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Abstract: This study aims to examine the feasibility of DNA methylation age as a biomarker for
symptoms and resilience in cancer survivors with multiple chronic conditions (MCCs). We included
ten participants from our parent study, an ongoing randomized control trial study. Participants’
symptoms and resilience were assessed, and peripheral blood was collected. DNA methylation
age calculation was performed using DNAge® analysis. Data were analyzed using Spearman’s
correlation analysis and the Mann–Whitney U test. Participants in the intervention group tended to
have a decrease in DNA methylation age and age acceleration after completing an exercise program
(mean difference = −0.83 ± 1.26). The change in DNA methylation age was significantly correlated
with the change in resilience score (r = −0.897, p = 0.015). The preliminary results suggest that
DNA methylation age can be a potential biomarker for improving resilience in cancer survivors with
multiple chronic conditions. This finding is limited by the small sample size, and a larger study
is needed.
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1. Introduction

Deoxyribonucleic acid (DNA) methylation (DNAm) refers to the addition of a methyl
group to DNA molecules, which varies with aging. It has been linked to a spectrum of health
conditions. This phenomenon, characterized by an individual’s biological age advancing
faster than their chronological age, has been associated with diverse ailments. These
include an elevated risk of developing cancer, increased vulnerability to frailty in aging
populations, and the potential to disrupt sleep patterns [1–8]. Furthermore, accelerated
DNA methylation age has been implicated in the onset and progression of Alzheimer’s
disease, as well as cognitive impairment [9]. Notably, it has also been connected to higher
mortality rates [10]. The mechanisms underpinning these associations are multifaceted.
One pivotal factor is the activation of inflammatory pathways within the body. Accelerated
DNA methylation age seems to promote chronic inflammation, which is a well-known
contributor to various chronic diseases, including cancer [11]. Additionally, this biological
phenomenon may compromise the DNA damage response mechanisms that typically repair
genetic mutations. This weakening of DNA repair processes could heighten susceptibility
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to genetic damage and disease development. Another critical aspect involves the impact
of accelerated DNA methylation age on mitochondrial function [12]. Mitochondria, the
cellular powerhouses responsible for energy production, appear to exhibit altered behavior
in response to shifts in DNA methylation age. These changes in mitochondrial signatures
can potentially result in cellular dysfunction, further exacerbating the aging process and
contributing to age-related health concerns.

The DNA methylation age, also referred to as the “epigenetic clock” or “epigenetic
age”, is a prominent epigenetic age estimator that serves as a predictive tool for assessing
an individual’s biological age, often synonymous with their physiological or phenotypical
age. This estimation is achieved through examining alterations in the patterns of DNA
methylation within an individual’s DNA molecules [13]. The DNA methylation age has
gained significant attention within the field of aging research due to its remarkable efficacy
in predicting both chronological age and various health outcomes when compared with
other age estimation methods, such as telomere length assessment, transcriptomic-based
estimators, and proteomic-based estimators [14]. In essence, the DNA methylation age
estimator stands out as a highly promising and accurate means of gauging an individual’s
biological age and their potential health status via scrutinizing epigenetic changes in their
DNA, offering valuable insights into its implications for overall well-being.

Epigenetic age acceleration may have a significant role in the development, severity,
and persistence of various health symptoms such as pain, fatigue, anxiety, and cognitive
difficulties, as well as an individual’s resilience to these challenges. For instance, acceler-
ated epigenetic aging may contribute to the earlier onset and increased severity of these
symptoms, potentially making individuals more susceptible to health issues. Conversely,
those with slower epigenetic aging may exhibit greater resilience, experiencing milder
symptoms and better overall health as they age. This intricate interplay between epigenetic
age acceleration and health outcomes underscores the importance of understanding and
potentially modulating epigenetic processes to promote healthier aging and enhance an
individual’s capacity to cope with age-related health challenges. People with positive
epigenetic age acceleration (estimated DNA methylation-predicted age older than their
chronological age) have high pain sensitivity [15], fatigue [16], age-related cognitive de-
cline [17], and anxiety [18]. Individuals who have negative epigenetic age acceleration
reported no chronic pain [15]. Resilience or positive adaptation ability influences the percep-
tion of symptoms [19–24]. The relationship between high resilience and low self-reported
symptoms was well supported [25–28]. However, little is known about the relationship
between resilience and aging. More studies are needed to investigate the relationship
between symptoms, resilience, and DNA methylation age.

Individuals with two or more chronic conditions are defined as having multiple
chronic conditions (MCCs) [29]. Over 80% of individuals living with cancer have other
chronic conditions, including type 2 diabetes, cardiovascular disease, and osteoarthritis [30].
MCCs have become increasingly prevalent in the global population, presenting a complex
challenge to both healthcare providers and individuals alike. The management and un-
derstanding of MCCs have gained significance in recent years, as they not only impact
the symptom burden experienced by affected individuals but also potentially influence
their molecular aging processes, as reflected in their DNA methylation age. Cancer sur-
vivors with other chronic conditions experience significantly higher symptom burden and
severity (e.g., pain and fatigue) than those without any comorbidities [31–34]. The burden
from these symptoms negatively affects their health-related quality of life, resilience, and
treatment adherence [28,35,36]. Physical activity is one of the most effective interventions
for managing chronic conditions [37]. Continuous moderate-intensity aerobic exercise can
improve symptoms and quality of life, delay the onset and progression of chronic condi-
tions [38–43], and impact epigenetic modification. Physically active individuals (walking at
least 1500 steps/day) have a low epigenetic age [44]. The genome-wide DNA methylation
age can be reduced with an 8-week combined diet, exercise, and lifestyle program [45].
However, the association between increasing only physical activity during participation in
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a tailored home-based exercise program and DNA methylation age is unknown, especially
in cancer survivors with MCCs.

In this study, we aim to examine the feasibility of DNA methylation age as a biomarker
for symptoms and resilience in cancer survivors with MCCs. To understand the potential
role of DNA methylation age, we investigated the changes in DNA methylation age during
a tailored home-based exercise program and examined the association of changes in DNA
methylation age with changes in symptoms and resilience.

2. Methods
2.1. Designs

This is a sub-study of the IRB-approved parent study (Johns Hopkins Medicine Insti-
tutional Review Board number: IRB00175781). Informed consent was obtained before the
study procedures commenced.

2.2. Participants

In the sub-study, participants were included in a pilot randomized clinical trial ex-
ploring the feasibility and effects of a tailored home-based exercise program on DNA
methylation age, symptoms, and resilience in cancer survivors with MCCs. The parent
study recruited participants aged 21 years or older, diagnosed with solid tumor cancer
with at least one comorbidity (e.g., hypertension, diabetes, etc.), who completed primary
cancer treatment three or more months prior. Participants were excluded if, at the time
of enrollment, they were receiving primary cancer treatment, had an active infection, or
were actively diagnosed with a psychological disorder. We selected 10 participants who
completed the exercise program and provided complete questionnaire data and blood
samples to measure DNA methylation age.

2.3. Measurements

In our study, we utilized established instruments to assess participants’ symptoms
and well-being as follows.

Pain: To evaluate their experience of pain, we employed the Patient-Reported Out-
comes Measurement Information System (PROMIS) Pain Intensity–Short Form 3a V1.0.
This concise instrument encompasses three key pain-related parameters: worst pain, av-
erage pain, and current pain. Participants rated their pain levels on a scale ranging from
1 (indicating no pain) to 5 (representing very severe pain). The PROMIS Pain Intensity
instrument has undergone rigorous conceptual validation and demonstrated commendable
reliability, with test-retest values ranging from 0.83 to 0.93 [46].

Fatigue: We assessed participants’ levels of fatigue using the PROMIS Short Form
V1.0-Fatigue 6a. This instrument comprises six items designed to capture facets of fatigue,
including its frequency, duration, intensity, and impact on physical, mental, and social
activities. Respondents provided their ratings on a scale with five response options, ranging
from 1 (indicating “never”) to 5 (signifying “always”). The reliability of this fatigue
assessment instrument, as determined using Cronbach’s α, was found to be 0.93 [47].

Cognitive function: To evaluate the subjective cognitive function among our study
participants, we employed two distinct tools. The Multiple Ability Self-Report Question-
naire (MASQ) featured 38 items aimed at assessing the perceived cognitive difficulties
across five domains: language, visual–perceptual ability, verbal memory, visual–spatial
memory, and attention/concentration. Participants rated the frequency of these difficulties
on a scale from 1 (indicating “Never”) to 5 (representing “Always”). The MASQ exhibited
high internal consistency, with a Cronbach’s α coefficient of 0.92 [48]. For the objective
measurement of cognitive function, we employed the Montreal Cognitive Assessment
(MoCA) to screen for early-stage cognitive decline or mild cognitive impairment. In our
study, the Cronbach’s α coefficient for the MoCA instrument among cancer survivors was
0.79 [49].
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Resilience: we assessed the participants’ resilience using the Connor-Davidson Re-
silience Scale (CDRS), a self-report rating scale comprising ten items. Participants indicated
the degree to which each statement resonated with their experiences, with response options
ranging from 0 (indicating “not true at all”) to 4 (signifying “true nearly all the time”). The
CDRS demonstrated good internal consistency, with a Cronbach’s α coefficient of 0.83 [50].

2.4. DNA Methylation and Methylation Age Calculation

Participants’ blood samples were collected and preserved in EDTA tubes. These
specimens were then stored in a controlled environment within a −80 ◦C freezer until they
were ready for batch analysis. Subsequently, the samples were packaged and transported
on ice, ensuring their integrity, during overnight shipment to the Zymo Research facility
(Irvine, CA, USA). The DNA extraction and the subsequent methylation experiment were
executed. Genomic DNA was extracted from the human blood cells utilizing the Quick-
DNA™ Miniprep Plus kit, an efficient product provided by Zymo Research (Irvine, CA,
USA). To prepare the DNA for methylation analysis, a bisulfite conversion process was
conducted. This process involves the transformation of cytosine molecules into uracil,
following the protocols outlined in the EZ DNA Methylation-Lightning™ Kit (Zymo
Research, Irvine, CA, USA).

The bisulfite-converted DNA was enriched to facilitate sequencing, focusing on over
500 specific gene loci known to be associated with DNA methylation age. From the
sequencing data, the precise DNA methylation values were extracted and employed to
calculate the DNA age, utilizing Zymo Research’s proprietary DNAge® predictor. Age
acceleration, a critical metric in our analysis, was determined as the disparity between the
calculated DNA methylation age and the participants’ chronological age. This procedure
ensured the accurate assessment of DNA methylation age and age acceleration, allowing
us to investigate the intricate relationship between epigenetic aging and symptoms.

2.5. Statistical Analysis

All analyses were conducted using SPSS version 25.0 (IBM SPSS Statistics, SPSS,
Chicago, IL, USA). The p-value of ≤0.05 was considered statistically significant. Data
were denoted as mean ± standard deviation, and categorical variables were expressed in
numbers. Data were tested for normality and homogeneity, followed by a non-parametric
test. The mean differences between the pre- and post-intervention DNA methylation age
and symptoms between the two groups were tested using the Mann–Whitney U test. We
calculated Spearman’s correlation coefficient to investigate the relationships between DNA
methylation age and change in self-reported outcomes before and after the home-based
exercise program.

3. Results
3.1. Demographic and General Characteristics of Participants

In this sub-study, a total of 10 participants were included, with 4 participants in the
control group and 6 participants in the intervention group. The mean chronological age of
the control group was approximately 77.75 years, with a standard deviation of 2.22 years.
In contrast, the intervention group had a slightly younger mean chronological age of
approximately 67.17 years, with a higher standard deviation of 9.70 years. This suggests
that there was a notable age difference between the two groups, with the intervention group
being, on average, about ten years younger than the control group. To provide a more
precise understanding of this age difference, the report notes that 0.1 years is considered
equivalent to approximately 1.2 months.

Gender distribution varied between the two groups, with 50% of the control group
participants being female, while the intervention group had a higher proportion of females,
with 83.3%. Regarding educational backgrounds, half of the control group participants
were college graduates. In contrast, the intervention group had a higher percentage of
college graduates, with 66.7% of participants having completed a college-level educa-



Biomedicines 2023, 11, 3076 5 of 11

tion. Both groups had approximately 50% of participants who had a history of breast or
prostate cancer.

The detailed demographic and general characteristics of the participants are summa-
rized in Table 1, which includes additional information such as specific health conditions,
medication usage, and any other relevant variables that might be pertinent to the research
objectives of the sub-study.

Table 1. Demographics and general characteristics of participants.

Variables Categories Total
(n = 10)

Control
(n = 4)

Intervention
(n = 6)

Chronological age * (years) 71.40 ± 9.16 77.75 ± 2.22 67.17 ± 9.70

Gender
Male 3 (30.0) 2 (50.0) 1 (16.7)

Female 7 (70.0) 2 (50.0) 5 (83.3)

Race
White 8 (80.0) 3 (75.0) 5 (83.3)

Black or African-American 2 (20.0) 1 (25.0) 1 (16.7)

Education
Less than college 4 (40.0) 2 (50.0) 2 (33.3)
College Graduate 6 (60.0) 2 (50.0) 4 (66.7)

Employment Employed 2 (20.0) 1 (25.0) 1 (16.7)
Not employed 8 (80.0) 3 (75.0) 5 (83.3)

Marital status
Married 2 (20.0) 0 (0.0) 2 (33.3)

Never married, divorced, or widowed 8 (80.0) 4 (100.0) 4 (66.7)

Cancer site
Breast 3 (30.0) 1 (25.0) 2 (33.3)

Prostate 2 (20.0) 1 (25.0) 1 (16.7)
Others 5 (50.0) 2 (50.0) 3 (50.0)

Note. * The chronological age difference between groups is not significant (z = −1.390, p = 0.171).

3.2. Associations among DNA Methylation, Symptoms, and Resilience

Table 2 shows the associations between DNA methylation age, symptoms, and re-
silience changes. The ∆ DNA methylation age (∆ age acceleration) was significantly
correlated with the ∆ resilience score (r = −0.897, p = 0.015). None of the other study
outcomes showed any significant correlation with DNA methylation age.

Table 2. Association between changes in DNA methylation age, symptoms, and resilience.

Variables 1 2 3 4 5 6 7

1. ∆ DNA methylation age
(∆ Age acceleration) 1 −0.145 0.235 0.684 0.493 −0.377 −0.897 *

2. ∆ Pain 1 0.378 0.221 0.213 0.152 0.086

3. ∆ Fatigue 1 0.39 0.027 0.119 −0.021

4. ∆ Cognitive dysfunction 1 −0.54 −0.268 0.356

5. ∆ Perceived cognitive difficulty 1 0.165 −0.572

6. ∆ Insomnia 1 0.156

7. ∆ Resilience 1

Note. * p < 0.05.

3.3. Changes to DNA Methylation Age, Symptoms, and Resilience before and after Intervention

There were no statistically significant differences in all measures between the two
groups (Table 3). Participants in the intervention group had a slightly decreased DNA
methylation age and age acceleration after completing the exercise program (mean differ-
ence = −0.83 ± 1.26), but it was not significant. The following also were not significantly
decreased after completing the intervention compared with the control group: symptoms,
including pain (mean difference = −1.82 ± 11.68), fatigue (mean difference = −5.86 ± 8.00);
cognitive decline (mean difference = −2.25 ± 3.30); perceived cognitive difficulty (mean
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difference = −3.00 ± 17.54); and insomnia (mean difference = −4.00 ± 6.78). Resilience
(mean difference = 2.83 ± 6.43) was not significantly increased in those participants who
completed the home-based exercise intervention.

Table 3. DNA methylation age, symptoms, and resilience changes.

Measures
Control (n = 4) Intervention (n = 6)

p
T1 (Pre) T2 (Post) Mean

Difference T1 (Pre) T2 (Post) Mean
Difference

DNA methylation
age (years) * 74.90 ± 1.11 75.47 ± 0.32 0.57 ± 0.80 66.77 ± 7.68 65.93 ± 8.94 −0.83 ± 1.26 0.200

Age acceleration
(years) * −2.10 ± 1.91 −1.47 ± 1.89 0.57 ± 0.80 2.10 ± 4.79 1.27 ± 4.02 −0.83 ± 1.26 0.200

Pain 45.68 ± 6.51 52.03 ± 10.63 6.35 ± 5.55 53.42 ± 11.88 51.60 ± 10.93 −1.82 ± 11.68 0.257
Fatigue 44.08 ± 7.63 48.78 ± 3.94 4.70 ± 10.58 50.80 ± 5.21 44.93 ± 6.55 −5.86 ± 8.00 0.067

Cognitive decline 23.50 ± 5.20 24.25 ± 4.50 0.75 ± 1.50 26.75 ± 3.20 24.50 ± 2.08 −2.25 ± 3.30 0.200
Perceived

cognitive difficulty 82.75 ± 17.63 85.25 ± 14.66 2.50 ± 5.20 70.83 ± 22.60 67.83 ± 22.75 −3.00 ± 17.54 0.914

Insomnia 15.75 ± 3.86 14.50 ± 7.59 −1.25 ± 4.79 17.33 ± 6.25 13.33 ± 4.76 −4.00 ± 6.78 0.762
Resilience 34.50 ± 4.80 35.00 ± 4.00 0.50 ± 2.08 33.33 ± 11.04 36.17 ± 5.46 2.83 ± 6.43 0.914

Note. * n (control = 3, intervention = 3).

4. Discussion

Based on preliminary results, we suggest the feasibility of DNA methylation as a
potential biological marker for resilience. Particularly, this is the first report on the as-
sociations between DNA methylation age and resilience in cancer patients with MCCs.
Resilience in health refers to an individual’s ability to withstand and adapt to challenges,
stressors, or adverse circumstances while maintaining or recovering their physical and
psychological well-being [51]. This resilience can manifest in different forms, including
mental, emotional, and physical resilience, and it plays a crucial role in promoting overall
health and well-being through helping individuals navigate and overcome health chal-
lenges. Recent studies suggest that a significant relationship between increasing age and a
subsequent increase in resilience can be found among people under extreme stress, such
as veterans with post-traumatic distress disorder [52], and among those in the general
population during COVID-19 [53]. Few studies have reported the relationship between
changes in epigenetic age acceleration and resilience.

In our study, we have identified a noteworthy correlation between low DNA methy-
lation age acceleration and a pronounced high resilience among cancer survivors facing
MCCs. This finding hints at the intriguing possibility that the pace at which an individual’s
DNA methylation age progresses may have a direct impact on their resilience, a vital
attribute for individuals navigating complex health challenges. A recent study revealed
that people with a higher level of resilience experienced slower DNA methylation age
acceleration [54]. However, given the limitations associated with our modest sample size, it
is imperative to exercise caution when interpreting these results. We acknowledge that our
findings are preliminary, and as such, we advocate for a more comprehensive investigation
involving larger sample sizes.

The findings from our study provide further validation for the established connections
between DNA methylation age and physical activity, reinforcing the outcomes of prior
research. Numerous studies have previously suggested that individuals with lower levels
of physical activity tend to exhibit an acceleration in DNA methylation age [7,55–57].
This link underscores the potential impact of lifestyle choices on the aging process at the
epigenetic level. Remarkably, lifestyle modification programs that encompass a holistic
approach, combining elements such as dietary adjustments, exercise regimens, improved
sleep patterns, relaxation guidance, and nutritional supplementation, have demonstrated
the capacity to mitigate the progression of DNA methylation age. Some of these programs
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have been shown to effectively reduce the DNA methylation age by an impressive range of
1.62 to 1.96 years [45,58]. In our specific study, following a 12-week exercise intervention
tailored to individual preferences and physical condition, we observed a reduction in
DNA methylation age by approximately 0.83 years among our study participants. This
outcome serves as a notable testament to the potential of personalized home-based exercise
interventions in influencing DNA methylation age. It emphasizes the significance of
targeted lifestyle modifications, particularly exercise, in potentially slowing down the
epigenetic aging process. However, it is important to acknowledge that while our results
are promising, they also highlight the need for further exploration and investigation to
comprehensively understand the intricate relationship between physical activity and DNA
methylation age and to optimize tailored interventions for enhancing the epigenetic well-
being of individuals.

Recent research has suggested a link between MCCs and alterations in DNA methyla-
tion age [59]. Studies have indicated that individuals with MCCs may experience accel-
erated DNA methylation aging, meaning their cells appear older at the epigenetic level
compared with their chronological age. This acceleration in DNA methylation age is
thought to be influenced by the chronic inflammatory state often associated with MCCs.
Chronic inflammation can trigger epigenetic changes that may accelerate the aging of cells,
potentially contributing to age-related health problems [11]. Moreover, MCCs are associ-
ated with increased oxidative stress, which can also impact DNA methylation patterns and
promote epigenetic aging. Oxidative stress occurs when there is an imbalance between
the production of harmful free radicals and the body’s ability to neutralize them. This
oxidative stress can damage DNA and the epigenetic marks on it, potentially influencing
the rate of DNA methylation aging [60].

Our study has strengths and limitations that are important to acknowledge. A notable
challenge we encountered was the disruption caused by the COVID-19 pandemic, which
significantly affected our data collection efforts in the parent study. Consequently, we
had to work with a considerably small sample size for our analysis. This limitation can
impact the generalizability of our findings, as a smaller sample size may not fully capture
the diversity and nuances present in a larger population. Furthermore, our study relied
exclusively on one method, Horvath’s method, to assess DNA methylation aging. While
this method is widely recognized and employed in epigenetic clock research, it is important
to note that recent advancements have introduced second-generation clocks like PhenoAge
and GrimAge. These newer methods are designed to enhance the precision of biological age
estimation and establish stronger associations with clinical outcomes, suggesting that our
study could potentially benefit from incorporating these advanced techniques to further
refine our understanding of epigenetic aging [54].

The impact of these limitations underscores the need for cautious interpretation of
our study’s results. While our findings contribute valuable insights into the relationship
between DNA methylation age and various factors, the constraints imposed by our small
sample size and the exclusive use of Horvath’s method call for further research that in-
corporates larger and more diverse participant groups along with updated epigenetic
clock methodologies. Such efforts can facilitate a more comprehensive understanding
of the intricate links between epigenetic aging and health outcomes, ultimately enhanc-
ing the reliability and applicability of our findings in the broader context of health and
aging research.

5. Conclusions

In summary, our study has shed light on initial findings that underscore the promising
role of DNA methylation age as a potential biomarker for enhancing resilience among
cancer survivors grappling with MCCs. These preliminary results provide valuable in-
sights into the complex interplay between epigenetic aging and an individual’s ability
to withstand and adapt to the myriad challenges posed by both cancer and co-occurring
chronic health issues. However, it is essential to approach these findings with caution,
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given the constraints imposed by our study’s relatively small sample size. To bolster the
robustness and generalizability of our observations, we recommend the validation of the
relationship between DNA methylation age and symptomatology using a larger and more
diverse participant pool in future investigations.
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