning processes [5,74].

Stretching materials, especially at high temperatures, multiple times, promotes the
alignment of dipoles. Heat treatment increases the crystalline content of amorphous
materials, increasing their piezoelectric properties. Electrical poling consists of applying a
high-voltage electrical field (commonly 1 to 10 kV) to ferroelectric materials (i.e., materials
that have spontaneous electric polarization that can be reversed by the application of
an external electric field), in order to align dipoles, which, in turn, will increase their
piezoelectric properties and ensure the desired polarization [5,68,129].

Some authors have augmented the piezoelectric effect of devices by externally ap-
plying ultrasound to drive this effect [130]. Notwithstanding, detractors of this process
argue that the frequent need for acoustic streaming may have deleterious effects in tissues,
namely through cavitation and local heat generation [35,36,131].

7. Biomedical Devices

Several biomedical devices with piezoelectric properties have been applied experi-
mentally for PNR [53].

Piezoelectric materials can be used to produce tridimensional scaffolds amenable to
the implantation of cells important in the process of PNR, such as elongating axons, Schwan
cells or mesenchymal cells. Bio-printed devices may even include the latter two cell types in
their composition. Additionally, substances required for chemically stimulating cell growth
and differentiation may be added. Finally, some of these chemotactic substances may also
have piezoelectric properties, such as chitosan [5,68,116,132–136]. Organic bioresorbable
piezoelectric materials are good options for tissue engineering, due to their biocompatibility,
minimal toxicity and galvanotaxis effect [5,132].

Nerve-guiding conduits (NGC) are the most reported devices. They are used to bridge
nerve gaps, which occur relatively frequently in clinical practice. Traditionally, these gaps
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have been reconstructed with resort to autologous nerve grafts, which entails variable
donor site morbidity and limited supply [137].

Their potential association with specific cell therapy, growth factors, gene therapy
alone or in combination, has been placing NGC as a promising alternative to nerve auto-
grafts [35,71,138–140]. NGC can be produced by various methods, namely 3D printing,
mold casting, electrospinning, and roll-up sheeting [35,112]. Three-dimensional printing of
NGC allows design freedom, as well as the possibility to replicate complex nerve anatomy
in monolithic devices without any assembly requirements [112,141].

A self-powered patch composed of a flexible piezoelectric generator applied over a
wound bed has been shown to promote skin nerve regeneration and sensation [142].

Electronic skin, also known as e-skin, is a broad term used to refer to artificial skin
that emulates human skin, not only for covering and protective purposes, but also for
providing haptic, thermal and humidity sensations [5,143,144]. It has a wide range of
potential applications, namely robotics, prosthetics, virtual reality, human/machine in-
terfacing, monitoring vital signs, detecting environmental pollutants, and human skin
replacement [144,145].

E-skin typically consists of three main components: a flexible substrate, functional
materials, and sensors. The flexible substrate provides the base for the electronic circuitry
and ensures its mechanical flexibility. Various materials, such as polymers or nanomaterials,
are used to achieve the desired properties of flexibility, stretchability, and durability. In
several conceptions of e-skin, receptors are piezoelectric, although capacitive and resistive
receptors have also been described [144,145].

Despite its multiple potential advantages, e-skin also presents several challenges. One
limitation is the difficulty in achieving long-term stability and reliability of the electronic
components embedded within the skin-like material. The mechanical and electrical proper-
ties of the e-skin need to be carefully optimized to ensure durability and performance over
time. Additionally, the scalability and manufacturing processes of e-skin need to be further
developed to enable mass production at a low cost. Moreover, the integration of power
sources, such as batteries or energy harvesters, remains a challenge for e-skin devices [146].

8. Discussion

Even today, despite countless surgical and technological advancements, the clinical
results after PNR remain unsatisfactory. This is surprising and certainly unrelated to the
immense time scientists have devoted to research in this field. In fact, visionary surgeons like
Paul of Aegina apparently were performing nerve sutures as far back as 600 AD [67,147–151].

Hence, the use of piezoelectric materials in the realm of PNR holds great promise
as a breakthrough technology that may improve clinical results. In fact, by allowing
the conversion of mechanical energy from normal movements of the body into electrical
gradients, or the translation of the contact with normal external stimuli into electrical
potentials, these materials can be used to produce scaffolds, NGC or e-skin. The ES they
produce can be channeled to drive PNR. In fact, these materials have been shown in
some experimental and clinical studies to promote the growth and alignment of nerve
fibers that are regenerating. Moreover, many of these materials, particularly organic ones,
are biocompatible, lowering the possibility of rejection or inflammation and ensuring
compatibility with biological tissues [34,35].

Additionally, several of the devices produced with piezoelectric materials can be
3D-printed [112,152,153]. This manufacturing technique presents an enormous versatility
and room for creativity. Being based on CAD (Computer Aided Design) files and not
having the normal constraints of traditional manufacturing methods, it allows a wide
range of geometric forms, including highly complex organic structures. Additionally, CAD
files can be further refined using generative design. This process can be defined as a
set of computational methods, including artificial intelligence algorithms and machine
learning, designed to maximize structural performance requirements with the minimal
amount of material, and a faster printing speed. Generative design can be used to perform
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topological optimization, reinforcing structures in the regions where greater forces are
applied, without the need to create continuous objects or surfaces. In medical devices,
this lattice structure reduces weight and facilitates native tissue invasion and integration.
Simultaneously, this architecture promotes survival of cells by simple diffusion initially
and by neo angiogenesis subsequently. Therefore, 3D printing has the potential to greatly
improve the ergonomics and efficiency of medical devices used in PNR. Moreover, 3D-
printing biomedical devices allows design freedom and the possibility to replicate complex
nerve anatomy in monolithic devices without any assembly requirements. For example,
printing NGCs before surgeries could diminish resort to autologous nerve grafts and their
associated morbidity [137,154–156].

The inner structure of NGC can be printed in a compartmentalized fashion, providing
additional physical clues to guide elongating axons [157,158].

Finally, 3D-printed piezoelectrical devices may even be associated with growth factors
and/or cells, further boosting PNR [112,152,159–163].

However, there are still significant hurdles and difficulties related to the restoration of
peripheral nerves using piezoelectric materials. Fabricating scaffolds or conduits with the
mechanical strength, pliability, biocompatibility, nontoxicity, durability, and piezoelectric
characteristics (ES dosage and polarity) required for implantation in the human body is
one of the key issues. Advanced production processes and exact material composition and
structure control are needed for this [34,35,85].

A potential caveat of using piezoelectric materials to produce NGC is the requirement
of an adequate orientation of the electric polarization of the device. In fact, as mentioned
above, neurons, fibroblasts, macrophages, and endothelial cells, paramount in PNR, have
been shown experimentally to migrate towards the cathodic pole [26,29–33,164]. Electrical
poling and stretching of materials can be used to align dipoles [5,68,129]. Characteriza-
tion of piezoelectric features with Piezoresponse Force Microscopy and/or Atomic Force
Microscopy measurements will help establish the efficacy of these techniques in specific
devices [68,145,165,166].

Additionally, a largely overlooked aspect in this field is the effect of the required
sterilizing processes required prior to in vivo implantation of biomedical devices. One of
the most common ways to sterilize medical devices is using gamma radiation. However, its
effects on the structure, physical and biological properties of commonly used 3D-printed
devices is largely unknown [167]. There is some evidence that gamma radiation may
cause weakening of mechanical properties, namely of tensile strength and elongation,
which could limit the practical use of the 3D-printed devices. This knowledge is therefore
of paramount importance to uphold the requirements for medical devices’ safety and
usefulness [168–170].

Furthermore, it has been shown that PNR is dependent on local blood supply [66,67].
Hence, long and/or wide NGCs may provide inadequate blood supply to the elongating
nerve. Therefore, increasing devices’ porosity or producing prefabricated vascularized
NGCs have been proposed to try to mitigate these limitations [66,67,171,172]. In general,
these modifications follow the trend of trying to replicate an optimized neuronal microen-
vironment, including structural, biochemical, electrical, vascular, and biological clues that
support and promote PNR [173].

In the future, devices must be thoroughly studied not only in hindlimb models, but
also in forelimb models where PNI are more common, and for which data are not yet
available [65,67]. Finally, further studies are warranted to confirm or dismiss the promising
experimental data and the scarce clinical data on the use of piezoelectric materials for
PNR [35,53,65,67].

9. Conclusions

Arguably, piezoelectric materials have the potential to revolutionize the somewhat
stalled field of peripheral nerve repair with new biomedical devices that range from
scaffolds and NGC to sensory or efferent components of artificial skin (e-skin).
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However, much remains to be learned regarding the piezoelectric materials, the
manufacturing of the biomedical devices, and their sterilization process to fine-tune its safe,
effective and predictable in vivo application [35].
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