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Abstract: Multiple sclerosis, a condition characterised by demyelination and axonal damage in the
central nervous system, is due to autoreactive immune cells that recognise myelin antigens. Alteration
of the immune balance can promote the onset of immune deficiencies, loss of immunosurveillance,
and/or development of autoimmune disorders such as MS. Numerous enzymes, transcription factors,
signal transducers, and membrane proteins contribute to the control of immune system activity.
The “transcriptional machine” of eukaryotic cells is a complex system composed not only of mRNA
but also of non-coding elements grouped together in the set of non-coding RNAs. Recent studies
demonstrate that ncRNAs play a crucial role in numerous cellular functions, gene expression, and the
pathogenesis of many immune disorders. The main purpose of this review is to investigate the role
of circular RNAs, a previously unknown class of non-coding RNAs, in MS’s pathogenesis. CircRNAs
influence post-transcriptional control, expression, and functionality of a microRNA and epigenetic
factors, promoting the development of typical MS abnormalities such as neuroinflammation, damage
to neuronal cells, and microglial dysfunction. The increase in our knowledge of the role of circRNAs
in multiple sclerosis could, in the future, modify the common diagnostic–therapeutic criteria, paving
the way to a new vision of this neuroimmune pathology.
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1. General Considerations on Multiple Sclerosis

The most common autoimmune condition that results in non-traumatic neurological
impairment in young people is multiple sclerosis (MS) [1]. MS has the highest prevalence
in North America, Western Europe, and Australasia (>100 cases per 100,000 people) and
lowest in countries close to the equator (30 cases per 100,000 people) [2]. Females are three
times as likely as males to develop the condition, and although MS can manifest at any
age, the average occurrence is between twenty and forty years old, with about ten percent
of the cases starting under the age of eighteen [3]. Cognitive dysfunction, bladder and
bowel incontinence, tingling, and numbness, as well as vision impairment, are some of the
several neurological symptoms that might occur in MS, and according to their severity and
evolution, the disease can take a variety of clinical courses. Relapsing–remitting (RR) MS,
which affects 80% of patients, is characterised by attacks accompanied by full or partial
remissions [4]. The term “progressive MS” refers to a subtle decline in neurological function
accompanied by new symptoms and signs that have lasted at least a year. The main cause
is neurodegeneration, which is manifested by extensive neuroaxonal degeneration in the
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white and grey matter [5]. A combination of clinical and radiographic (magnetic resonance)
characteristics are used to diagnose MS; in detail, the guidelines for the recognition of all
forms of MS are the McDonald criteria from 2017 [6]. The interaction of genetic human
leukocyte antigen (HLA) DRB1, vitamin D deficiency, Epstein Barr Virus (EBV) infection,
and epigenetic variables is a key component of the pathogenesis of MS [7–10]. The primary
proposed aetiology of MS is an autoimmune attack on the central nervous system (CNS); in
fact, studies have suggested that autoreactive T cells, mainly T helper (Th)-1 CD4+ T cells
and Th17 cells, play a key role in the pathogenesis, especially since they secrete cytokines
and trigger the inflammatory cascade [11]. Microglia activation and prolonged oxidative
stress caused by the inflammatory demyelination process contribute to neurodegeneration
and subsequently axonal and neuronal destruction [12]. Both inflammation and demyeli-
nation, as well as astroglial growth (gliosis) and neurodegeneration, define MS. Scientists
identified metabolites differently active in MS during the four seasons, establishing the
role of the citrate cycle, sphingolipid metabolism, and pyruvate metabolism. The fall and
spring seasons were shown to have the most metabolites influenced by these changes, while
summer had the least amount of metabolite changes. Histidine and its metabolite, methyl
histidine, serum level seem to be lower in MS than in control: histidine is a precursor to
histamine, a potent neurotransmitter and immune-modulator; the inverse relationship
between the blood level of this amino acid and IL-6, a cytokine that promotes inflammation,
may help to explain the immune-modulating role of histidine in the pathophysiology of MS.
Similar to this, reduced levels of histidine were linked to elevated levels of oxidative stress
indicators and serum C-reactive proteins. According to the scientific literature, low levels
of histidine during the spring and fall may diminish the anti-inflammatory effects of this
amino acid and its metabolites, which may lead to MS flare-ups. It should be mentioned
that fall and spring when sunshine exposure significantly varies, cause fluctuations in
histidine levels in MS, even if the specific mechanisms underlying these modifications in
histidine levels are still unknown. Ceramides are lipid molecules that build up on the soma
and axon of neurons, contributing to neuronal adhesion, ion channel regulation, and the
expression of neurotransmitter receptors; on the other hand, oxidative stress brought on by
an elevated ceramide level may cause neuronal apoptosis and death. The sphingomyelin–
ceramide–sphingosine-sphingosine-1 phosphate (S1P) pathway produces ceramides and
sphingosine, which are elevated in MS serum. Furthermore, ceramides play a role in the
pathogenesis of MS; in fact, elevated serum levels of ceramides are one recurring alter-
ation in MS metabolites. Moreover, research focused on the function of vitamin D and its
derivatives in the etiology of MS, and it was discovered that the only season in which the
amount of vitD was not higher than in control was fall: vit D serum levels were shown
to be lower in the winter, spring, and summer. Globally, it can be stated which more
overlapping metabolites were impacted in MS during the spring and fall seasons, and
a return of symptoms during these two seasons could be explained by this fact [13].

2. Non-Coding RNAs

Although most of the human genome is actively involved in genetic transcription
processes, eukaryotic cells are quantitatively poor in coding RNA (less than 1.4%), resulting
in a large part of human DNA being transcribed into ncRNAs [14]. This concept partially
overturns the biological dogma proposed by Francis Crick, according to which proteins rep-
resent the main and final product of genetic information [15]. On the other hand, ncRNAs,
although not involved in ribosomal proteosynthesis, play a key role in many physiological
and pathological cellular processes [16]. The optimization and innovation of gene profiling
techniques have made it possible to isolate and sequence an ever-increasing number of
ncRNA “species”. Gene sequencing methods based on next-generation sequencing (NGS),
such as RNA-Seq or small RNA-sequencing (smRNA-Seq), ideal for identifying small
RNA species using reverse transcription and PCR amplification, have implemented our
knowledge about RNA, allowing the drafting of dedicated genetic databases [17]. The con-
sultation of these “genetic libraries”, such as GENCODE, the RefSeq project, NONCODE,
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HUGO, LNCipedia, and the ENCODE project, represents an obligatory step to define the
taxonomy of ncRNAs [14,18–22]. One of the parameters used to classify ncRNAs concerns
the length and structure of the non-coding segment [23,24]. We can, therefore, distinguish
the “small-ncRNAs”, composed of a few nucleotides, and the “long-ncRNAs” (lncRNA),
whose length exceeds 200 nucleotides [25]. Small-ncRNAs include micro-RNAs (miRNAs,
22 nucleotides) and PIWI-interacting RNAs (piRNAs, 24–30 nucleotides). Circular-RNAs
(circ-RNAs) are also grouped within the class of lncRNAs, although these have a circular
structure unlike the other linear lncRNAs [25]. The ncRNAs can also be classified according
to the function they cover within the eukaryotic cell, differentiating them into “Housekeep-
ing ncRNAs” and “Regulatory ncRNAs” [26,27]. Housekeeping ncRNAs are generally
small in size and perform basic cellular functions such as protein synthesis (tRNAs,rRNAs),
RNA splicing (snRNAs), and post-transcriptional modification of rRNA (sno-RNA) [28,29].
Furthermore, among the Housekeeping ncRNAs, we include the tRNA-derived fragments,
cleavage products of tRNAs, involved in the regulation of gene expression and apopto-
sis [30]. Regulatory ncRNAs perform functions of control and modulation of gene expres-
sion, both at the epigenetic and transcriptional levels [31,32]. The length of regulatory
ncRNAs varies from a few bases (<200), as in miRNAs, siRNAs, and piRNAs, up to larger
nucleotide sequences (>200), as in lncRNAs and circRNAs [33]. miRNAs are small portions
of non-coding RNA, highly expressed within eukaryotic cells, which, through the formation
of a biological aggregate called the “RNA-induced silencing complex (RISC)”, modulate
the post-transcriptional processes of the mRNA, silencing specific target sequences [34,35].
Similarly to miRNAs, siRNAs also perform an RNA interference function through the
activation of the RISC; PiRNAs, short non-coding elements composed of single-stranded
RNA nucleotide sequences, form cytoplasmic complexes with PIWI proteins and migrating
into the cell nucleus, actively modulate gene transcription [36].

2.1. Circular RNAs

Circular RNAs (circRNAs) are nuclear biomolecules composed of ribonucleotide se-
quences with a circular structure and no polyadenylated tails [37]. They are classified
among the Housekeeping ncRNAs, although some forms possess the ability to code for spe-
cific proteins. A total of 1976 small portions of non-coding material with a circular structure,
considered splicing errors, were isolated from viroids infecting plants and, subsequently,
identified in the hepatotropic virus δ and eukaryotic cells, as in the mitochondrial RNAs of
some yeasts [38–41]. In the 1990s, the casual discovery of circular and non-polyadenylated
RNAs derived from non-canonical splicing of the human EST-1 gene and the isolation of
the same molecules in the cytoplasm of mouse testicular cells aroused the interest of the
scientific community towards this biotype of RNAs [42–44].

2.1.1. circRNAs Identification Tools

There are many different forms of circRNAs with great stability in humans, according
to studies performed with second-generation sequencing techniques and bioinformat-
ics [45]. CircRNA identification and quantification require specially created bioinformatic
pipelines due to the unique properties of the circRNA junction. In detail, a circRNA can be
recognized by its back-spliced junction (BSJ) read, which serves as a molecular signature
and connects two related exons in the reverse order of how they appear on the reference
sequence [46]. Novel techniques for circRNA validation and identification are described in
recent studies. One of these is the examination of non-polyadenylated libraries that had
been pre-treated with RNase R to enrich them for circular RNAs; using this technique, it
is possible to distinguish between genuine circRNAs and mRNAs with scrambled exons
and to enrich for circRNAs [47]. Importantly, the existence of scrambled junctions can also
result from frequent reverse transcriptase errors and other non-canonical splicing processes
(such as trans-splicing). Integration of various circRNA identification tools has been shown
to lower the false-positive rate [48].



Biomedicines 2023, 11, 2883 4 of 20

2.1.2. CircRNA Biogenesis

In 2012, Salzman and colleagues first proposed that pre-mRNAs can create circRNAs
through reverse splicing, denominated “back-splicing” [49]. The spliceosomal machinery
serves as the catalyst for the classic eukaryotic pre-mRNA splicing process, which involves
cutting off introns and joining exons. Canonical splicing produces a linear RNA transcript
with a 5′ to 3′ polarity in conjunction with other co-/post-transcriptional processing steps,
including 5′ capping and 3′ polyadenylation. In contrast to canonical splicing, back-splicing
(Figure 1) entails attaching an upstream (3′) splice acceptor site in the reverse manner to
a downstream (5′) splice donor site. This results in the production of an alternatively
spliced linear RNA with skipped exons and a covalently closed circRNA transcript [50].
Most circRNAs have been shown to come from exons in the gene’s coding region, but
some have also been observed to come from non-coding regions as introns, intergenic
areas, 5′- or 3′-UTRs, antisense RNAs, and 5′- or 3′-UTRs [51]. Exon-derived circular
RNAs (EcircRNAs) are mostly found in the cytoplasm and originate from a back-splicing
mechanism [52]. Circular intronic RNAs (ciRNAs) are a different class of circular RNA
molecules originating from the lariat introns of Pol II transcripts [53] and have limited
enrichment for miRNA target sites as opposed to accumulating primarily in the nucleus to
regulate gene transcription in cis by boosting Pol II transcription of their parental genes
through unknown processes [26,54]. The splicing factors, especially spliceosomes and
cis-regulatory elements, considerably facilitate back-splicing, which takes place during
the creation of circRNA [55]. Drosophila’s studies show that inhibition or silencing of
spliceosomal components significantly boosted the production of circRNAs while reducing
the amount of linear mRNAs [56]. Circularization has been modelled by three different
processes, intron pairing-driven, RNA-binding protein (RBP)-mediated, and lariat-driven
(ciRNAs), but the precise mechanism by which circRNA is produced is still unknown [57].
Intronic complementary sequences (ICS) are necessary for circularization by back-splicing,
which facilitates the generation of circRNA by placing the donor and acceptor splice sites
close together [58]. For example, removing ICS elements from the introns surrounding
the general control of amino-acid synthesis 1-like 1 (GCN1L1) exon decreased the level of
circGCN1L1 [59]. RBPs are essential for fostering the creation of tissue-specific circRNAs
and can participate in circRNA production by binding certain motifs in adjacent intron
sequences: for instance, DEAH-box helicase 9 (DHX9), which contains both a dsRBD and an
RNA helicase domain, regulates circRNA synthesis by suppressing intron pairing brought
on by ALU repeats. On the other hand, DHX9 removal raises the amount of circRNA [60].

2.1.3. circRNAs Functions

CircRNA was originally thought to be a splicing by-product, making it unimportant
and accidental in terms of biology. Integrating investigations have started to show that
at least some circRNAs have potential significance in both healthy and pathological sit-
uations [61]. The majority of circRNAs’ functions are still unknown, but those that have
been investigated appear to be predominantly involved in controlling gene expression,
either directly or, more frequently, indirectly, by controlling other factors that control gene
expression, such as miRNAs or RBPs. CircRNAs can act as miRNA sponges to control
the production of miRNAs since they include miRNA binding sites [62]. For example,
CircHIPK2 may operate as a sponge for miR124-2HG to regulate astrocyte activation by
coordinating with autophagy and endoplasmic reticulum stress [63]. In addition, CircR-
NAs have the ability to act as scaffolds and protein sponges or transfer proteins from the
cytoplasm to the nucleus: for instance, CircFoxo3 is particularly prevalent in the mam-
malian heart, and when it binds ID-1, E2F1, HIF1, and FAK, accelerates cardiac senescence
through the retention of these proteins in the cytoplasm [64]. The circANRIL, which is
linked to atherosclerotic cardiovascular disease, is another example: it binds to the vital 60S-
preribosomal assembly factor pescadillo homolog 1 (PES1) and inhibits ribosome synthesis
in macrophages and vascular smooth muscle cells, leading to nucleolar stress and cell death,
which are important biological processes in atherosclerosis [65]. Furthermore, circRNAs
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can function as protein scaffolds to promote protein–protein interactions. A combination
between CircFoxo3, p53, and MDM2 facilitates MDM2-induced p53 ubiquitination, which
enhances p53 degradation [66]. They may possibly play a role in controlling transcription:
recently, it was found that an insulin-derived circRNA interacts with RBP TDP-43 and
is essential for regulating the transcription of genes involved in insulin production [67].
CircRNAs have the ability to produce proteins through translation in addition to controlling
transcription. It has been shown that human cells have a large number of m6A motifs on
their circRNA and that just one m6A site is required to start the translation of circRNA with
the involvement of several proteins [68]. They can be translated by the m6A alteration, as
well as in vivo or in vitro, when it has an internal ribosome entry site (IRES) [69]. Addi-
tionally, circRNAs are distinguished from other forms of RNA by extraordinarily durable
stability and tissue-specific expression, making them ideal candidates for biomarkers [70].

Figure 1. Back-splicing process: Back-splicing entails attaching an upstream splice acceptor site in
a reverse manner to a downstream splice donor site, producing an alternatively spliced linear RNA
with skipped exons and a covalently closed circRNA transcript. circRNAs have been shown to come
from exons in the gene’s coding region and from non-coding regions as introns, intergenic areas, 5′-
or 3′-UTRs, antisense RNAs, and 5′- or 3′-UTRs.

3. Multiple Sclerosis and circRNAs
3.1. Epigenetic Mechanisms

DNA methylation is a potential regulatory mechanism that might modulate the pro-
duction of circRNA. Recent studies in genetics and epigenetics have indicated that a signifi-
cant proportion of potential causative variations for autoimmune disorders are located in
non-coding regions of the genome [71]. These variants are believed to have a regulatory
function in the expression of genes associated with these illnesses. Epigenetic processes
have the ability to govern the expression of genes through the alteration of DNA, a process
that may be inherited across successive cell divisions [72]. The epigenetic mechanism that
has been extensively researched is the covalent attachment of a methyl group to cytosines
within the CpG dinucleotide context. This particular process has garnered significant
attention because of the well-established and steady process by which mCpG is propagated
across DNA, facilitated by DNA (Cytosine-5)-Methyltransferase 1 [73]. DNA methylation
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changes have been seen in blood, CD4+, and CD8+ T lymphocytes, as well as in unaffected
brain areas of individuals with MS [74]. Numerous research has been conducted to eluci-
date the role of epigenetic processes in the modulation of circRNA production, particularly
within the domain of cancer. Evidence indicates that hypermethylation of cancer-specific
promoter CpG islands is linked to reduced production of both circRNAs and their corre-
sponding host gene counterparts [75]; additionally, it is well-established that intragenic
methylation plays a role in the regulation of AS [76]. Furthermore, another work demon-
strated that there were differential expressions of circRNAs with distinct methylated sites
in tumour samples compared to adjacent normal samples; interestingly, this differential
expression was not observed in the parental genes of these circRNAs: this finding suggests
the possibility that certain abnormal DNA methylation events may specifically impact
the processing of pre-mRNA to produce circRNAs, while not affecting the generation of
linear RNAs [77]. In a recent study, an evaluation to determine the potential influence
of DNA methylation on the regulation of back-splicing in the Jurkat cell line (immortal
T cell) was conducted and provided evidence supporting the presence of a positive as-
sociation between circRNA expression and gene body methylation (Spearman ranking
analysis). It can be stated that epigenetic characteristics may have a significant impact on
the composition of the cellular circRNA reservoir [78]. In the aforementioned study, in
order to obtain a more comprehensive understanding of the influence of methylation on
the back-splicing profile, a clustering approach was employed to categorise circRNAs into
two groups based on their methylation beta values: a “low” methylation-level group and
a “high” methylation-level group. The study encompassed both promoter and gene body
methylation, with the assignment to a certain group determined by comparing the methy-
lation level to the median threshold. Regarding gene body methylation, tests revealed
a noteworthy disparity in circRNA expression between the groups categorised as having
“low” and “high” methylation: specifically, a greater amount of methylation was shown
to be correlated with elevated production of circRNA [78,79]. Moreover, a correlation
was seen between the DNA methylation gene data in individuals with MS compared to
healthy individuals and the identification of 36 genes with dysregulated circRNA profiles
using RNA sequencing [80]. These data provide more evidence to justify the exploration
of the relationship between circRNA and methylation profiles; by investigating this link,
researchers may obtain a deeper understanding of the regulatory characteristics that influ-
ence the circRNA panorama and eventually shed light on the mechanisms behind disease
pathophysiology [78].

3.2. circRNAs Biomarkers in MS

The exceptional stability of circRNAs, attributed to their resistance to exonucleases
responsible for degrading linear transcripts, makes these non-coding molecules ideal as
potential disease biomarkers. Additionally, circRNAs have expression patterns that are
specific to different tissues and developmental stages, which may be a good way to address
the lack of specificity seen in a number of existing biomarkers [80]. It is important to
note that circRNAs exhibit stronger interspecies conservation, which makes it easier to
transfer biomarkers from animal models to people [81], and this fact suggests that GS-
DMD circRNA may have the ability to serve as an important biomarker for MS [82]. In
rare instances, the existence of a pathological disease may be indicated by a reduced or
entirely absent marker. In the scientific literature, an example of a particularly significant
dysregulated circular RNA, hsa_circ_0007990, is presented to its particular relevance due
to the association with the PGAP3 host gene, which encodes a protein known to play
a significant role in regulating autoimmune reactions; it is responsible for the modification
of fatty acids in glycosylphosphatidylinositol (GPI)-anchored proteins [81]. Notably, when
PGAP3 is absent in mice, there is an increased T cell response and a worsened experimental
immune-mediated encephalomyelitis phenotype, along with various symptoms resem-
bling autoimmune disorders [82]. A recent study confirmed the finding of PGAP3 circRNA
downregulation in MS patients, representing not only a possible disease biomarker but
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also being considered, in the future, as a “disease progression biomarker” [78]. Another
noteworthy example involves the annexin A2 gene (ANXA2) [83]. Annexin A2 (ANXA2),
a member of the annexin family, is a calcium-dependent phospholipid-binding protein
with a molecular weight of 36 kilodaltons, mostly found on the surface of the majority of
eukaryotic cells. It plays a significant role in several biological processes, such as exerting
anti-inflammatory effects, facilitating Ca2+-dependent exocytosis, regulating immuno-
logical responses, and controlling phospholipase A2 activity [84,85]. Furthermore, the
aforementioned protein is implicated in immune-mediated conditions like arthritis and
antiphospholipid syndrome [78,86]. The findings of a study conducted in 2018 indicate
a downregulation of circRNA profiles, specifically ANXA2 circRNAs (circ_0005402 and
circ_0035560), in the bloodstream of individuals diagnosed with MS [87]. Based on ex-
isting evidence, a definitive correlation between the ANXA2 gene and MS has not been
demonstrated, even if it has been shown to be involved in facilitating the traversal of the
blood–brain barrier, a protective barrier that safeguards the central nervous system [88]. In
addition, ANXA2 has been identified as a target of miR-155, an important microRNA in-
volved in neuroinflammation at the blood–brain barrier [89] and crucial in the development
of Th1 and TH17 cells, as well as the polarisation of myeloid cells in the context of MS. The
level of expression of miR-155 has been seen to be considerably elevated in both PBMCs
and active lesions, and it is positively associated with disease severity in people with MS
as well as in animals with experimental autoimmune encephalomyelitis (EAE) [90]. This
observation correlates with the downregulation of ANXA2, indicating a potential intricate
interplay of miRNA, mRNA, and circRNA. Additionally, ANXA2 plays a significant role
in the post-transcriptional control of gene expression and the transportation of miRNA
and vesicles [91]; in fact, it controls the loading of miRNAs into extracellular vesicles (EVs)
through a process that is reliant on calcium [91]. These mechanisms have been suggested
as potential indicators for comprehending the intricate network of transcriptome control in
the context of MS. Hence, the expression of ANXA2 circRNAs may serve as biomarkers for
RR-MS, exhibiting favourable levels of specificity and sensitivity [87]. On the other hand,
several investigations have revealed an elevated production of circRNAs in individuals
with MS compared to healthy individuals [92]. Prospective biomarkers for MS were found
as circRNAs derived from the genomic regions of the RELL1 gene (chr4:37633006-37640126),
RNF149 gene (chr2:101898320-101911643), and CHD9 gene (chr16:53288349-53308214). Evi-
dence of the overproduction of circRNAs in MS patients not only suggests the potential
utility of circRNAs as disease biomarkers but also indicates a distinct modification in
the transcriptome of patients suffering from this disease [87]. The observed increase is
unlikely to be associated with any changes in the spliceosomal machinery (cis-regulatory
elements; RBPs) or alterations in the fraction of leukocyte cells studied. It is plausible that
the upregulation of circRNAs is indicative of their involvement in the pathogenesis of
MS [92].

3.3. Extracellular Vesicles and circRNAs

Extracellular vesicles (EVs) refer to entities that are covered with a membrane and
originate from either endosomes or the plasma membrane, then released into the extra-
cellular environment [93]. The EVs were initially discovered four decades ago when they
were observed in the form of reticulocytes; subsequently, it has been demonstrated that
EVs may be found in many bodily fluids [94]. Typically, researchers have identified three
distinct categories of extracellular vesicles (EVs): exosomes, which have a diameter ranging
from 40 to 100 nm, microvesicles, and apoptotic bodies, with a diameter ranging from 50 to
2000 nm [95]. EVs are of paramount importance in facilitating intercellular relationships
through the transfer of lipids, proteins, and genetic material between cells; in fact, their
involvement in extracellular vesicle (EV)-mediated communication has been demonstrated
in the modulation of multiple biological processes (Figure 2), such as the immune system’s
response [96,97]. The RNA payload within EVs exhibits a great degree of complexity, with
just a few research having comprehensively characterised the whole EV transcriptome
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in the context of MS [98,99]. In recent times, it has been demonstrated that circRNAs
exhibit a high concentration within EVs and that exosomal circRNAs possess the ability
to act as miRNA sponges, suppress protein activity, regulate splicing and transcription
processes, and interact with RBPs [50,100]. These molecular functions have been found to
have a role in the development and progression of neurodegenerative illnesses, although
to a certain extent [101]. Regarding multiple sclerosis, Iparraguirre and colleagues revealed
that circRNAs constitute the second most prevalent transcript in EV samples obtained from
both MS patients and healthy individuals, showing disparities in the RNA biotypes present
in leukocytes and EVs [102]. Interestingly, circRNAs have a higher representation in EVs,
accounting for 4.2% of the total reads and 58.4% of the reads associated with ncRNAs, in
contrast to leukocytes, where they constitute just 0.2% of the total reads and 0.9% of the
ncRNA reads. Various parameters have been documented to influence the incorporation of
RNA into EVs. These factors include cell abundance, particular sequence motifs, secondary
structure, length, differential affinity for membrane lipids, and connection with RBPs [103].
In addition to the inherent characteristics of circRNAs that may facilitate or impede their
inclusion inside EVs, the cellular state also influences the profiles of EV RNA. Consequently,
a specific RNA molecule may be selectively encapsulated or excluded from EVs based on its
physiologic or pathological consequences [102]. It is noteworthy to mention circNEIL3, one
of the circRNAs identified as being differentially expressed in EVs of patients with RR-MS
compared to EVs of healthy controls, and for this reason, has been proposed as a potential
biomarker in leukocytes of RR-MS patients [92]. Conversely, a minimal fraction of the
circRNA pattern in leukocytes exhibited variations between RR-MS and SP-MS patients.
As a result, no possible biomarkers indicative of disease progression were identified. In
conclusion, the biocompatibility of EVs, specifically of exosomes, and the specific function-
ality of ncRNAs, an increasing number of researchers have been investigating the potential
of using exosomal ncRNAs as a viable therapeutic approach for central nervous system
disease [104,105].

Figure 2. Extracellular vesicles and circRNAs: Exosomes are extracellular vesicles covered with
a membrane and released into the extracellular environment. They modulate multiple biological
processes, such as the immune system’s response, and contain a high concentration of circRNAs
capable of acting as miRNA sponges, suppress protein activity, regulate splicing and transcription
processes, and interact with RNA-binding proteins. Created with BioRender.com (accessed on 19
October 2023).

BioRender.com
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3.4. circRNAs Genetic Variation in MS

Paraboschi and his group conducted a bioinformatic investigation to examine the
enrichment of circRNAs originating from non-coding regions in the genome related to MS
and proposed that these circRNAs may have a role in the susceptibility to the illness. The
authors of the study have shown a significant increase in non-coding elements, particularly
circRNAs, that are located inside the 73 Linkage Disequilibrium (LD) blocks containing
single-nucleotide polymorphisms (SNPs) linked with MS: in detail, a collective count of
482 circRNAs was identified in publically accessible databases and then compared to
an average of 194.65 circRNAs found in randomly selected sets of LD blocks, using 1000 it-
erations. Through the assessment of RNA sequencing data obtained from two distinct cell
lines, namely SH-SY5Y and Jurkat cells, a total of 18 circRNAs were discovered: among
them, two were found to be unique and originated from genes related to MS. Furthermore,
Paraboschi conducted an investigation to validate the levels of expression of a circRNA
originating from a genomic region linked with MS, namely hsa_circ_0043813 originated
from the STAT3 (Signal Transducer and Activator of Transcription 3) gene [101]: the activa-
tion of STAT3 is mediated by a diverse range of cytokines, which in turn, elicits a multitude
of crucial biological activities and it has recently shown to be involved in the control of Th17
cell development, which is known to be a critical factor in the pathogenesis of MS [102].
Scientists examined the relationship between STAT3 hsa_circ_0043813 and the expression
levels of certain circRNAs, which may be altered by disease-associated SNPs [106,107].
This finding aligns with the previously reported evidence on circANRIL, which stands as
the sole instance of a circRNA where a connection between disease-associated SNPs and
circRNA formation has been established [108]. In conclusion, researchers found unique
evidence indicating that the top hits from genome-wide association studies (GWAS) in
MS are located inside LD blocks that are enriched in circRNAs, suggesting that they may
potentially play a role in the pathogenesis of MS, representing a new avenue for further
investigation [107].

3.5. circRNAs and B-Cell Function

B-cell function plays a crucial role in the autoimmune aberrations observed in RRMS.
In recent years, there has been substantial evidence supporting the significant involvement
of B lymphocytes in several processes inside the CNS. These processes include antigen
presentation, the release of cytokines that induce inflammation, and the generation of an-
timyelin antibodies [109,110]. There is also a proposition suggesting that ectopic lymphoid
cell aggregation found in the leptomeninges consists of B lymphocytes and could have
a role in determining the chronic nature of MS illness disease [111]. Recent studies have pro-
vided confirmation that the reduction of B-cells is an effective treatment strategy for treating
RRMS and primary progressive multiple sclerosis (PPMS) and specific circRNA particles
(hsa_circRNA_101348, hsa_circRNA_102611, and hsa_circRNA_104361) that are overpro-
duced in PBMCs of patients with RRMS have been identified [112,113]. Importantly, the
authors of this study have discovered two transcripts, AK2 and IKZF3 (Aiolos), which are
associated with B-cell function and are regulated by these circRNA molecules. The results
were validated by the direct demonstration of an increase in AK2 and IKZF3 expression
in the peripheral blood mononuclear cells (PBMCs) of individuals experiencing a relapse
of MS. The AK2 gene is recognised for its role in encoding phosphotransferase adenylate
kinase 2, which fulfils the unique cellular needs related to mitochondrial processes, notably
in the context of B-cell activation and antibody generation [114]. A special emphasis on the
involvement of AK2 has been observed in B cells that are infected with the Epstein–Barr
virus (EBV). This association has been extensively explored in the context of MS as a viral
infection that is linked to MS [115]. The IKZF3 gene encodes the proteins Aiolos and Ikaros,
which serve as crucial transcription elements belonging to the Ikaros family of zinc-finger
proteins. These proteins play a pivotal role in regulating the development of lymphoid and
myeloid cells, as well as maintaining immunological homeostasis [116]. It is noteworthy
that a mutation of the IKZF3 gene has been identified as one of the risk alleles associated
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with MS [117]. The involvement of Aiolos in the functioning of mature B cells has been
demonstrated, highlighting its crucial importance. Moreover, Aiolos is essential for the
development of high-affinity antibody-secreting plasma cells [118]. Previous research has
indicated that Aiolos plays a crucial function in the latter phases of B-cell development [119].
Therefore, the manipulation of Aiolos expression by circRNA has the potential to play a role
in the aberrant immunological response mediated by B-cells in multiple sclerosis (MS).
More specifically, it might potentially induce B-cell differentiation towards the production
of autoantibodies. Based on the aforementioned results, it is justifiable to conduct more
studies pertaining to B-cell populations. Another transcript, CBX5, which was inferred
from the analysis of differentially expressed circRNA/miRNA interactions in the work
conducted by Zurawska et al. [114], has been associated with several biological processes
such as stem cell self-regeneration, lineage commitment, as well as carcinogenesis and
maturation [120]. In conclusion, the circRNAs have a distinct expression pattern charac-
terised by their interaction with miRNA through a sponge-like mechanism, resulting in
the formation of a circRNA/miRNA network that is distinctive to RRMS. The presented
data exhibit potential for the advancement of novel biomarkers in the context of RRMS.
Furthermore, Zurawska et al. findings propose an unexplored function of circRNAs in
modulating the transcriptional programme of B cells in the context of [114].

3.6. Roles of circRNAs in MS
3.6.1. hsa_circ_0106803 of GSDMB Gene

The available evidence suggests that circRNAs play important roles in controlling how
the immune system and central nervous system (CNS) function. Only a few research have
looked at this issue; thus, the precise roles played by these RNAs in the onset of MS are yet
unknown. In contrast to PBMCs from healthy people, patients with RRMS showed differ-
ential expression of approximately 400 circRNAs in their peripheral blood mononuclear
cells (PBMCs), according to the research of Cardamone and colleagues about “alternative
splicing” (AS) and, specifically, the detection and description of GSDMB, a 17q12-locus
alternatively spliced gene that has been frequently linked to autoimmune disorders and
asthma susceptibility and that encodes Gasdermin B, a member of the family of proteins
that contain gasdermin domains [121–123]. Alternative splicing (AS) has become more
and more significant in the pathogenesis of autoimmune diseases in recent years since
numerous immune system processes, including T-cell activation and migration, cytokine
response, and T-cell stability and apoptosis, are impacted by it [124]. These processes are all
necessary to prevent the suppression of self-tolerance and the emergence of autoimmune
conditions. Previous studies have identified a particular polymorphism of the GSDMB
gene (denominated “rs11078928”) in autoimmune disorders, characterized by the synthesis
of a transcript without exons 5, 6, 7, and 8 and also modifications to the exon 6 skipping rate,
in particular, the pattern GSDMB AS in RR-MS patients, with levels of exon 6 and exons
5–8 skippings independent to the rs11078928 polymorphism [125–127]. For at least two ad-
ditional genes, PRKCA and NFAT5, this similar dysregulation of AS profiles in MS patients
has already been observed, representing a possible “mark” of this disease’s condition [128].
As previously stated, AS represents an important mechanism for the genesis of circRNAs.
The GSDMB AS back-splicing pattern gives rise to an ecircRNA (including exons 5 and 4),
which is annotated in both the circBase database (accession number hsa_circ_0106803) and
the CIRCpedia database (accession number HSA_CIRCpedia_78516) and is expressed in
several parts of the brain [83]. The analysis of GSDMB ecircRNA expression conducted by
Cardamore et al. in the sample population revealed a significant increase of 2.8-fold in the
expression levels of GSDMB circRNA in peripheral blood mononuclear cells (PBMCs) of
patients with relapsing-remitting MS (RR-MS). The determination of the potential role of
changes in circRNA synthesis and GSDMB alternative splicing (AS) in the development
of susceptibility to multiple sclerosis (MS) continues to pose challenges [129]. In support
of a potential involvement of GSDMB in the development of multiple sclerosis (MS), it
was demonstrated that reducing the expression of GSDMB in memory CD4+ T-cells re-
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sulted in an increased production of cytokines, including tumour necrosis factor (TNF),
interleukin (IL)-13, and IL-16 [130]. Furthermore, a study revealed that the overexpression
of the GSDMB D6 isoform in primary human bronchial epithelial cells resulted in elevated
expression levels of many genes, including transforming growth factor beta 1 (TGFB1)
and matrix metallopeptidase 9 (MMP9) [131]. The study demonstrated a reduction in
TGFB1 expression levels in leukocytes of individuals with multiple sclerosis (MS) [132].
Additionally, it was shown that TGFB1 expression levels were elevated in the serum of
MS patients following interferon beta-1b (IFN-β1b) therapy [133]. The dysregulation of
inflammasome signalling has been implicated in several autoimmune and inflammatory
diseases, such as MS, and represents another possible pathogenetic mechanism of GS-
DMD [134]. It was demonstrated that pyroptosis, a kind of cell death that is dependent on
the inflammasome, is favored by the action of a member of the Gasdermin family, known as
GSDMD [135]. The activation of this pathway is initiated by the GSDMD N-domain, which
is liberated by proteolytic cleavage mediated by inflammatory caspases [136]. Furthermore,
it has been observed that the N-domains of the GSDMB protein possess the capacity to
induce pyroptosis in HEK293T cells [137]. As a corollary to what has been stated above, the
exceptional stability of circRNAs, attributed to their resistance to exonucleases responsible
for degrading linear transcripts, along with their abundant expression in peripheral whole
blood, suggests that GSDMD circRNA might serve as a promising biomarker for MS [138].

3.6.2. circ_HECW2 and the Dysfunction of the Blood–Brain Barrier

Additionally, it was discovered that circular RNA HECW2 (circ_HECW2) contributed
to the pathogenesis of multiple sclerosis. In both in vitro and in vivo MS experimental
models, increased expression of circ_HECW2 results in EndoMT, which is crucial for BBB
failure and contributes to BBB leakage. In order to boost the expression of ATG5 (autophagy-
related 5), activate the NOTCH pathway, and ultimately favorably regulate LPS-induced
EndoMT, Yang and colleagues demonstrated that circ_HECW2 served as a miR-30D sponge.
Further research by Dong and his group demonstrated that circ_HECW2 also interacted
with miR-30e-5p to control neural growth regulator 1 levels, which suppressed endothelial
cell proliferation and increased apoptosis and LPS-induced EndoMT [125,126].

3.6.3. hsa_circ_0106803 Modulates the Expression of ASIC1a mRNA

MS patients had been discovered to have an increase of the lncRNA MALAT1: changes
in circRNA back-splicing and aberrant splicing of MS-related genes, including IL7R and
SP140, have been linked to changes in MALAT1 expression [78]. MiR-1275 and miR-149,
two miRNAs that were among those predicted by hsa_circ_0106803 to have multiple tar-
get sites, exhibit differential expression in blood from MS patients; moreover, ASIC1a
is said to bind to miR-149, which lowers its levels. The acid-sensing ion channel sub-
unit ASIC1a is overexpressed in acute MS lesions and may play a role in the neuronal
pathophysiology of the illness: by controlling the expression of ASIC1a mRNA through
miR-149, hsa_circ_0106803 has been suggested to affect the progression of MS in light of
this data [127].

3.6.4. circINPP4B Regulates Th17 Cell Differentiation

CD4+ T helper (Th) cells, particularly Th17 cells that secrete interleukin-17 (IL-17), play
a significant role in the initiation and progression of both MS and experimental autoimmune
encephalomyelitis (EAE), which is a mouse model used to study MS [139,140]. To support
this concept, it was observed that there was a notable rise in the proportion of Th17 cells in
the cerebrospinal fluid (CSF) of individuals diagnosed with MS. Furthermore, it was shown
that the proportion of Th17 cells in MS patients during relapse was larger compared to the
ratio observed during the remission phase [102]. The induction of EAE may be achieved
by the infusion of activated CD4+ Th17 cells that are responsive to myelin. Additionally,
the administration of IL-17 exacerbates the progression of EAE, whereas animals lacking
IL-17 demonstrate resistance to this illness [141]. A recent investigation has demonstrated
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that the inhibition of Th17 differentiation in immune-deficient Rag1−/−mice who were
administered CD4+ naïve T cells (CD4+ Tn) led to the reduction of the signs of EAE. In
contrast, the promotion of Th17 differentiation worsened the EAE condition [139]. In 2016,
a team of investigators made a significant discovery regarding the expression of miR-30a in
peripheral blood CD4+ T lymphocytes of individuals with MS and mice EAE: this study
revealed that there was a significant reduction in the expression of miR-30a in these subjects.
Furthermore, researchers found that the overexpression of miR-30a had the ability to
effectively inhibit the excessive differentiation of Th17 cells, which are known to play a role
in the pathogenesis of MS and EAE. Additionally, this overexpression of miR-30a was found
to reduce the inflammatory response in the demyelinated region of the central nervous
system (CNS), thereby providing relief from EAE symptoms [142,143]. Han investigated the
circRNAs that have a role in the course of EAE in mice, building upon the existing literature
in this field, conducting an analysis of the circRNAs that were differently expressed and
putting in evidence that the expression of circ_3998 was not only considerably elevated
in mice with EAE, but also showed a progressive increase as the EAE scores rose. This
indicates that circ_3998 may have significant implications in the evolution of EAE. Based
on the microarray data and subsequent bioinformatics research, it was determined that
circ_3998 is situated on chromosome 8. This circRNA is comprised of six exons, namely
exons 3 to 8, originating from the INPP4B gene. The same study demonstrated a positive
correlation between the severity of EAE and the upregulation of circINPP4B expression in
CD4+ T cells. Furthermore, it was shown that circINPP4B exhibited significantly elevated
levels of expression in CD4+IL-17+ T cells and modestly increased levels of expression in
CD4+IFN-γ+ cells and CD4+CXCR5+ cells, as compared to CD4+ Tn cells. Furthermore,
in the context of in vitro Th17 cell development, the inhibition of circINPP4B resulted in
a decreased proportion of Rorγt, a gene marker associated with the Th17 lineage, as well
as a reduction in the production of Th17-related cytokines. These findings suggest that
circINPP4B has a role in the regulation of Th17 development in an in vitro setting and, by
extension, in the development of EAE. To corroborate this hypothesis, the mice in which
the circINPP4B gene was silenced exhibited a mitigated form of EAE, characterised by
a delayed start and lowered peak scores of EAE severity. The localization of circINPP4B in
the cytoplasm, as shown by the FISH experiment, suggests that circINPP4B has the potential
to function as a miRNA sponge. In order to elucidate the relationship between circINPP4B
and miR-30a, Han et al. observed a progressive upregulation of circINPP4B expression and
a concurrent downregulation of miR-30a expression during in vitro Th17 cell development.
The downregulation of circINPP4B in mice resulted in an elevation in the expression level
of miR-30a. In order to assess the impact of the circINPP4B/miR-30a axis on Th17 cell
development, the investigators conducted a rescue test including the overexpression of
circINPP4B and miR-30a, along with mutant variants of circINPP4B and miR-30a. The
findings of this study indicate that in the context of Th17 induction in vitro, miR-30a exerts
inhibitory effects on Th17 cell production. Conversely, circINPP4B has a promotive role
in Th17 cell differentiation by enhancing the amount of IL-17+ cells, secretion of Th17-
related inflammatory mediators, and expression of Rorγt and IL-21R. Furthermore, it was
shown that the inhibitory effects of miR-30a were somewhat counteracted by circINPP4B.
In summary, there is a correlation between the expression of circINPP4B and the clinical
prognosis of MS. In their study, Han et al. investigated the expression level of circINPP4B
in peripheral blood lymphocytes derived from a cohort of 18 patients diagnosed with
RR-MS. The test results revealed a considerable upregulation of circINPP4B expression
and downregulation of miR-30a expression in MS patients during the stage of relapse, as
compared to healthy subjects who were matched in terms of age and sex. Furthermore,
it was shown that the expression levels of circINPP4B and miR-30a in patients with MS
recovered to normal while they were in a state of remission. This contrasted significantly
with the expression levels observed in individuals experiencing a relapse. The results of this
study suggest a potential association between the level of circINPP4B and the development
of RR-MS. Hence, this research contributes to a more comprehensive comprehension of
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functional circular RNAs (circRNAs) in the context of multiple sclerosis (MS) and proposes
a prospective diagnostic and therapeutic target for the management of Th17-mediated MS
pathology [48].

3.6.5. hsa_circRNA_101145 and hsa_circRNA_001896 in Patients with
Relapse-Remitting MS

A complex analysis of the RNA of the peripheral blood mononuclear cells from
patients with multiple sclerosis demonstrated several hundred circRNAs differentially
expressed respect healthy controls (HCs). Mycko and colleagues evaluated 102 Caucasian
participants, comprising 37 HCs and 65 patients with multiple sclerosis. All patients had
relapsing-remitting multiple sclerosis, fulfilled the McDonald criteria, had not received
disease-modifying drugs from any less than 6 months, and never had anti-CD20, cladribine,
and anti-CD52 treatment. In order to distinguish RRMS patients in remission from HCs,
this study identified two circRNAs and a collection of 10 miRNAs that may be targeted
by circRNAs. All 10 of these miRNAs would be more active if circRNA were to express
itself less. Numerous miRNAs have been connected to autoimmune mechanisms causing
demyelination in MS. MiRNA has been linked by researchers to the growth and upkeep
of populations of T helper cells that are encephalitogenic. MiRNAs are indeed variably
expressed in PBMCs, whole blood, T cells, and B cells in MS patients, according to reports
on the subject. The greater concentration of miR-181c in the cerebral fluid has been associ-
ated with a higher risk for the development of confirmed MS from the group of miRNAs
discovered in this investigation. Almost all of the other miRNAs have been discovered
to be involved in processes like autophagy, apoptosis, neural stem cell proliferation, and
neurodegeneration, which may function in autoimmunity, brain recovery, and MS-related
processes even if they have not been explicitly linked to the disease. The results gathered
here provide a solid MS-related backdrop for the actions of the two highlighted circRNAs.
The fact that NOS1, NOPCHAP1, and DSE, three protein-coding genes regulated by both
circRNA molecules found in this study, have been described by in silico analysis is very
pertinent. The blood–brain barrier’s permeability, microglia activity, and oxidative stress in
immune cells and tissue in MS have all been linked to NOS1. In their respective biosynthetic
processes, chondroitin sulfate, dermatan sulfate, and heparan sulfate covalently bond to
particular core proteins to create proteoglycans. It is particularly intriguing because, in
MS, chondroitin sulfate can significantly affect tissue remodeling and prevent remyeli-
nation. When extracellular matrix components like chondroitin sulfate and others are
deposited into lesions, the resulting changed milieu prevents oligodendrocyte progenitor
cells from proliferating. In order to prevent harmful neuroinflammation and to encourage
the recruitment and maturation of oligodendrocytes in order to improve remyelination,
a new prospective treatment strategy has recently been launched. The elevated expression
of miRNAs that results from decreased circRNA expression as potential differentiating
biomarkers for MS is another feature of our findings that may encourage further thought.
In conclusion, they have shown that hsa_circRNA_101145 and hsa_circRNA_001896 are
downregulated in the PBMCs of RRMS patients who are in remission. A circRNA–miRNA
network primarily impacting post-transcriptional regulation is created by the expression of
circRNAs that interact with miRNA regulatory mechanisms. The change in this network
may offer microenvironmental modifications that control MS development [144].

4. Conclusions

The structural attributes of circRNAs, their distribution across the CNS, and their
involvement in regulating the immune response render them promising candidates as “non-
invasive” biomarkers for disease detection in individuals with MS, as well as prospective
targets for novel treatment strategies [100]. Multiple studies have provided evidence of
the widespread presence and differential expression of these molecules in individuals with
MS in comparison to individuals without the disease. CircRNAs play a role in regulating
the expression of cytokines, growth factors, and enzymes involved in the maintenance of
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neuroinflammation in patients with MS [145,146]. They can directly or indirectly influence
gene expression, for example, by acting as miRNA sponges and regulating epigenetic
mechanisms [63,147]. Additionally, circRNAs can modulate the activity of immune cells
that are involved in the pathogenic mechanisms of MS (Figure 3). Moreover, the several
aforementioned research emphasised the potential of these molecules to serve not only
as disease markers but also as indicators of disease progression (Table 1). These findings
suggest the possibility of developing diagnostic tools that may have the potential to alter the
course of this illness in the future [45,148,149]. Hence, comprehensive investigations into
the physiological and pathological functions of these non-coding molecules may potentially
offer a novel diagnostic and therapeutic strategy for MS in the forthcoming years.

Figure 3. CircRNAs and pathogenetic mechanisms in MS: CircRNAs exert their effects through many
pathogenic processes that promote the occurrence of characteristic alterations seen in MS, including
neuroinflammation, demyelination, and microglial dysfunction.

Table 1. circRNAs in Multiple Sclerosis: circRNAs exhibiting differential expression in patients with
Multiple Sclerosis.

circRNA Gene References

hsa_circ_0106803 GSDMB Cardamone et al. [127]
hsa_circ_0007990 PGAP3 Cardamone et al. [75]

circ_0005402
circ_0035560 ANXA2 Iparraguirre et al. [83]

hsa_circ_0043813 STAT3 Paraboschi et al. [101]
hsa_circRNA_101348
hsa_circRNA_102611
hsa_circRNA_104361

AK2
IKZF3
CBX5

Zurawska et al. [114]

circ_HECW2 HECW2 Yang et al. [125]
Dong et al. [126]

hsa_circ_0106803 ASIC1a Cardamone et al. [127]
Xia et al. [89]

circ_3998 INPP4B Han et al. [35]

hsa_circRNA_101145
hsa_circRNA_001896

NOS1
NOPCHAP1

DSE
Mycko et al. [144]
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