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Abstract: The treatment of head and neck squamous cell carcinomas (HNSCCs) is multimodal,
and chemoradiotherapy (CRT) is a critical component. However, the availability of predictive or
prognostic markers in patients with HNSCC is limited. Inflammation is a well-documented factor in
cancer, and several parameters have been studied, with the neutrophil-to-lymphocyte ratio (NLR)
being the most promising. The NLR is the most extensively researched clinical biomarker in various
solid tumors, including HNSCC. In our study, we collected clinical and next-generation sequencing
(NGS) data with targeted sequencing information from 107 patients with HNSCC who underwent
CRT. The difference in the NLR between the good response group and the poor response group was
significant, with more patients having a high NLR in the poor response group. We also examined the
genetic alterations linked to the NLR and found a total of 41 associated genes across eight common
pathways searched from the KEGG database. The overall mutation rate was low, and there was
no significant mutation difference between the low- and high-NLR groups. Using a multivariate
binomial generalized linear model, we identified three candidate genes (MAP2K2, MAP2K4, and
ABL1) that showed significant results and were used to create a gene mutation score (GMS). Using the
NLR-GMS category, we noticed that the high-NLR-GMS group had significantly shorter relapse-free
survival compared to the intermediate- or low-NLR-GMS groups.

Keywords: genomic mutation signature; neutrophil to lymphocyte ratio; head and neck cancer;
prognostic biomarker
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1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is mostly derived from the mucosal
epithelium of the oral cavity, pharynx, and larynx [1]. It is the most common malignancy of
the upper aerodigestive tract and was ranked fourth in a Taiwanese male cohort study [2,3].
HNSCC treatment is generally multimodal and differs according to the disease stage,
anatomical location, and surgical accessibility to achieve the most curative approach while
optimizing the preservation of function [1,4]. Some early-stage diseases are curable with
surgery or definitive radiotherapy; however, more than 60% of patients present with locally
advanced disease upon diagnosis [5].

Concurrent platinum-based chemotherapy and radiotherapy, also referred to as
chemoradiotherapy (CRT) or concurrent chemoradiotherapy (CCRT), plays an impor-
tant role in HNSCC treatment. When considering organ preservation, definite CRT is
recommended as a nonsurgical treatment for most patients with advanced pharyngeal
and laryngeal cancers [6]. In postoperative management, the efficacy of adjuvant CRT has
been proven in two multicenter randomized trials (EORTC 22931 and RTOG 9501) for high-
risk patients with HNSCC, especially those with extranodal extension or positive surgical
margins [7,8]. Despite the development of risk-adapted curative treatment strategies and
other progress in therapeutic modalities, the overall 5-year survival is only 50%, and 65% of
patients with an advanced stage of the disease have significantly compromised survival [9].
Therefore, in addition to the development of novel treatment approaches, the search for
predictive or prognostic markers in patients with HNSCC is necessary.

To date, approximately 70 markers have been evaluated and reported from either
blood or tumor tissues [10–12]. In the conventional treatment era, epidermal growth factor
receptor (EGFR), p16, human papillomavirus (HPV), cyclin D1 (CCND1), B cell lymphoma-
extra large (Bcl-xL)/Bcl-2 and excision repair cross complementation group 1 (ERCC1)
have been identified as possible prognostic markers in clinical trials [11,12]. In the current
immunotherapy era, programmed death ligand-1 (PD-L1) expression, tumor mutational
burden (TMB), microsatellite instability (MSI), HPV status, smoking status, circulating
tumor cells (CTCs), circulating tumor DNA (ctDNA), gut or oral cavity microbiota, and
tumor-microenvironment-related gene expression profiles have been suggested as potential
immune biomarkers to predict the efficacy of immune checkpoint inhibitors [12].

In 1863, Virchow established a connection between inflammation and cancer based
on his observations [13]. Since then, research on the association between inflammation
and carcinogenesis has increased, supporting Virchow’s theory [14]. Inflammation is now
characterized as a critical component of tumor progression based on its contribution to
the multiple hallmarks of tumorigenesis [15–18]. Several inflammatory parameters have
been reported, such as C-reactive protein, the neutrophil-to-lymphocyte ratio (NLR), the
platelet-to-lymphocyte ratio (PLR), and the lymphocyte-to-monocyte ratio (LMR) [19–24].
Among these, the NLR is the most studied and promising clinical biomarker and has been
shown to be prognostic in many solid tumors, including HNSCC [10,25–33]. However,
there are still many unknown areas to explore, and research on inflammatory biomarkers
and cancer genomic mutations is lacking. This study aimed to decipher the predictive value
of the NLR in patients with locally advanced HNSCC treated with CRT and to explore the
associations between the NLR and the cancer genomic landscape.

2. Materials and Methods
2.1. Data Source

In this retrospective cohort study, all data were collected via the health information
system of Kaohsiung Medical University Hospital under an approved protocol (KMUHIRB-
E(I)-20210401). Eligible patients with histologically proven HNSCC (grades 1 to 3) originat-
ing in the oral cavity (OC), oropharynx (OPC), hypopharynx (HPC), or larynx (LC) were
recruited between 2016 and 2022 at Kaohsiung Medical University Hospital, Taiwan. The
Head and Neck Cancer Committee confirmed the tumor stage according to the 8th edition
of the American Joint Committee on Cancer (AJCC)’s staging system.
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All patients underwent CRT, including 75 who received postoperative adjuvant ther-
apy and 32 who received initial definitive treatment. CRT treatment included a total
radiotherapy dose of 60–70 Gy and cisplatin-based chemotherapy. Other clinical data
included detailed information on patient age, sex, tumor location, histological grade, clin-
ical staging, body weight before and after CRT, changes in body mass index (BMI), and
laboratory findings.

2.2. Treatment Response

All patients were followed up with regularly at the Medical Oncology and Otorhi-
nolaryngology outpatient departments. Disease status evaluation included tumor site
inspection, laboratory examinations, and imaging studies. Treatment response was as-
sessed and determined using computed tomography or magnetic resonance imaging at
baseline and at three- to six-month intervals after treatment initiation. The treatment re-
sponse of the patients was evaluated using Response Evaluation Criteria in Solid Tumors
(RECIST) 1.1-measurable lesions and classified into four categories: complete response
(CR), partial response (PR), stable disease (SD), and progressive disease (PD). CR and PR
were classified as good responses, whereas SD and PD were classified as poor responses.
The median follow-up duration in this cohort was 16.6 (range 2.2–80.9) months.

2.3. Neutrophil-to-Lymphocyte Ratio (NLR)

The NLR was calculated as the simple ratio between the neutrophil and lymphocyte
counts measured in the peripheral blood. Absolute lymphocyte count (ALC) and absolute
neutrophil count (ANC) data were retrieved from four weeks prior to commencing radio-
therapy. If multiple values were available before treatment, those closest to the start date of
radiotherapy were selected. The neutrophil-to-lymphocyte ratio (NLR) was computed us-
ing neutrophil and lymphocyte measurements and dichotomized into low- and high-NLR
categories using a receiver operating characteristic (ROC) analysis.

2.4. Somatic Gene Mutation Profiles and Candidate Genes

The somatic gene mutation profiles of the study cohort were determined using next-
generation sequencing (NGS) and FoundationOne CDx (F1CDx), according to the Illumina®

HiSeq 4000 platform, using formalin-fixed paraffin-embedded (FFPE) HNSCC tissue
specimens. The F1CDx-targeted NGS platform method was validated previously [34].
Neutrophil- and lymphocyte-associated pathways were identified, and the genes involved
in these pathways were retrieved from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database. The results of the somatic gene mutation profiles in our study cohort
were subsequently mapped. A total of 41 genes associated with lymphocyte and neutrophil
signaling pathways were mapped from the somatic gene mutation profiles of the study co-
hort and considered as candidate gene panels for later analyses. The somatic mutation rates
of the candidate genes in the study cohort and the NLR categories were summarized, and
the difference between the NLR categories was estimated using Fisher’s exact or Pearson’s
chi-squared test.

2.5. Gene Mutation Score (GMS)

A multivariate binomial generalized linear model was used to evaluate the association
between the NLR and somatic mutations in the candidate genes. Candidate genes with
significant results derived from the multivariate model were further selected to generate
the GMS, which was calculated by multiplying the estimated coefficient in the multivariate
model by the gene mutation status (wild as 0, mutated as 1). Subsequently, the study
cohort was dichotomized into low- and high-GMS categories using an ROC analysis. NLR-
GMS categories were generated using both the NLR and GMS, and the study cohort was
reassigned into low-, intermediate-, and high-NLR-GMS categories based on their NLR
and GMS categories. Patients with both a low NLR and GMS were categorized as having a
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low NLR-GMS, those with both a high NLR and GMS were categorized as having a high
NLR-GMS, and the remaining patients were considered to have an intermediate NLR-GMS.

2.6. Statistical Analysis

The baseline characteristics of the study cohort were summarized using frequencies
and percentages, and laboratory measurements were summarized using medians and
interquartile ranges. Differences in baseline characteristics and laboratory measurements
between the good- and poor-response subgroups were estimated using Fisher’s exact test,
Pearson’s chi-squared test, or the Wilcoxon rank-sum test. The predictive performances of
both the NLR and NLR-GMS for treatment response and short-term relapse-free survival
within 36 months were evaluated using an ROC analysis. The area under the ROC curve
(AUC) was used to determine the predictive performance of both the NLR and NLR-GMS
for progression-free survival (PFS). A higher AUC indicated a better predictive performance.
The survival rate of each NLR and NLR-GMS category was estimated using the Kaplan–
Meier estimator, and the survival difference between subcategories was estimated using
the log-rank test. All p-values were two-sided, and p < 0.05 was considered statistically
significant. All analyses were performed using R 4.1.2 software (R Core Team, 2021,
Vienna, Austria).

2.7. Immunohistochemistry

The HNSCC specimens were fixed on paraffin-embedded biopsies and sectioned. The
slices were deparaffinized using xylene and then dehydrated with ethanol. Endogenous
peroxidase activity was quenched with 3% hydrogen peroxide containing methanol for
15 min. The sections were heated in 100 mmol/L citrate buffer for 10 min to revive the
antigens. The tissues were incubated with 3 primary antibodies at room temperature for
30 min and then rinsed three times with phosphate-buffered saline (PBS) according to
the manufacturer’s protocol. Following color development, we applied cover slips to the
sections and observed them under a microscope. Staining intensity in the cancer tissue
was independently examined by pathologists who were blinded to the patients’ clinical
features and outcomes. The following primary antibodies were used: anti-ABL1 (1:100,
Elabscience, Houston, TX, USA), anti-MAP2K2 (1:100, Elabscience, Houston, TX, USA), and
anti-MAP2K4 (1:100, Elabscience, State of Texas, USA). In the assessment of IHC staining,
staining intensity ranged from 0 (negative) to 3+ (high strength) with the percentage of
positively labeled cells.

3. Results
3.1. Baseline Characteristics of Patients

Between 2016 and 2022, 107 patients were enrolled in this study. All patients were
diagnosed with HNSCC and underwent CRT. Patient characteristics, including age, sex,
tumor location, pathological grade, stage, pre-CRT BMI, post-CRT BMI, body weight loss,
white blood cell count, ANC, ALC, and the NLR, are summarized in Table 1. The majority
of the patients were middle-aged (65.4% between 45 and 64 years), male (93.5%), had oral
cavity cancer (67.3%), had grade 2 disease (55.8%), and were stage IV (85.0%). Overall,
84 patients had a good response to CRT, and 23 patients had a poor response to CRT.

There were no statistically significant differences between the good- and poor-response
groups with regards to age, sex, pathological grade, clinical cancer stage, pre-CRT BMI,
post-CRT BMI, body weight loss, white blood cell count, ANC, and ALC. However, there
were significantly more oral cavity cancers in the poor-response group (p = 0.038). The
difference in the NLR between the good-response group and poor-response group was also
prominent (p = 0.037), with more patients having a high NLR (≥2.7) in the poor-response
group (87.0% vs. 64.3%).
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Table 1. Baseline characteristics of HNSCC cohort.

Characteristics Overall,
n = 107

Good Response,
n = 84

Poor Response,
n = 23 p

Age 0.804
<45 8 (7.5%) 6 (7.1%) 2 (8.7%)
>65 29 (27.1%) 22 (26.2%) 7 (30.4%)
45–64 70 (65.4%) 56 (66.7%) 14 (60.9%)

Sex 0.168
Female 7 (6.5%) 4 (4.8%) 3 (13.0%)
Male 100 (93.5%) 80 (95.2%) 20 (87.0%)

Location 0.038
Hypopharynx 12 (11.2%) 12 (14.3%) 0 (0.0%)
Larynx 2 (1.9%) 2 (2.4%) 0 (0.0%)
Oral cavity 72 (67.3%) 51 (60.7%) 21 (91.3%)
Oropharyx 21 (19.6%) 19 (22.6%) 2 (8.7%)

Grade 0.617
Grade 1 28 (26.9%) 20 (24.7%) 8 (34.8%)
Grade 2 58 (55.8%) 46 (56.8%) 12 (52.2%)
Grade 3 18 (17.3%) 15 (18.5%) 3 (13.0%)
Unknown 3 (2.8%) 3 (3.6%) 0 (0.0%)

Stage 0.670
Stage I 3 (2.8%) 3 (3.6%) 0 (0.0%)
Stage II 4 (3.7%) 4 (4.8%) 0 (0.0%)
Stage III 9 (8.4%) 8 (9.5%) 1 (4.3%)
Stage IV 91 (85.0%) 69 (82.1%) 22 (95.7%)

BMI (Pre-CRT) 23.2 (14.6–34.1) 23.2 (15.1–34.0) 23.2 (14.6–34.1) 0.601
BMI (Post-CRT) 22.1 (13.9–33.6) 22.1 (13.9–33.6) 21.9 (14.5–33.0) 0.900
Body weight loss −2.3 (−18.5–7.2) −2.0 (−18.5–7.2) −2.8 (−13.7–2.5) 0.377
White blood cell (/µL) 6810 (3020–35,150) 6660 (3020–15,170) 6970 (3710–35,150) 0.585
Neutrophils (Neu) (/µL) 68.8 (33.2–96.1) 68.4 (33.2–88.4) 70.0 (50.4–96.1) 0.147
Lymphocytes (Lym) (/µL) 20.8 (1.0–53.6) 21.0 (2.0–53.6) 20.7 (1.0–29.9) 0.147
NLR (Neu/Lym) 0.037

Low (<2.7) 33 (30.8%) 30 (35.7%) 3 (13.0%)
High (≥2.7) 74 (69.2%) 54 (64.3%) 20 (87.0%)

Abbreviation: BMI, body mass index; CRT, chemoradiotherapy; NLR, neutrophil-to-lymphocyte ratio.

3.2. Signaling Pathways Associated with Lymphocytes and Neutrophils

After confirming that a high NLR was related to a poor treatment response, we further
analyzed the genetic alterations associated with lymphocytes and neutrophils. Table 2
summarizes eight common pathways associated with lymphocytes and neutrophils which
were identified using the KEGG database, including phosphoinositide 3-kinase (PI3K) and
Fc gamma receptor IIb (FcγRIIb) signaling in B lymphocytes, protein kinase C (PKC) and
4-1BB signaling in T lymphocytes, the regulation of IL-2 expression in activated and anergic
T lymphocytes, cytotoxic T-lymphocyte antigen 4 (CTLA4) signaling in cytotoxic T lym-
phocytes, CD27 signaling in lymphocytes, and N-formyl methionyl-leucyl-phenylalanine
(fMLP) signaling in neutrophils.

Table 2 reports the pathways associated with the lymphocytes and neutrophils derived
using the mutated genes detected in this cohort. The “involved genes” column indicates
the mutated genes found in our study cohort, which are simultaneously involved in the
corresponding pathways. The “genes in pathways” column reported the overall number of
genes involved in the correspond pathways, and the “pathway percentage” was computed



Biomedicines 2023, 11, 3113 6 of 15

by dividing the “involved genes” column by the “genes in pathways” column, denoting
the percentage of mutated genes found in this study cohort involving a correspondence
pathway. The raw NGS data for the somatic mutation profiles of this study cohort are in
Supplementary Table S1.

Table 2. Pathways associated with lymphocytes and neutrophils derived using mutated genes in the
HNSCC cohort.

Involved Pathway Genes in
Pathway

Involved
Genes

Pathway
Percentage Gene Symbol

PI3K signaling in B
lymphocytes 122 25 20.5

LYN;IKBKE;AKT2;PIK3CA;AKT1;CD79A;IRS2;MAP2K2;
PRKCI;CD79B;PTEN;NFKBIA;CBL;
MAPK1;ABL1;PIK3CB;RAC1;SYK;HRAS;JUN;AKT3;
MAP2K1;RAF1;KRAS;PIK3R1

FcγRIIb signaling in B
lymphocytes 41 14 34.1

LYN;PIK3C2G;PIK3CA;AKT1;CD79A;ATM;
CD79B;MAP2K4;PIK3CB;SYK;HRAS;PIK3C2B;
KRAS;PIK3R1

Regulation of IL-2
expression in activated and
anergic T lymphocytes

75 16 21.3
IKBKE;TGFBR2;SMAD2;CARD11;MAP2K2;
NFKBIA;MAP2K4;MAPK1;RAC1;HRAS;
MAP3K1;JUN;MAP2K1;RAF1;KRAS;SMAD4

PKC signaling in T
lymphocytes 107 17 15.9

MAP3K13;PIK3C2G;IKBKE;CARD11;PIK3CA;
ATM;NFKBIA;MAP2K4;MAPK1;PIK3CB;RAC1;
HRAS;MAP3K1;PIK3C2B;JUN;KRAS; PIK3R1

fMLP signaling in
neutrophils 106 16 15.1

GNAS;PIK3C2G;PIK3CA;MAP2K2;ATM;PRKCI;
NFKBIA;MAPK1;PIK3CB;RAC1;HRAS;
PIK3C2B;MAP2K1;RAF1;KRAS;PIK3R1

CTLA4 signaling in
cytotoxic T lymphocytes 82 13 15.9

JAK2;PIK3C2G;AKT2;PIK3CA;AKT1;ATM;
PIK3CB;SYK;PIK3C2B;AKT3;PTPN11;PPP2R2A;
PIK3R1

CD27 signaling in
lymphocytes 51 10 19.6 CASP8;MAP3K13;IKBKE;MAP2K2;NFKBIA;

MAP2K4;MAP3K1;JUN;MAP2K1;BCL2L1

4-IBB signaling in T
lymphocytes 31 7 22.6 IKBKE;MAP2K2;NFKBIA;MAP2K4;MAPK1;

JUN;MAP2K1

Abbreviation: PI3K, phosphoinositide 3-kinase; FcγRIIb, Fc gamma receptor IIb; PKC, protein kinase C; fMLP,
N-formyl methionyl-leucyl-phenylalanine; CTLA4, cytotoxic T-lymphocyte antigen 4.

3.3. Somatic Mutation Profiles of Candidate Genes

We matched the genes in these eight pathways with the somatic gene mutation profiles
of the patients. A total of 41 genes were identified and were considered candidate gene
panels for subsequent analyses, as shown in Table 3. Overall, gene mutation rates were low.
Only nine genes had mutation rates of over 10%: PIK3CA (23.4%), PRKCI (18.7%), CASP8
(18.7%), PIK3C2G (15.0%), MAP3K13 (13.1%), ATM (11.2%), JAK2 (11.2%), PTEN (10.3%),
and CARD11 (10.3%). Among these 41 genes, there were no mutation differences between
the low-NLR group and the high-NLR group.

3.4. Predictive Performance of GMS and NLR-GMS

Due to the relatively low mutation rate, we used a multivariate binomial generalized
linear model to evaluate the association between the NLR and somatic mutations of the
candidate genes (Table 4). Three candidate genes (MAP2K2, MAP2K4, and ABL1) exhibiting
significant results derived from the multivariate model were selected to generate the
GMS. MAP2K2 mutations were associated with a low NLR, whereas ABL1 and MAP2K4
mutations were associated with a high NLR.
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Table 3. Gene mutation rate of 41 genes associated with lymphocyte and neutrophil signaling
pathways.

Genes Overall,
n = 107

Low NLR,
n = 33

High NLR,
n = 74 p Value

PIK3CA 25 (23.4%) 10 (30.3%) 15 (20.3%) 0.257
PRKCI 20 (18.7%) 7 (21.2%) 13 (17.6%) 0.655
CASP8 20 (18.7%) 3 (9.1%) 17 (23.0%) 0.089
PIK3C2G 16 (15.0%) 4 (12.1%) 12 (16.2%) 0.771
MAP3K13 14 (13.1%) 5 (15.2%) 9 (12.2%) 0.758
ATM 12 (11.2%) 5 (15.2%) 7 (9.5%) 0.508
JAK2 12 (11.2%) 3 (9.1%) 9 (12.2%) 0.751
PTEN 11 (10.3%) 4 (12.1%) 7 (9.5%) 0.735
CARD11 11 (10.3%) 1 (3.0%) 10 (13.5%) 0.167
GNAS 9 (8.4%) 2 (6.1%) 7 (9.5%) 0.718
HRAS 8 (7.5%) 3 (9.1%) 5 (6.8%) 0.700
CBL 7 (6.5%) 1 (3.0%) 6 (8.1%) 0.433
IRS2 6 (5.6%) 4 (12.1%) 2 (2.7%) 0.071
MAP2K2 6 (5.6%) 4 (12.1%) 2 (2.7%) 0.071
MAP3K1 6 (5.6%) 0 (0.0%) 6 (8.1%) 0.174
NFKBIA 5 (4.7%) 2 (6.1%) 3 (4.1%) 0.643
PIK3CB 5 (4.7%) 2 (6.1%) 3 (4.1%) 0.643
KRAS 5 (4.7%) 1 (3.0%) 4 (5.4%) 1.000
TGFBR2 5 (4.7%) 2 (6.1%) 3 (4.1%) 0.643
LYN 4 (3.7%) 1 (3.0%) 3 (4.1%) 1.000
IKBKE 3 (2.8%) 1 (3.0%) 2 (2.7%) 1.000
AKT1 3 (2.8%) 2 (6.1%) 1 (1.4%) 0.224
CD79B 3 (2.8%) 1 (3.0%) 2 (2.7%) 1.000
MAPK1 3 (2.8%) 2 (6.1%) 1 (1.4%) 0.224
JUN 3 (2.8%) 0 (0.0%) 3 (4.1%) 0.551
MAP2K4 3 (2.8%) 0 (0.0%) 3 (4.1%) 0.551
PIK3C2B 3 (2.8%) 2 (6.1%) 1 (1.4%) 0.224
ABL1 2 (1.9%) 0 (0.0%) 2 (2.7%) 1.000
RAC1 2 (1.9%) 0 (0.0%) 2 (2.7%) 1.000
SYK 2 (1.9%) 1 (3.0%) 1 (1.4%) 0.524
AKT3 2 (1.9%) 0 (0.0%) 2 (2.7%) 1.000
RAF1 2 (1.9%) 1 (3.0%) 1 (1.4%) 0.524
PIK3R1 2 (1.9%) 0 (0.0%) 2 (2.7%) 1.000
SMAD4 2 (1.9%) 2 (6.1%) 0 (0.0%) 0.093
PTPN11 2 (1.9%) 0 (0.0%) 2 (2.7%) 1.000
BCL2L1 2 (1.9%) 0 (0.0%) 2 (2.7%) 1.000
AKT2 1 (0.9%) 1 (3.0%) 0 (0.0%) 0.308
CD79A 1 (0.9%) 0 (0.0%) 1 (1.4%) 1.000
MAP2K1 1 (0.9%) 0 (0.0%) 1 (1.4%) 1.000
SMAD2 1 (0.9%) 1 (3.0%) 0 (0.0%) 0.308
PPP2R2A 1 (0.9%) 0 (0.0%) 1 (1.4%) 1.000

p-value is estimated using Fisher’s exact test or Pearson chi-squared test.
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Table 4. Binomial generalized linear model result for the association between the NLR category and
the mutation status of 41 associated genes.

Genes Coefficients SE t p

LYN −0.386 0.336 −1.150 0.254
IKBKE 0.036 0.278 0.130 0.897
AKT2 −1.030 0.560 −1.842 0.070
PIK3CA −0.486 0.251 −1.942 0.057
AKT1 −0.194 0.422 −0.461 0.646
CD79A 0.441 0.871 0.507 0.614
IRS2 −0.367 0.244 −1.506 0.137
MAP2K2 −0.749 0.315 −2.373 0.021
PRKCI 0.342 0.277 1.233 0.222
CD79B −0.510 0.421 −1.212 0.230
PTEN 0.001 0.211 0.006 0.996
NFKBIA 0.384 0.359 1.069 0.289
CBL 0.219 0.277 0.791 0.432
MAPK1 0.088 0.447 0.196 0.845
ABL1 0.986 0.449 2.197 0.032
PIK3CB 0.149 0.298 0.501 0.618
RAC1 0.602 0.619 0.973 0.334
SYK 0.130 0.418 0.311 0.757
HRAS −0.210 0.223 −0.942 0.350
JUN 0.698 0.466 1.500 0.138
AKT3 0.102 0.530 0.193 0.848
MAP2K1 −0.101 0.521 −0.193 0.848
RAF1 −0.011 0.384 −0.027 0.978
KRAS 0.198 0.305 0.649 0.519
PIK3R1 −0.009 0.492 −0.019 0.985
PIK3C2G 0.085 0.153 0.554 0.582
ATM 0.037 0.202 0.181 0.857
MAP2K4 0.730 0.339 2.153 0.035
PIK3C2B −0.217 0.308 −0.704 0.484
TGFBR2 −0.360 0.342 −1.055 0.295
SMAD2 −0.768 0.656 −1.169 0.246
CARD11 0.009 0.179 0.052 0.959
MAP3K1 0.156 0.270 0.577 0.566
SMAD4 −0.523 0.429 −1.219 0.227
MAP3K13 −0.044 0.247 −0.177 0.860
GNAS 0.111 0.193 0.576 0.566
JAK2 0.236 0.158 1.498 0.139
PTPN11 −0.450 0.593 −0.759 0.450
PPP2R2A −0.013 0.718 −0.017 0.986
CASP8 0.203 0.148 1.371 0.175
BCL2L1 0.522 0.532 0.982 0.330

SE, standard error. The significant genes were abstracted to generate a GMS (gene mutation score) = coefficient ×
gene mutation status (0: wild, 1: mut).

NLR-GMS categories were generated using both the NLR and GMS, and the study
cohort was reassigned into low-, intermediate-, and high-NLR-GMS categories based on
their NLR and GMS categories. Figure 1A,B display ROC plots for the NLR category and
the NLR-GMS for treatment response and relapse events within 36 months, respectively.
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Both exhibited improved predictive performance using the NLR-GMS categories compared
to the NLR categories.
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Figure 1. Predictive performance of NLR and NLR-GMS in treatment response and short-term relapse-
free survival (within 36 months). ROC plots for NLR category and NLR-GMS for (A) treatment
response and (B) relapse event within 36 months. Kaplan–Meier plot for short-term relapse-free
survival comparison according to (C) NLR and (D) NLR-GMS category. ROC, receiver operating
characteristics. AUC, area under ROC curve.

Although the high-NLR group exhibited poorer survival than the low-NLR group,
no significant survival difference was found between the groups (Figure 1C). However,
when we used the NLR-GMS categories, the difference in relapse-free survival between the
NLR-GMS groups was significant (overall p = 0.003; Figure 1D). The high NLR-GMS group
had a significantly shorter relapse-free survival period than the intermediate (p = 0.004)
and low (p = 0.002) NLR-GMS groups.

3.5. Somatic Mutation Validation via Immunohistochemistry Staining

Based on the result of the multivariate binomial generalized linear model, three
candidate genes (MAP2K2, MAP2K4 and ABL1) exhibited significant results and were
used to generate the GMS. We further validated the expression of three candidate genes by
immunohistochemistry (IHC) staining cancer tissues from HNSCC patients. Figure 2 shows
representative images of IHC staining for the mutated and wild type of each candidate gene.
The yellow words in the upper-left corner of each picture indicate the staining intensity
and the percentage of positively labeled cells. Cancer tissues with somatic mutations of
the three candidate genes showed a higher staining intensity and percentage of positive
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cells compared to wild-type specimens. Overall, it showed an increasing IHC intensity in
somatic mutated samples.
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4. Discussion

The relationship between inflammation and cancer is highly associated. Inflamma-
tion predisposes patients to cancer development and promotes all stages of tumorigene-
sis [15–18]. Several acquired factors are already proven to be carcinogenic and are often
associated with chronic inflammation, including chronic bacterial and viral infections,
autoimmune diseases, environmental factors (asbestos exposure), lifestyle factors (obesity,
tobacco smoking, and excessive alcohol consumption), and aging, which are thought to
promote tumor-extrinsic inflammation [14,35]. In contrast, tumor-intrinsic inflammation,
also referred to as cancer-elicited inflammation, is induced after tumor initiation and con-
tributes to malignant progression by recruiting and activating inflammatory cells [14,17,36].
Moreover, anticancer therapies can also induce inflammation via the necrosis and necropto-
sis of cancer cells [14,17]. Overall, cancer cells and surrounding stromal and inflammatory
cells engage in well-orchestrated reciprocal interactions to form an inflammatory tumor
microenvironment [17].

Several parameters have been reported to represent the degree of systemic inflam-
mation, such as C-reactive protein and the NLR, PLR, and LMR [19–24]. The NLR is the
most promising clinical biomarker and has been shown to be prognostic in many solid
tumors, including HNSCC [25–33]. The NLR reflects the dynamic relationship between
neutrophils (innate immune response) and lymphocytes (adaptive immune response).
During stress, trauma, surgery, systemic infection, inflammation, sepsis, or critical illness,
the dysregulation of innate and adaptive immune responses results in neutrophilia and
lymphocytopenia [37]. Initially, the NLR was used as an index of systemic inflammatory
response syndrome (SIRS) and stress in critically ill patients [38]. However, more recently,
the NLR has been applied in almost all medical scenarios as a reliable and easily available
marker of immune response to various stimuli [37].

The NLR was first applied as a prognostic factor for colorectal cancer in 2005 by Walsh
et al. [39]. Two meta-analyses [25,26] and various studies have demonstrated that the NLR
is a prognostic factor in different solid tumors, including esophageal cancer [40], gastric
cancer [41,42], pancreatic cancer [43], and biliary tract cancer [44], etc. The role of the NLR
in HNSCC was also evaluated in many studies, and all of them concluded that the NLR is
a reliable prognostic marker [28–30,33,45–54]. Similarly, our cohort demonstrated patients
with a high NLR in the poor-response group (87.0% vs. 64.3%), although there was no
difference in the 36-month relapse-free survival between the high- and low-NLR groups.

To further evaluate the genetic alterations of the immune response associated with
the NLR, we analyzed the NGS data of HNSCC patients and matched them with the
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KEGG database. Eight pathways and forty-one associated genes were identified. Different
statistical methods were applied to determine the association between the NLR and somatic
mutations in these candidate genes. Three candidate genes (MAP2K2, MAP2K4, and ABL1)
were selected using a multivariate binomial generalized linear model and were further
advanced to GMS generation.

MAP2K2 and MAP2K4 both belong to the mitogen-activated protein kinase (MAPK)
family. MAP2K2 regulates the phosphorylation and activation of extracellular signal-
regulated kinases (ERKs) [55]. MAP2K4 can activate p38 via the phosphorylation of c-
Jun-N-terminal kinases (JNK) [56]. MAPK cascades regulate a wide variety of cellular
processes including proliferation, differentiation, transcriptional regulation, and stress
responses [55,57]. MAPK activation also plays critical roles in the production of pro-
inflammatory cytokines and the induction of the expression of multiple inflammatory-
associated genes [58–62]. A variety of pharmacological inhibitors have been developed to
specifically block MAPK kinase 1 and 2 (MEK1/2) [63,64]. Four MEK inhibitors, Trametinib,
Cobimetinib, Binimetinib, and Selumetinib, have already been approved by the FDA to
date [65]. An emerging technology, named proteolysis targeting chimera (PROTAC),
could break the limitation of acquired resistance during long-term treatment by inducing
MEK1/2 degradation [65]. Unlike MAP2K2, inhibitors specifically targeting MAP2K4
are few. PLX8725, a novel MAP2K4 inhibitor, demonstrates promising in vivo activity
against patient-derived xenografts of uterine leiomyosarcomas harboring gain-of-function
alterations in the MAP2K4 gene [66]. In fact, MAP2K4 mutations are sensitive to MEK
inhibitors in multiple cancer models [67]. There are also a variety of potent inhibitors of the
p38 MAP kinases have been developed, such as SB203580, SB202190, and BIRB-796 [64].

ABL1 is a proto-oncogene that encodes a protein tyrosine kinase involved in a variety
of cellular processes, including cell division, adhesion, differentiation, and response to
stress. ABL1 is involved in the occurrence and development of several types of cancers
including colon, kidney, and breast cancer [68,69]. Some inflammatory conditions are also
associated with ABL1 [70]. ABL1 mediates inflammation by regulating the NF-κB and
STAT3 signaling pathways. The blockade of ABL1 suppresses inflammatory signaling
and cytokines [71]. To date, there are several approved ABL1 inhibitors, such as imatinib,
nilotinib, dasatinib, bosutinib, ponatinib, and so on. Most of them are treatments for chronic
myeloid leukemia, which is BCR-ABL1-positive.

In short, three candidate genes (MAP2K2, MAP2K4, and ABL1) are all associated
with inflammation and carcinogenesis. In our study, by using the NLR-GMS categories
to divide patients into three groups, we noticed that the high-NLR-GMS group had a
significantly shorter relapse-free survival than the intermediate- and low-NLR-GMS groups.
In conclusion, the GMS could further target extremely high-risk patients with worse short-
term survival based on the NLR-GMS categories.

This article possesses some strengths and limitations. Initially, the previous publica-
tions only affirmed the association between the NLR and treatment response. However, in
this study, we conducted a comprehensive genetic investigation along with an investigation
of clinical biomarkers in patients with HNSCC who underwent CRT and devised NLR-GMS
categories to predict survival. Nonetheless, this cohort has a relatively small sample size,
and there were differences in the tumor locations between the two groups. Specifically, the
poor-response group had more oral cavity cancers, while the good-response group had
more oropharynx cancers. Since different anatomical sites represent distinct etiological
factors and background genetic alterations, this may have affected the study results. The
longitudinal pattern (or variation) in the NLR of the study population was not investigated
due to the nature of the study’s design. Additionally, further experiments are necessary to
elucidate the role, influence, and mechanism of the candidate genes (MAP2K2, MAP2K4,
and ABL1), which could serve as a valuable theme for future research.
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5. Conclusions

In our cohort of HNSCC patients that underwent CRT, a high pre-treatment NLR
is linked to a poor response. We conducted a further analysis on the genetic alterations
associated with the NLR using somatic gene mutation profiles and identified 41 associated
genes. However, there was no significant difference observed between the high- and
low-NLR groups. Through the use of a multivariate binomial generalized linear model,
we selected MAP2K2, MAP2K4, and ABL1 to develop a GMS. By utilizing the NLR-GMS
categories, we could effectively target high-risk patients with an extremely poor short-term
survival outcome.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines11123113/s1, Table S1: Raw NGS data of the somatic
mutation profiles.
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