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Abstract: Osteosarcoma is a common malignant tumor in children and adolescents, known for its
aggressive invasion and distant metastasis, leading to a poor prognosis. Matrix metalloproteinases
(MMPs) can degrade the extracellular matrix and basement membranes through their proteolytic
activity, thereby promoting osteosarcoma metastasis. Chemokine ligand 2 (CCL2) is a well-studied
chemokine that plays a significant role in the cell motility of many cancers. However, its specific
involvement in osteosarcoma metastasis is not fully understood. The aim of this study is to examine
the role of miRNAs in CCL2-mediated MMP expression and cell motility in human osteosarcoma.
The analysis of immunohistochemistry data and databases associated a positive correlation between
CCL2 or MMP-3 levels with the metastasis of osteosarcoma patients. The in vivo lung metastatic
osteosarcoma model also demonstrated similar effects, showing higher levels of CCL2 and MMP-3 in
lung metastatic osteosarcoma tissues. The stimulation of osteosarcoma cells with CCL2 enhanced
migration and invasion abilities through the upregulation of MMP-3 synthesis. Our results also
indicate that CCL2 enhances MMP-3-dependent cell motility by inhibiting miR-3659 synthesis.
Therefore, CCL2 represents a promising therapeutic target for treating metastasis in osteosarcoma.

Keywords: osteosarcoma; CCL2; MMP-3; metastasis; miR-3659

1. Introduction

Osteosarcoma is a mesenchymal malignancy characterized by the formation of imma-
ture bone by tumor cells [1]. It most commonly occurs in adolescents but also has a second
peak in incidence among the elderly [2]. The main treatment methods for osteosarcoma
include surgical resection of the primary tumor and systemic chemotherapy [3]. However,
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treatment strategies have not significantly improved the prognosis for osteosarcoma pa-
tients over the past forty years [4]. Previous studies have shown that osteosarcoma is highly
aggressive, with 20% of patients exhibiting evident metastases to distant organs at initial
diagnosis [5]. Additionally, patients with osteosarcoma without lung metastases have a
5-year survival rate of 70%, while those with lung metastases have a survival rate of 30% [6].
There is an alarming recurrence rate of 80% among these 30% of osteosarcoma cases [7].
Therefore, the difficulty in treating osteosarcoma stems from its tendency to metastasize.

Metastasis is a complex process involving changes in cell adhesion properties, motility,
and most importantly, the degradation of the extracellular matrix (ECM) [8]. Consequently,
cancer cells escape from the primary lesion and gradually spread to distant organs through
migration and invasion [8,9]. The ECM is composed of various biochemically distinct
proteins and is involved in a variety of biological processes [10], such as differentiation,
adhesion, migration, and communication. It provides necessary structural and biochemical
support for its cellular constituents [4]. According to the report, osteosarcoma is charac-
terized by its abundant pathological osteoid ECM [11]. This implies that the abnormal
signaling and structural components of the ECM are the main drivers of osteosarcoma
development, playing a critical role in the progression and metastasis of osteosarcoma [4].

Based on previous research, integrins, cell adhesion molecules (CAMs), and matrix
metalloproteinases (MMPs) are implicated in several critical processes, including tumor
metastasis [12]. The degradation of the ECM is primarily achieved through proteases [9],
such as MMPs, which are the major enzymes involved in ECM degradation [10]. Studies
have shown that MMP-9 can facilitate ECM degradation, allowing osteosarcoma cells
to penetrate the ECM and metastasize to other tissues and organs [13,14]. It has been
found that MMP-3 is more highly expressed in metastatic osteosarcoma than in primary
osteosarcoma tumor tissues [15]. Additionally, the downregulation of MMP-3 and MMP-13
can decrease osteosarcoma cell migration and invasion [15–17]. It has been reported that
MMP3 is modulated by several microRNAs (miRNAs and miRs), which regulate cell
motility, metastasis, and tumor prognosis [18,19]. Therefore, researching the activation
mechanism of MMPs and the involvement of miRNAs will help us understand the processes
of cellular motility, invasion, and migration in osteosarcoma metastasis.

Previous research has indicated that MMPs are regulated by various cytokines [20].
For example, chemokine ligand 2 (CCL2) is one of the cytokines involved in the regulation
of MMPs [21–23]. CCL2 is the first widely studied C-C chemokine [24] and it plays a critical
role in recruiting monocytes and macrophages to inflammatory sites while also regulating
their activity [25]. Importantly, it has been reported that CCL2 can promote the development
and progression of many types of cancers by directly and indirectly stimulating cancer cell
migration through the regulation of MMPs [21,22]. However, the effect of CCL2 on MMP
regulation in the cell motility of osteosarcoma remains largely uninvestigated. The aim of
this study is to examine the role of miRNAs in CCL2-mediated MMP expression and cell
motility in human osteosarcoma. We found higher levels of CCL2 expression in human
metastatic osteosarcoma samples with non-metastatic osteosarcoma or normal healthy bone
samples. We indicated that CCL2 promotes MMP-3-mediated migration of osteosarcoma.
The inhibition of miR-3659 synthesis is involved in CCL2-promoted upregulation of MMP-3
production and migration. These findings suggest that CCL2 could be a valuable target in
the context of metastatic osteosarcoma.

2. Materials and Methods
2.1. Cell Culture

The human osteosarcoma cell line 143B was bought from the Bioresource Collection
and Research Center (BCRC) in Hsinchu, Taiwan. The 143B cells were maintained in Dul-
becco’s Modified Eagle Medium (DMEM) from Grand Island, NY, USA, and supplemented
with penicillin (100 U/mL), streptomycin (100 µg/mL), and 10% FBS (Grand Island, NY,
USA), and cultured at 37 ◦C with 5% CO2.
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2.2. Analysis of mRNA Expression Profiles from the Cancer Genome Atlas (TCGA) Database

The transcriptome profiles of osteosarcoma in the TCGA database were downloaded
using UCSC Xena (http://xena.ucsc.edu, accessed on 17 October 2022). A total of 88 osteos-
arcoma samples that had been analyzed through RNA sequencing were used to study the
gene expression profiles of CCL2 and MMP3 [26].

2.3. Immunohistochemistry (IHC) Staining

The tissue slides of osteosarcoma were baked at 60 ◦C overnight and then deparaf-
finized using xylene. They were subsequently rehydrated through an ethanol series. To
block endogenous peroxidase activity, 3% hydrogen peroxide in methanol was applied
for 10 min. Heat-induced antigen retrieval was performed for all sections using 0.01 M
sodium citrate buffer at pH 6, heated to 95 ◦C for 25 min. The rabbit monoclonal anti-
body for CCL2 (Abcam, Cambridge, MA, USA) and the mouse monoclonal antibody for
MMP-3 (Santa Cruz Biotechnology, Santa Cruz, CA, USA) were diluted 1:200 and left to
incubate overnight at 4 ◦C. The antibody-binding signal was detected using the NovoLink
Polymer Detection System (Leica Microsystems, Wetzlar, Germany) and visualized using
the diaminobenzidine reaction. The sections were counterstained with hematoxylin. The
immunostaining intensity of CCL2 and MMP-3 was scored using the MacBiophotonics
Image J software (version 1.53) [27].

2.4. Cell Migration and Invasion Assay

Osteosarcoma cells were applied into the upper chamber of transwell plates (Costar,
NY, USA) precoated with a layer of Matrigel for the invasion assay. Cells were stimulated
with CCL2 (PeproTech, Rocky Hill, NJ, USA) to the lower chamber. After 24 h, the migrated
cells were fixed with 3.7% formaldehyde and stained with crystal violet, then quantified
under the microscope [28].

2.5. Quantitative Real-Time PCR (q-PCR)

Total RNA was extracted from osteosarcoma cells using TRIzol reagent (MDBio Inc.,
Taipei, Taiwan). The reverse transcription reaction was performed using 2 µg of total
RNA, which was reverse transcribed into complementary DNA (cDNA) using an oligo
(dT) primer. Then, 100 ng of total cDNA was mixed with sequence-specific primers
using a KAPA SYBR® FAST qPCR Kit (Applied Biosystems, Foster City, CA, USA). The
specific forward primer sequence for GAPDH is 5′-ACCACAGTCCATGCCATCAC-3′

and the reverse primer sequence for GAPDH is 5′-TCCACCACCCTGTTGCTGTA-3′. The
specific forward primer sequence for MMP3 is 5′-CTGGACTCCGACACTCTGGA-3′ and
the specific reverse primer sequence for MMP3 is 5′-CAGGAAAGGTTCTGAAGTGACC-3′.
RT-qPCR assays were performed in triplicate using a StepOnePlus sequence detection
system. The cycling conditions consisted of 10 min of polymerase activation at 95 ◦C
followed by 40 cycles at 95 ◦C for 15 s and 60 ◦C for 60 s. The levels of GAPDH expression
were used as an endogenous control for normalization purposes. Results were expressed as
Ct values and normalized to calculate the average Ct of each sample (∆Ct). For the detection
of miRNAs, reverse transcription was performed with the Mir-XTM miRNA First-Strand
Synthesis and SYBR® qRT-PCR (Clontech Laboratories, Inc., Mountain View, CA, USA). The
specific primer sequence for miR-4641 is 5′-TGCCCATGCCATACTTTTGCCTCA-3′, miR-
17-5p is 5′-CAAAGTGCTTACAGTGCAGGTAG-3′, miR-106a-5p is 5′-AAAAGTGCTTAC-
AGTGCAGGTAG-3′, miR-3659 is 5′-TGAGTGTTGTCTACGAGGGCA-3′, miR-574-3p is
5′-CACGCTCATGCACACACCCACA-3′, miR-5683 is 5′-TACAGATGCAGATTCTCTGAC-
TTC-3′, miR-31-5p is 5′-AGGCAAGATGCTGGCATAGCT-3′, miR-4690-3p is 5′-GCAGCC-
CAGCTGAGGCCTCTG-3′, miR-18a-5p is 5′-TAAGGTGCATCTAGTGCAGATAG-3′, miR-
18b-5p is 5′-TAAGGTGCATCTAGTGCAGTTAG-3′, miR-3153 is 5′-GGGGAAAGCGAGTA-
GGGACATTT-3′, and miR-1231 is 5′-GTGTCTGGGCGGACAGCTGC-3′. An expression
level of U6 was used for normalization [29,30].

http://xena.ucsc.edu
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2.6. Analysis of Clinical Samples

Human bone and tumor tissues were obtained during primary total knee arthroplasty
and from patients diagnosed with osteosarcoma undergoing orthopedic surgery at China
Medical University Hospital, with approval granted by the local Institutional Review Board.
All study participants gave written consent before enrollment.

2.7. Cell Transfection

MMP-3 or control siRNAs were purchased commercially from Santa Cruz Biotechnol-
ogy (Santa Cruz, CA, USA). MiR-3659 mimic or control mimic were purchased commer-
cially from AllBio Science (Taipei, Taiwan). The specific sequence for miR-3659 mimic is
5′-UGAGUGUUGUCUACGAGGGCA-3′ and control mimic is 5′-UUGUACUACACAAA-
AGUACUG-3′. Transient transfection was conducted using Lipofectamine 2000 (Invitrogen
Life Technology, Carlsbad, CA, USA) according to the manufacturer’s instructions.

2.8. Western Blot

Cell lysates were resolved by SDS-PAGE and transferred to Immobilon polyvinylidene
fluoride membranes. Blots were blocked with skim milk for 1 h at room temperature, then
probed with MMP-3 (1:500) (Santa Cruz Biotechnology, Santa Cruz, CA, USA) or β-actin
antibodies (1:10,000) (Merck, Darmstadt, Germany) for 1 h at room temperature. After
undergoing three washes, blots were incubated with peroxidase-conjugated secondary
antibody (1:2000) for another hour at room temperature. The blots were developed via
enhanced chemiluminescence and visualized using the iBrightTM CL1500 Imaging System
(Waltham, MA, USA).

2.9. Statistics

All statistical data were analyzed using GraphPad Prism 9.0 (GraphPad Software, San
Diego, CA, USA) and are presented as the mean ± standard deviation (S.D.). Statistical
comparisons between two samples were performed using Student’s t-test. One-way analy-
sis of variance (ANOVA) with post hoc Bonferroni correction was conducted for statistical
analysis of multiple groups. In all cases, a p-value of <0.05 was considered significant.

3. Results
3.1. Elevated Levels of CCL2 Expression in Patients with Metastatic Osteosarcoma

The TCGA database indicated that patients with higher stages (stage 3/4) of os-
teosarcoma exhibited significantly elevated levels of CCL2 expression compared to those
observed in lower-stage patients (stage 1/2) (Figure 1A). Our clinical data also found that
CCL2 protein and mRNA expression levels in osteosarcoma patients were significantly
higher than in normal individuals (Figure 1B,C). Records from the TCGA database and the
Human Cancer Metastasis database revealed markedly elevated CCL2 expression levels
in metastatic osteosarcoma samples, surpassing those in primary osteosarcoma samples
(Figure 1D,E). Our findings underscore the correlation between heightened CCL2 levels
and adverse outcomes, including cancer metastasis, in osteosarcoma.

3.2. CCL2 Increases Cell Migration and Invasion in Osteosarcoma by Enhancing MMP-3 Production

Next, we directly employed the transwell assay, a well-established model for examin-
ing cell motility following CCL2 treatment in osteosarcoma cells. Our findings revealed
a concentration-dependent effect of CCL2 on osteosarcoma cell migration (Figure 2A).
Furthermore, CCL2 increased cell invasiveness through Matrigel (Figure 2B). Consequently,
CCL2 promoted both migration and invasion in osteosarcoma. Our results revealed a
robust increase in MMP3 mRNA expression after CCL2 stimulation in osteosarcoma cells
compared to others (Figure 3A). Moreover, the expression of MMP3 mRNA demonstrated a
concentration-dependent response upon CCL2 induction (Figure 3B). To confirm MMP-3’s
involvement in osteosarcoma cell migration and invasion driven by CCL2, we treated os-
teosarcoma cells with an MMP-3 inhibitor or siRNA, both of which resulted in the inhibition
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of CCL2-induced enhancement of cell migration and invasion (Figure 3C,D). Subsequently,
we conducted IHC staining to observe MMP-3 levels in osteosarcoma patients. Our clini-
cal sample results showed significantly higher MMP-3 protein and mRNA expression in
osteosarcoma patients than in normal individuals (Figure 3E,F). MMP3 expression lev-
els in stage 3/4 and metastatic osteosarcoma samples are higher than those in stage 1/2
and primary osteosarcoma samples, respectively (Figure 3G,H). Finally, we analyzed the
correlation between CCL2 and MMP-3 and the results indicated a positive correlation
between them (Figure 3I,J). Thus, our findings suggest that MMP-3 is indeed involved in
CCL2-induced osteosarcoma cell migration and invasion.
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qPCR. (E) CCL2 expression levels in metastatic and primary osteosarcoma retrieved from the Human
Cancer Metastasis Database. * p < 0.05 compared to control.
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Figure 3. MMP-3 is involved in CCL2-promoted cell migration and invasion in osteosarcomas.
(A) Cells were treated with CCL2 (50 ng/mL) for 24 h and the indicated mRNA expression was
detected by qPCR. (B) Cells were treated with CCL2 (0–50 ng/mL) for 24 h and the MMP3 expression
was examined by qPCR. (C,D) Cells were treated with an MMP-3 inhibitor (10 µM) or siRNA and then
stimulated with CCL2 (50 ng/mL); the cell migration and invasion were examined. (E,F) IHC staining
and qPCR for MMP-3 expression in healthy individuals and osteosarcoma patients are presented.
(G,H) The level of MMP3 expression in indicated osteosarcoma tissues recovered from the TCGA
dataset. (I,J) Correlation of CCL2 and MMP-3 protein and mRNA levels in clinical osteosarcoma
tissues. * p < 0.05 compared to control. # p < 0.05 compared to CCL2-treated group.
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3.3. Inhibiting miR-3659 Regulates CCL2-Induced Promotion of MMP-3 Production and Motility
in Osteosarcoma

To further analyze potential miRNAs regulating MMP3, we initially utilized open-
source software (miRWalk, TargetScan, and miRmap) to determine the miRNAs that regu-
late MMP3 expression. Among these databases, miRmap contained 212 miRNAs, miRWalk
contained 174 miRNAs, and TargetScan contained 130 miRNAs that were predicted to
bind to MMP3 mRNA (Figure 4A). Upon intersecting these sets, we found that 12 miRNAs
were involved (Figure 4A). The qPCR results indicated that miR-3659 was significantly
downregulated compared to the others after CCL2 stimulation (Figure 4B). Treatment with
CCL2 led to a concentration-dependent reduction in miR-3659 expression (Figure 4C). To
investigate whether miR-3659 mediates CCL2-induced MMP-3-mediated cell migration,
we employed a miR-3659 mimic. Transfection with the miR-3659 mimic enhanced the ex-
pression of miR-3659 and inhibited the protein level of MMP-3 (Figure 4D,E). The miR-3659
mimic also counteracted CCL2-induced facilitation of MMP3 production, cell migration,
and invasion (Figure 4F–H). Therefore, miR-3659 plays a crucial role in CCL2-induced
osteosarcoma cell motility by regulating MMP-3 expression.
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Figure 4. Inhibition miR-3659 regulates CCL2-mediated MMP-3 generation and cell motility. (A) The
miRmap, miRwalk, and TargetScan computational software were used to identify potential miRNAs
that bind to MMP3. (B,C) Cells were treated with CCL2 for 24 h and miRNA’s expression was
examined by qPCR. (D,E) Cells were transfected with miRNA mimic (20 nM) and the mRNA
expression of miR-3659 and protein expression of MMP-3 were examined by qPCR and western
blot. (F–H) Cells were transfected with miRNA control (20 nM) or miR-3659 mimic (20 nM) and
then stimulated with CCL2 (50 ng/mL); the MMP3 expression, cell migration, and invasion were
examined. * p < 0.05 compared to control. # p < 0.05 compared to CCL2-treated group.
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3.4. CCL2 and MMP-3 Are Highly Expressed in Lung Metastatic Osteosarcoma In Vivo

Next, we further examined the expression levels of CCL2 and MMP-3 in metastatic
osteosarcoma tissues in vivo from our previous study [7]. Both CCL2 and MMP-3 were
highly expressed in lung metastatic osteosarcoma tissues compared to normal lung tissues
(Figure 5A,B). The correlation between CCL2 and MMP-3 was found to be positive in
osteosarcoma (Figure 5C). Therefore, CCL2 and MMP-3 are highly expressed in metastatic
osteosarcoma in vivo.
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resentative images of IHC staining for CCL2 and MMP-3 in lung tissues for normal and metastatic
osteosarcoma cases are presented. (C) The correlation of CCL2 and MMP-3 in metastatic osteosarcoma
tissues. * p < 0.05 compared to control.

4. Discussion

CCL2 is a chemokine that can activate NK cells, memory T lymphocytes, macrophages,
and monocytes, stimulating the release of proinflammatory cytokines including TNF-α
and IL-6 [24,31]. Conversely, CCL2-activated macrophages also secrete tissue repair factors,
such as TGF-β and VEGF [31]. Numerous studies have shown that the overexpression
of CCL2 amplifies many cancer cells’ motility and promotes tumor development and
metastasis [32–38], such as chondrosarcoma [22], nasopharyngeal carcinoma [21], and breast
carcinoma [23]. However, there is limited research on the role of CCL2 in osteosarcoma
metastasis. Therefore, this study primarily focuses on investigating the ability of CCL2
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to facilitate metastasis in osteosarcoma. In this study, we first examined the CCL2 levels
in patients with osteosarcoma through an analysis of the TCGA database and the Human
Cancer Metastasis Database and we confirmed the significant correlation between CCL2
expression and osteosarcoma stage, as well as distance metastasis. We further investigated
the impact of CCL2 on the migratory and invasive capacities of osteosarcoma cells in vitro
and in vivo. These findings further emphasize the importance of CCL2 in osteosarcoma
and suggest its potential as a therapeutic target.

Osteosarcoma, a rare but highly aggressive malignancy in children and adolescents [39–42],
is characterized by its ability to metastasize, leading to treatment failure and a poor prog-
nosis [43,44]. Therefore, metastases in osteosarcoma are the primary cause of death in pa-
tients [19]. The metastatic cascade involves invading cells by altering intracellular adhesion
properties, reorganizing the ECM environment, and restructuring their cell skeletons. As a
result, tumor cells escape from the primary lesion and gradually spread to distant organs.
Accumulating reports indicate that CAMs play a critical role in modulating cell-matrix adhe-
sions [8,45,46]. For example, an overexpressed intercellular adhesion molecule-1 (ICAM-1)
can promote osteosarcoma metastasis [8]. Upregulating the expression of the vascular cell
adhesion molecule 1 (VCAM-1) stimulates human osteosarcoma cell migration and drives
osteosarcoma lung metastasis [45,46]. Additionally, integrins, major receptors for cell adhe-
sion to ECM molecules, modulate cell migration and tissue remodeling [47]. Integrin αvβ3
may regulate the interaction between osteosarcoma cells and the ECM, thereby promoting
osteosarcoma cell migration [48,49]. Moreover, MMPs, zinc-dependent endopeptidases,
have proteolytic activity that helps degrade ECM and basement membranes [19,50,51]. For
example, MMP-9 facilitates ECM degradation, enabling osteosarcoma cells to penetrate
the ECM and metastasize to other tissues and organs [13]. The downregulation of MMP-
13 is also identified as a crucial mechanism decreasing osteosarcoma cell migration and
invasion [16].

The inhibition of MMP-3 decreases osteosarcoma cell migration and invasion [15–17].
MMP-3 is more highly expressed in metastatic osteosarcoma than in primary osteosarcoma
tumor tissues [15]. In this study, our results found that CCL2 strongly upregulated MMP-3
expression compared to other MMPs, CAMs, and integrins. The expression level of MMP-3
in osteosarcoma patients was significantly higher than in the normal group. We previously
established an osteosarcoma lung metastasis model by injecting 143B osteosarcoma cells
into the lateral tail vein to induce the development of lung metastasis [7]. In this study, we
observed higher levels of CCL2 and MMP-3 expression in lung metastatic osteosarcoma
tissues compared to normal lung tissues. Importantly, the CCL2-induced promotion of
migration and invasion was abolished by treatment with an MMP-3 inhibitor. Additionally,
genetic inhibition using siRNA against MMP3 yielded similar results. These findings
establish MMP-3 as a key regulator in the process of tumor metastasis in osteosarcoma
induced by CCL2.

MMP3 is regulated by various miRNAs [18,19], subsequently facilitating tumor cell
invasion and metastasis [15–17]. The abnormal expression of miRNAs has been closely asso-
ciated with processes such as tumor cell invasion and metastasis in osteosarcoma [18,19,52–54].
For example, the increased expression of MMP-3 induces tumor metastasis in osteosar-
coma by inhibiting miR-519d [19], and miR-134 reduces osteosarcoma cell invasion and
metastasis by targeting MMP-3 in vivo and in vitro [18]. However, it is not clear which
miRNA regulates MMP3 in CCL2-induced osteosarcoma cell motility. In our research, we
utilized open-access prediction software to identify miRNAs that could potentially bind
to MMP3 and subsequently identified miR-3659 as a candidate miRNA that can interact
with MMP3. The miR-3659 mimic significantly suppressed CCL2-promoted osteosarcoma
migration and invasion. These results suggest that CCL2 enhances migration and inva-
sion in osteosarcoma by increasing MMP-3 expression through the inhibition of miR-3659
synthesis.

MiRNAs regulate gene expression through binding to the 3′UTRs of target mRNAs,
either targeting the transcripts for degradation or blocking their translation [55]. Here,
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we did not generate the 3′UTR luciferase plasmids of MMP3. Whether miR-3659 directly
or indirectly binds to 3′-UTR of MMP3 upon CCL2 treatment needs further examination.
The post-transcriptional regulation of MMPs via miRNAs has been implicated in the
regulation of cancer motility [56]. In this study, the transfection of cells with the miR-3659
mimic facilitated the expression of miR-3659. Additionally, transfection with the miR-3659
mimic also diminished the protein expression of MMP-3. Further investigation is required
to determine whether post-transcriptional regulation contributes to miR-3659-regulated
MMP-3 expression.

5. Conclusions

In conclusion, our findings have revealed that CCL2 downregulates the expression
of miR-3659, consequently increasing the expression of MMP-3, thereby promoting os-
teosarcoma cell motility (Figure 6). This discovery presents novel targeted options for
osteosarcoma treatment, potentially leading to the development of more effective therapeu-
tic strategies and ultimately improving patient prognosis and survival rates.
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