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Abstract: Nondisplaced femoral neck fractures are sometimes misdiagnosed by radiographs, which
may deteriorate into displaced fractures. However, few efficient artificial intelligent methods have
been reported. We developed an automatic detection method using deep learning networks to
pinpoint femoral neck fractures on radiographs to assist physicians in making an accurate diagnosis in
the first place. Our proposed accurate automatic detection method, called the direction-aware fracture-
detection network (DAFDNet), consists of two steps, namely region-of-interest (ROI) segmentation
and fracture detection. The first step removes the noise region and pinpoints the femoral neck region.
The fracture-detection step uses a direction-aware deep learning algorithm to mark the exact femoral
neck fracture location in the region detected in the first step. A total of 3840 femoral neck parts in
anterior–posterior (AP) pelvis radiographs collected from the China Medical University Hospital
database were used to test our method. The simulation results showed that DAFDNet outperformed
the U-Net and DenseNet methods in terms of the IOU value, Dice value, and Jaccard value. Our
proposed DAFDNet demonstrated over 94.8% accuracy in differentiating non-displaced Garden
type I and type II femoral neck fracture cases. Our DAFDNet method outperformed the diagnostic
accuracy of general practitioners and orthopedic surgeons in accurately locating Garden type I and
type II fracture locations. This study can determine the feasibility of applying artificial intelligence in
a clinical setting and how the use of deep learning networks assists physicians in improving correct
diagnoses compared to the current traditional orthopedic manual assessments.

Keywords: radiograph; nondisplaced; femoral neck fracture; deep learning network

1. Introduction

A femoral neck fracture (FNF) is one of the most common osteoporotic fractures in the
elderly, and it causes substantial morbidity and mortality [1–3]. Figure 1 shows a normal
lateral view of the pelvis and proximal femur. According to the radiograph-based Garden
classification system for assessing fracture severity, FNFs can be classified into four types,
namely nondisplaced Garden I and II and displaced Garden III and IV [4]. The Garden
classification incorporates the displacement, fracture completeness, and relationship of
bony trabeculae in the femoral head and neck. Type I is described as a nondisplaced fracture
with a valgus-impacted incomplete fracture and a disruption in the lateral cortex, while the
medial cortex is preserved. Type II is described as a complete fracture without displacement.
Type III is described as a complete fracture with partial displacement, indicated by a
change in the angle of the trabeculae. Type IV is described as a complete fracture with
complete displacement. The features of displaced FNFs are clinically distinct and distinct
through imaging, whereas those of nondisplaced FNFs are challenging and receive less
attention [5–8]. The radiographic imaging of nondisplaced FNFs can be compromised by
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osteoporosis, obesity, patient position-related reasons, the use of portable radiographic
equipment, and poor image quality, which creates additional difficulties for clinicians [6,9].
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In order to understand the misdiagnosis rate of nondisplaced FNFs in radiographs, we
conducted a trial at the China Medical University Hospital (CMUH). One ER doctor, one
junior PGY-1 doctor, and one ten-years-of-experience senior orthopedic doctor volunteered
to read 480 pelvis AP-view X-rays with nondisplaced FNFs. The diagnosis of fractures was
based on a further pelvis CT scan and radiologist reports. The overall misrecognized rates
of nondisplaced FNFs were 7.87% for the PGY doctor, 4.19% for the ER doctor, and 2.44%
for the senior orthopedic doctor. Table 1 shows the results compared with previous reviews.
The misdiagnosis rate was higher for the junior doctor and ER doctor compared with the
senior orthopedic doctor. Therefore, AI-assisted diagnoses of radiographs are helpful for
alerting doctors in the ER to arrange an advanced CT scan to identify these occult fractures
in highly suspect cases.

Table 1. Comparison of misclassification rate in nondisplaced FNFs in radiographs among different
professional physicians.

Profession Misrecognized Fracture Rate p-Value 1

ER doctor 4.19% <0.0001

PGY-1 doctor 7.87% <0.0001

Senior orthopedic doctor 2.44% <0.0001
1 The p-values were estimated using the chi-squared test.

Recent advances in artificial intelligence using deep learning techniques, such as
deep convolutional neural networks (DCNNs), have shown remarkable results for a range
of medical tasks as well as for human experts [10–14]. A growing number of studies
support that deep learning networks can be trained to identify fractures in orthopedic
radiographs with a satisfactory accuracy [15,16]. Although deep learning has been applied
to fracture detection for radiological diagnoses, nondisplaced FNFs are often overlooked in
a misdiagnosis, which may result in patients with nondisplaced fractures that deteriorate
into displaced fractures. Therefore, we propose a new direction-aware fracture-detection
network, termed DAFDNet, for the automatic detection of FNFs on anterior–posterior
pelvic radiographs. It is well known that the Gabor filter is a differentiable band-pass
filter with adjustable scales and orientations, and therefore, it has been integrated into
DCNNs [17–19]. Garden type I and Garden type II FNFs present different orientations
and frequencies in the frequency space, depending on the patient’s imaging location
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and conditions. By integrating a Gabor filter into the DCNN, the filter is able to fix the
optimal parameters and help the DCNN learn robust feature presentations. We present this
study to validate the accuracy of a DCNN in detecting nondisplaced FNFs, and it showed
substantial improvements in performance. This study utilized a deep learning network
to help physicians improve the diagnostic correctness compared to the current traditional
manual orthopedic evaluations.

2. Materials and Methods
2.1. DCNN for FNFs

Recently, DCNN-based methods have shown a great potential efficiency in many
areas of medical diagnoses and have encouraged further applied research [20]. The use
of a DCNN can reduce the need for expensive computed tomography (CT) and magnetic
resonance imaging (MRI) scans, and its automotive and accurate detection results can
reduce the burden on clinicians for the urgent identification of fractures [12]. However, the
feasibility and efficiency of detecting FNFs using a DCNN remain challenging and have
not been fully investigated, especially for the occult representations of Garden I and II. To
the best of our knowledge, typical DCNN-based methods [16,21–24], such as U-Net [21]
and DenseNet [24], can be applied to detect FNFs. These types of fractures may disappear
after a series of convolutional operations with the depth of the layers due to tiny variations
in the grayscale distribution in these regions in the radiographic images.

2.2. Gabor Filter

A two-dimensional Gabor filter is a directional band-pass wavelet filter that is the
multiplication of a Gaussian function and a cosine function, defined as follows [17]:

Gu,v(z) =
‖ku,v‖2

(2π)2 e−(‖ku,v‖2‖z‖2/2(2π)2)[eiku,vz−e−(2π)
2/2] (1)

where ku,v = kveiku , kv = (π/2)/
√

2
(v−1)

, ku = u π
U , and v and u are the frequency and

orientation, respectively. U stands for the total number of directions, and we set up
8 different angles to find the directionality of the feature. Substantially, the Gabor transform
is a windowed short-time Fourier transform that is able to extract features locally or of
certain frequency components. The direction and frequency selection properties make the
Gabor filter sensitive to certain types of boundaries. In radiography, the orientations of
nondisplaced FNFs are related to the patient’s position, where the frequency components
lie in certain ranges. Therefore, in our study, a multiple-direction Gabor filter with adjusted
frequency bands was engaged as an input layer to the DCNN to detect tiny changes in the
grayscale distribution in Garden type I and type II fractures.

2.3. Attention Mechanism

The attention mechanism was invented to tell the DCNN where or what features to
focus on, which was demonstrated to significantly improve the effectiveness of the model
performance [25,26]. The squeeze-and-excitation attention network (SENet) exploits the
squeeze function and the excitation function, i.e., the global average pooling operation and
the sigmoid function, respectively, to encode inter-channel information [27]. This simple
and innovative model provides a significant performance improvement for DCNNs, but
ignores the location information that is important for capturing features. Therefore, several
extension studies have proposed solutions such as the bottle attention module (BAM) [28],
the convolutional block attention module (CBAM) [29], and spatial and channel-wise
attention (SCA) [30] to further extract spatial and channel information and improve the
network effectiveness. The self-attention DCNN model attention-in attention network
(A2Net) divides the attention branches into attention and non-attention branches to maxi-
mize the use of high-contributing information and minimize the suppression of redundant
information [31]. Although A2Net exhibits an excellent performance, the large amount of
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computation requires significant hardware facility costs. In summary, this study used the
SCA strategy to obtain spatial and channel-wise information.

2.4. Direction-Aware Segmentation Network

In this section, we introduce the implementation details of the proposed DAFD-
Net model, including the attention mechanism ghost convolution and the details of the
model architecture.

2.5. Squeeze-and-Excitation Ghost Convolution

GhostNet was first proposed in reference [32] to reduce the computation consumption
by replacing the ordinary convolution with a simple linear transformation. A ghost module
divides the result of convolution into two parts. The first part involves ordinary convolution,
while the other part uses a series of linear transformations to generate more feature maps,
as shown in Figure 2a. By using this strategy, the lightweight ghost module produces
more feature maps with inexpensive operations and performs better than other lightweight
DCNNs, which also accelerates the learning process. However, the linear transformation
does not focus on cross-channel relationships, which have proven to be robust in object
detection. Therefore, each squeeze-and-excitation (SE) block consisting of global average
pooling and two fully connected layers was embedded in the ghost module instead of the
linear transformation, as shown in Figure 2b. The weights calculated from the SE blocks
were then multiplied with the input convolution results by channel and concatenated with
the original convolution results to generate the final feature maps.
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2.6. Model Architecture

As shown in Figure 3, DAFDNet uses the popular encoder–decoder framework to
first encode the input image by focusing on the attention ghost convolutional module and
Gabor-filter convolution. The detailed structure of the DAFDNet framework is shown
in Table 2. The input image is manipulated with the ghost module, and then two down-
sampling operations are performed to gain global feature maps with different resolutions,
i.e., GhoM1, GhoM2, and GhoM3. The output feature map GhoMi in the ghost module is
represented as follows:

GhoMi = GhostConv(Gi, Li), i = 1, 2, . . . n (2)

where Li is the ith input feature map and Gi is the ith ghost module.
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Table 2. The detailed structure of the DAFDNet framework.

Stage Layer Size Channel

Input Input 1024 × 1024 1

Gabor

Gab1 1024 × 1024 32

Gab2 512 × 512 32

Gab3 256 × 256 32

Ghost

GhoM1 1024 × 1024 32

GhoM2 512 × 512 64

GhoM3 256 × 256 128

Gabor + Ghost

GG1 1024 × 1024 64

GG2 512 × 512 96

GG3 256 × 256 150

PF

PF1 1024 × 1024 32

PF2 512 × 512 64

PF3 256 × 256 128

Attention Module

A1 1024 × 1024 64

A2 512 × 512 128

A3 256 × 256 256

Output Output 1024 × 1024 1

In the process of bypassing the Gabor convolution, we used an 8-direction Gabor with
diverse scales to extract the boundary of the FNF, and then performed two down-sampling
operations to generate two additional batches of shrinking feature maps. Then, we obtained
the feature maps Gabi from the Gabor convolution, which are represented as follows:

Gabi = GaborConv(GFi(θ,s), Li) i = 1, 2, . . . n (3)

where GFi(θ,s) is the Gabor filter with directions θ and scales s. Afterwards, in our study,
Gab1, Gab2, and Gab3 were concatenated with GhoM1, GhoM2, and GhoM3, respectively, to
obtain the aggregated feature maps GG1, GG2, and GG3, expressed by:

GGi = Concat(Gabi, GhoMi) i = 1, 2, . . . n (4)
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Then, the extracted features were refined with a 2 × 2 average pooling layer, a 3 × 3
convolution layer, and a batch normalization layer to obtain the PFi feature map. We
concatenated the corresponding GhoMi and PFi with the same resolution to obtain Ai,
where the results were processed with the attention module, respectively. The feature maps
with a lower resolution, such as A3 and A2, as shown in Figure 3, were resized with a 2 × 2
up-sampling layer before being concatenated to the feature maps with a higher resolution.
In general, the process can be expressed as follows:{

Concati+1 = Concat
(
Upsampling(A i+2

)
, Ai+1)

Concati = Concat
(
Upsampling(A i+1

)
, Ai)

i = 1, 2, ..., n (5)

Hence, the output of our network was the result of the sequential operations of
Equations (2)–(5) with a 2 × 2 up-sampling layer to recover the feature size as the input
image, followed by a 1 × 1 convolution layer to reduce the dimension of the channels.

The loss function of DAFDNet is the mean-squared error, which can be expressed as:

L(ϑ) =
1
N ∑N

i=1

∥∥∥DASNet
(

I IN
i

)
− IGT

i

∥∥∥
2

(6)

where ϑ represents the learnable parameter of DAFDNet and ‖.‖2 is L2-norm. I IN
i and IGT

i
denote the input images and the corresponding ground truth, respectively.

3. Experiments and Results
3.1. Dataset and Metrics

We extracted radiological images of the anterior–posterior view of the pelvis of 240 pa-
tients with nondisplaced ipsilateral FNFs (Garden type I and II) noted in relevant radiol-
ogists’ reports from the China Medical University Hospital (CMUH, Taichung, Taiwan)
between 2018 and 2020, taken from the PACS (picture-archiving and communication sys-
tem) database identified through the RIS (radiology information system). This study was
approved by the institutional review board (IRB number: CMUH111-REC2-110). The
inclusion criteria for patient selection were individuals who had been diagnosed with
nondisplaced femoral neck fractures that were classified as Garden type I or II and patients
with diagnostic reports. Individuals with displaced femoral neck fractures, preexisting
implanted hardware around the fracture site, or musculoskeletal neoplasms were excluded.
These 240 unilateral nondisplaced fractures were cut into 480 right and left joints, of which
240 were normal and 240 were nondisplaced fractures. There was no interaction with the
patients directly, as we acquired de-identified data. This study was in accordance with the
ethical standards of the institutional and national committee on human experimentation
and conducted according to the guidelines of the Declaration of Helsinki. These radio-
graphic images were rotated and rescaled with randomized rotations of the images from
−15 to +15 degrees and a magnification reduction of 0.05 times to increase the number of
frames to 3840, of which 3000 were used for training and 840 were used for testing. Two
senior orthopedic surgeons were involved in the annotation, independently annotating the
femoral neck part and the fracture line. In our algorithm, the femoral neck part was used
to train the DCNN for ROI segmentation and the fracture line was used to train the DCNN
for fracture detection. All labeled images were made under the guidance of a professional
orthopedist, and new images of a 1024 × 1024 pixel size were extracted accordingly to
reduce the computing time. We used the intersection-over-union (IOU) value between the
FNF region and the labeled region as the assessing metrics, defined as IOU = (A∩B)/(A∪B),
where ∩ and ∪ denote the intersection and union of two sets, A is the intersection of the
predicted region and label region, and B is the predicted region. In addition to this, we
used Dice and Jaccard as evaluation indicators with the following formulas:

Dice =
2×|A ∩ B|
|A|+|B| (7)
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Jaccard =
A ∩ B
A ∪ B

(8)

where A is the predicted region and B is the label region.

3.2. Implementation Details

Figure 4 shows the FNF detection strategy used in this paper, which consisted of
two phases, namely femoral neck localization and fracture detection. In the first stage,
the original image was fed into a segmentation network with matching and alternative
methods to accurately localize the femoral neck. In the second stage, a surgeon-made
label-trained network was used to localize the exact location of the fracture after the output
femoral neck image in the first stage.
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Figure 4. Workflow of the fracture-detection strategy. Two phases are included: femoral neck
localization and fracture detection.

We augmented the data by rotating and rescaling the images and labels with various
degrees and scales. During the training process, 12 images were randomly chosen as the
input in each training batch. The model was trained using the Adam optimizer with a learn-
ing rate initialized to 1× 10−5 and set to 4× 10−5 in steps of 1× 10−5. Two typical DCNNs,
namely U-Net [21] and DenseNet [24], were used as the comparison algorithms, and their
codes were downloaded from GitHub, shared by the original authors. Up-sampling layers
were added into DenseNet to achieve femoral neck segmentation. The corresponding
parameters of these three methods were optimized until the network converged.

3.3. Results and Comparison

Figure 5 shows the pelvic radiographic images with FNFs and the comparison of the
detection results of U-Net, DenseNet, and our proposed DAFDNet. U-Net is more often
used in image segmentation, and can roughly cut out the contour of the target, but cannot
handle cracks without a displacement fracture well, because the cracks in the image are very
small and inconspicuous, and U-Net is more suitable for dealing with more obvious and
rough segmentation, but cannot deal with such small cracks. DenseNet is a related method
used for image classification and detection; with the characteristic of dense connections,
it can extract the features of smaller objects in the image, which strengthens the feature
reuse and reduces the number of parameters, but in the process of feature extraction, the
down-sampling method ignores the information of many small and dense objects, which
reduces the accuracy of detection, and in the deeper layers of DenseNet, it may still face
the problem of disappearing gradients [33], so it may not be suitable for dealing with
small cracks. As shown in the enlarged view of Figure 5a, the fractures were labeled by an
experienced surgeon and delineated with blue lines. The coordinates of both the labeled
and predicted results are calculated and plotted in different colors in Figure 5b–d, where
the labeled fracture region is plotted in red, while the predicted fracture region results are
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plotted in yellow. The detection results show that our proposed method was the closest
to the actual size and area of the label region, while the other methods obtained results
with an area several times larger than the labeled region. Therefore, our proposed method
gained the largest IOU value among the three methods, which indicates that the fracture
detected by our proposed method was the closest to the ground truth.
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Figure 5. Radiographic images of pelvis and FNFs and the detection results of U-Net, DenseNet, and
our proposed DAFDNet. The arrow indicates the location of the FNF and the dashed line indicates
the zoomed-in area. (a) Imaging of the pelvis with FNF labeled by blue lines in the magnified view.
(b) Fracture detected by DAFDNet, (c) fracture detected by U-Net, and (d) fracture location detected
by DenseNet. As shown in the enlarged view, the fracture-detection range for each method is in the
yellow rectangle and the physician-delineated labels are in the red rectangle.

Figure 6 shows a comparison of the IOU values of our proposed DAFDNet, DenseNet,
and U-Net. We can see that DAFDNet outperformed the other two methods, and most of
the IOU values of DAFDNet were much larger than those of DenseNet and U-Net.

In Table 3, we divided the IOU values into three categories. A total of 73.1% of the
DAFDNet results were above 0.5 (or 50%), while none of the other two methods achieved
this. A total of 21.7% of the DAFDNet results were between 0.2 and 0.5 (or [20%, 50%]),
while more than 90% of the DenseNet and U-Net comparison method results were close to
0.1 (or [0%, 20%]). The table also calculates the average IOU values, which were 0.648, 0.084,
and 0.062 (or 64.8%, 8.4%, and 6.2%) for DAFDNet, DenseNet, and U-Net, respectively. The
average Dice values were 0.542, 0.06, and 0.041 (or 54.2%, 6.0%, and 4.1%) for DAFDNet,
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DenseNet, and U-Net, respectively. The average Jaccard values were 0.426, 0.031, and
0.021 (or 42.6%, 3.1%, and 2.1%) for DAFDNet, DenseNet, and U-Net, respectively. The
simulation results showed that DAFDNet outperformed the U-Net and DenseNet methods
in terms of the IOU value, Dice value, and Jaccard value.
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Table 3. Statistical results of the IOU, Dice, and Jaccard values.

IOU (%)

Methods U-Net [21]
(%)

DenseNet [24]
(%)

DAFDNet
(%)

[50, 100] 0 0 73.1

[20, 50] 0.4 1.6 21.7

[0, 20] 99.6 98.4 5.2

Average IOU 6.2 8.4 64.8

Dice 4.1 6.0 54.2

Jaccard 2.1 3.1 42.6

Figure 7 shows the detection results of DAFDNet for different IOU values. The IOU
values are divided into three classes, where values above 50% are shown in a–c, those
between 20% and 50% are shown in d–f, and values below 20% are shown in g–i. In the
enlarged view of all sub-images, the red rectangle indicates the labeled region (ground
truth) and the yellow rectangle is the fracture region predicted by DAFDNet. It was
concluded that DAFDNet achieved a better performance than the DenseNet and U-Net
comparison methods. The diagnostic correctness of DAFDNet exceeded 94.8% and the
DAFDNet method could assist general practitioners and orthopedic surgeons in the initial
diagnosis of Garden type I and II fractures to avoid misclassification and improve the
diagnostic correctness.
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4. Discussion and Conclusions

In this study, we proposed a new method for detecting FNFs. The results show that
our method was effective in detecting precise fracture locations and outperformed other
comparative methods. Our proposed method is implemented in the localization and
detection phases, i.e., localization of the femoral neck and fracture detection. The benefit of
the localization phase is that, by localizing the ROI from the original image, the input data
size of the DCNN can be greatly reduced. On the one hand, the computation time is saved
to a great extent, and on the other hand, the disturbances, such as regions with a similar
gray distribution in the pelvis image, can be excluded to improve the accuracy of detection.
In the fracture-detection stage, because the orientation of a fracture is random, DAFDNet
introduces an orientation-aware algorithm to detect fracture directionality. The use of a
band-pass Gabor filter enabled the network to detect image gray changes by adjusting its
frequency and orientation. In addition, attention mechanism and ghost convolution were
also involved to improve the performance of DAFDNet.

Although deep learning has made great advances in medical image processing, few
publications have shown a clinical utility for detecting FNFs, especially for nondisplaced
Garden I and Garden II fracture detection. The success of our study in detecting the precise
location of nondisplaced fractures provides the first evidence that DCNNs can help physi-
cians improve the diagnostic accuracy of nondisplaced Garden I and Garden II fractures.
As shown by the predicted rectangular and IOU values of the fractures, our proposed
method obtained better results than a physician diagnosis. However, fractures were not
detected in more than 5.2% of the images tested, due to the poor contrast of the images.
Therefore, a better radiographic image quality would greatly improve our approach.

Elderly patients suffering from nondisplaced FNFs may have been misrecognized
negatively in plain films in the first place. The overall sensitivity to hip fractures in plain
film radiography (anteroposterior pelvis and lateral hip view) is about 90–98% [34]. A
surgical intervention for nondisplaced FNFs usually involves a closed reduction and an
internal fixation with multiple cannulated screws or sliding hip screws. Early surgery
(within 48 h of admission) after a hip fracture reduces the hospital stay and may also reduce
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complications and mortality [35]. Delayed recognized or misdiagnosed nondisplaced FNFs
may lead to the further displacement of the fracture site. Displaced FNF is the major risk
factor of avascular necrosis of the femoral head and the nonunion of fractures. Elderly
patients with displaced FNFs should be treated with bipolar hemiarthroplasty. Compared
with a closed reduction and internal fixation with multiple cannulated screws, the surgical
time of bipolar hemiarthroplasty is significantly longer, and perioperative blood loss is
significantly increased [36]. Therefore, recognizing nondisplaced FNFs as soon as possible
is crucial for better outcomes.
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