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Abstract: Gastric cancer remains a global health threat, particularly in Asian countries. Current
treatment methods include surgery, chemotherapy, and radiation therapy. However, they all have
limitations, such as adverse side effects, tumor resistance, and patient tolerance. Hyperthermia
therapy uses heat to selectively target and destroy cancer cells, but it has limited efficacy when
used alone. Linderae Radix (LR), a natural compound with thermogenic effects, has the potential
to enhance the therapeutic efficacy of hyperthermia treatment. In this study, we investigated the
synergistic anticancer effects of cotreatment with LR and 43 ◦C hyperthermia in AGS gastric cancer
cells. The cotreatment inhibited AGS cell proliferation, induced apoptosis, caused cell cycle arrest,
suppressed heat-induced heat shock responses, increased reactive oxygen species (ROS) generation,
and promoted mitogen-activated protein kinase phosphorylation. N-acetylcysteine pretreatment
abolished the apoptotic effect of LR and hyperthermia cotreatment, indicating the crucial role of
ROS in mediating the observed anticancer effects. These findings highlight the potential of LR as
an adjuvant to hyperthermia therapy for gastric cancer. Further research is needed to validate these
findings in vivo, explore the underlying molecular pathways, and optimize treatment protocols for
the development of novel and effective therapeutic strategies for patients with gastric cancer.

Keywords: hyperthermia; gastric cancer; Linderae Radix; heat shock proteins; reactive oxygen
species; combination therapy

1. Introduction

Gastric cancer poses a formidable global health challenge, especially in Asian countries,
where its incidence and mortality rates are strikingly high [1–3]. Traditional treatment
methods, such as surgery, chemotherapy, and radiation therapy, face obstacles, including
adverse side effects, tumor resistance, and patient tolerance [4,5]. Consequently, innovative
and effective therapeutic approaches need to be developed to overcome these obstacles to
achieve positive outcomes in patients.

Cancer hyperthermia therapy, a technique that utilizes heat to selectively target and
eliminate cancer cells, has emerged as a potential solution to overcome the limitations of
current approaches of gastric cancer treatment [6–9]. However, its standalone application
exhibits limited efficacy because it triggers a heat shock response, leading to the activation
of heat shock factors (HSFs) and heat shock proteins (HSPs). Such heat shock-induced
responses may lead to cell survival and resistance to therapy [10–12].

Linderae Radix (LR), a natural herb steeped in traditional medicinal history, is renowned
for its thermogenic properties and has been harnessed to treat various gastrointestinal
ailments, such as indigestion, abdominal discomfort, and bloating [13–15]. Recognizing the
therapeutic potential of LR, we hypothesized that its integration with cancer hyperthermia

Biomedicines 2023, 11, 2710. https://doi.org/10.3390/biomedicines11102710 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines11102710
https://doi.org/10.3390/biomedicines11102710
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0001-9239-5211
https://orcid.org/0000-0002-8121-2974
https://doi.org/10.3390/biomedicines11102710
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines11102710?type=check_update&version=2


Biomedicines 2023, 11, 2710 2 of 16

therapy might counteract the shortcomings of hyperthermia treatment and amplify its
therapeutic effectiveness.

Based on this hypothesis, our study was designed to investigate the synergistic effects
of LR and hyperthermia treatment. We aimed to explore the possibility of boosting the
anticancer capabilities of both treatment modalities while minimizing the activation of
heat shock responses that could promote cell survival and tumor resistance. Furthermore,
we sought to elucidate the molecular mechanisms underlying these observed effects to
understand the potential benefits of this treatment.

2. Materials and Methods
2.1. Preparation of LR Extract

Lindera strichnifolia (Kwangmyeongdang Medicinal Herbs Co., Ltd. Ulsan, Republic
of Korea) was ground and homogenized using a homogenizer. After soaking for 24 h
at room temperature in 70% EtOH, the extract was produced. The resulting extract was
filtered (pore size: 5 µm), concentrated under reduced pressure, and lyophilized to obtain
a sample. Samples at concentrations of 80, 100, and 120 µg/mL were prepared using
dimethyl sulfoxide (DMSO) (Samcheon Chemical, Seoul, Republic of Korea). The solutions
were stored at 4 ◦C until further use.

2.2. Liquid Chromatography (LC)–Mass Spectrometry (MS) Analysis

Chromatographic analysis was performed using ultraperformance liquid chromatogr-
aphy-electrospray ionization/quadrupole time-of-flight high-definition mass spectrome-
try/mass spectrometry (UPLC-ESI-QTOF-MS/MS) to identify the chemical components
of the ethanolic extract. The extract was shaken in 50% methanol using a vortex mixer for
30 s and sonicated for 10 min. The supernatants were filtered through a 0.2 µm hydrophilic
polytetrafluoroethylene syringe filter (Thermo Scientific, Waltham, MA, USA). The filtrate
was diluted to 20 mg/mL and transferred to an LC vial prior to use. The LC–MS system
consisted of a Thermo Scientific Vanquish UHPLC system (Thermo Fisher Scientific, Sun-
nyvale, CA, USA) with an ACQUTY UPLC HSS T3 column (2.1 mm × 100 mm, 1.8 µm;
waters) and a Triple TOF5600+ mass spectrometer system (QTOF MS/MS, SCIEX, Foster
City, CA, USA).

The QTOF MS system was equipped with an electrospray ionization (ESI) source in
positive and negative ion modes and used to complete the high-resolution experiment.
The elution program for UHPLC separation, which employed 0.1% formic acid in water as
eluent A and 0.1% formic acid in acetonitrile as eluent B, was as follows: 0–1 min, 5% B;
1–4 min, 5–15% B; 4–1 1 min, 15–35% B; 11–17 min, 35–50% B; 17–21 min, 50% B; 21–25 min,
50–100% B; and 25–29 min, 100% B and equilibration with 5% B for 4 min at a flow rate of
0.4 mL/min. The column temperature was 40 ◦C, and the autosampler was maintained
at 4 ◦C. The injection volume of each sample solution was 2 µL. Data acquisition and
processing for qualitative analysis were conducted using Analyst TF 1.7, PeakVeiw2.2, and
MasterView (SCIEX, Foster City, CA, USA). The MS/MS data for qualitative analysis were
processed using PeakView and MasterView to screen for probable metabolites based on
accurate mass and isotope distributions.

2.3. Cell Culture

The AGS stomach cancer cell line was provided by the Korean Cell Line Bank (Seoul,
Republic of Korea). The cells were cultured in RPMI1640 medium supplemented with 10%
heat-inactivated fetal bovine serum (FBS; Gibco, Grand Island, NY, USA) and 1% penicillin–
streptomycin (10,000 U/mL) in an incubator at 37 ◦C with humidified air containing 5%
CO2 (Gibco, Grand Island, NY, USA).

2.4. Hyperthermia

AGS cells were seeded in 6-well plates (0.3 × 106 cells) and suspended in 3 mL of
medium. The temperature environment was applied by incubating the cells for 30 min in
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a water bath set to certain temperatures (37 ◦C or 43 ◦C). LR was treated to AGS cells an
hour prior to temperature control.

2.5. MTT Assay

The MTT assay was used to assess cell proliferation after temperature exposure to
LR. AGS cells (1 × 104 cells/100 µL) were seeded in 96-well plates and allowed to attach
overnight. Each group contained three wells, with the untreated group acting as a control.
LR was added to the plates in three concentrations (80, 100, and 120 µg/mL) after the cells
had been fixed. The plates were incubated for an hour at 37 ◦C in a humid atmosphere with
5% CO2 and then soaked in a water bath with a temperature controlled at 37 ◦C or 43 ◦C
for 30 min. After 48 h, each well received 20 µL of MTT (2 mg/mL in PBS) (AMRESCO,
Solon, OH, USA) and then was incubated for an additional 2 h. After removing the growth
media, the cells were lysed in 100 µL of DMSO. Absorbance was measured at 570 nm using
an automated spectrophotometric plate reader. The relative cell viability percentages were
normalized to those of untreated controls. The synergistic effects of the medication and HT
combination were calculated using Compusyn software (ver.1.0).

2.6. Trypan Blue Assay

The vitality of the cells was assessed using a hemocytometer after trypan blue (Sigma-
Aldrich, St. Louis, MO, USA) staining (0.4%, 1:1 dilution in the PBS containing the cells). In
brief, AGS cells (0.3 × 106) were sown in 6-well plates and then treated to 1 h of LR therapy
and heat (30 min). After 24 h of post-treatment incubation, the cells were collected, diluted
1:4 with PBS, stained, and then counted.

Rate of cell survival = viable cell count/total cell count × 100

2.7. Morphology Assa

Cell proliferation was measured using a morphological assay. AGS cells were seeded
in a 6-well plate at a density of 0.3 × 106 cells per well. The cells were treated with
120 µg/mL LR for 1 h after adhering to the plates and then incubated at 37 ◦C or 43 ◦C for
30 min. The cells were examined and photographed under a microscope (CX-40; Olympus,
Tokyo, Japan) after 24 h.

2.8. Wound-Healing Assay

Cells were plated in a 6-well plate at a density of 0.3 × 106 cells per well and then kept
at 37 ◦C. Once the cells reached confluence, a thin scratch was created in each well using
a yellow pipette tip. Images were captured at 0 h using a microscope (CX-40; Olympus,
Tokyo, Japan) (0 h). After 24 h, the cells were rinsed with PBS and photographed under a
light microscope (24 h).

2.9. Colony Formation Assay

A total of 400 cells were seeded into each well of a 6-well plate and then incubated
overnight. The cells were incubated for 30 min at 37 ◦C or 43 ◦C and then treated with
120 µg/mL LR for an hour. After a week, the cells were stained with crystal violet solution
(Sigma-Aldrich, St. Louis, MO, USA) for 10 min at room temperature and then washed
with PBS. Colonies were examined under a microscope (CX-40; Olympus, Tokyo, Japan).

2.10. Western Blot Analysis

Protein was extracted from AGS cells after indicated treatments. After calculating
protein concentration, equal amounts of the SDS-PAGE-separated lysates were transferred
onto polyvinylidene difluoride (PVDF) membranes, which were subsequently blocked
at room temperature with 1 × TBS containing 0.1% Tween 20 and 5% skim milk. The
membranes were incubated at 4 ◦C overnight with the following primary antibodies:
anti-caspase-3, anti-caspase-8, anti-caspase-9, anti-survivin, anti-HSP27, anti-HSP70, anti-
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HSP90, anti-p-ERK (Thr202/Tyr204), anti-ERK, anti-p-p38 (Thr180/Tyr182), anti-p38, anti-
p-JNK (Thr183/Tyr185), anti-JNK (Cell Signaling Technology, Danvers, MA, USA), anti-
β-actin, anti- Bcl-xL, anti-Bcl-2, anti-cyclin B1, anti-cyclin D1, anti-MMP9, anti-MMP2,
anti-VEGF (Santa Cruz Biotechnology, Inc., Dallas, TEX, USA), anti-HSF1, anti-pHSF1
(Abcam, Inc., Waltham, MA, USA), and anti-cleaved caspase (Genetex, Irvine, CA, USA).
The membranes were washed three times before exposure to diluted anti-rabbit or anti-
mouse IgG secondary antibodies (Santa Cruz Biotechnology, Inc.) for an hour at room
temperature. The blots were washed thrice with 1 × TBS-T buffer for 10 min between
each stage. The membranes were identified using enhanced chemiluminescence (Millipore,
Billerica, MA, USA).

2.11. Apoptosis Assay

Apoptosis was examined by flow cytometry using the annexin V-FITC detection kit
(ApoScan kit, Cat. No.: LR-02-100). Briefly, AGS cells (0.3 × 106 cells/well in a 6-well
plate) were subjected to LR and HT for 24 h. The cells were collected and stained with
annexin V-FITC in 1× cold binding buffer under a light-blocking cover for 15 min at room
temperature. Propidium iodide (PI) staining was performed using 1× cold binding buffer
after removing the supernatant.

2.12. Cell Cycle Analysis

AGS cells (0.3 × 106 cells/well in 6-well plates) were cotreated for 24 h. To measure
the cell cycle phase, cells were collected, frozen in 70% ice-cold EtOH for 24 h incubation,
washed in 1× cold PBS, and then resuspended in PBS supplemented with 1 mg/mL PI and
10 mg/mL RNase A in a dark environment for 10 min. The cell cycle was analyzed using a
flow cytometer.

2.13. Analysis of Reactive Oxygen Species (ROS)

A ROS experiment was carried out using 2′,7′-dichlorofluorescin diacetate (InvitrogenTM

D399). A 6-well plate containing AGS cells (0.3 × 106 cells per well) was subjected to cotreat-
ment for 4 h. After collecting the cells, 10 µM reagent was added and then incubated at 37 ◦C
for 40 min without light for reaction. ROS levels were measured using flow cytometry.

2.14. Statistical Analysis

All numerical values are represented as the mean ± SD. Statistical significance of the
data compared with the untreated control was determined using Student’s unpaired t-test.
* p < 0.05, ** p < 0.01, and *** p < 0.001.

3. Results
3.1. UPLC-ESI-QTOF-MS/MS Analysis for the Identification of Chemical Components in LR

The ethanolic extract was subjected to UPLC-ESI-QTOF-MS/MS to determine its chem-
ical profile and identify its constituents. Sixteen components were identified: norisoboldine
(3), boldine (5), aesculitannin B (6), norboldine (10), linderalactone (12), lindenanolide E
(15), and lindenanolide (16). These compounds are reported as the major components of
LR (Figure 1) [16–18]. The detected peaks are listed in Table 1.
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Table 1. Detected peak list from the UPLC-ESI-QTOF-MS/MS analysis of LR.

No. Name Formula Mass (Da) Expected
RT (min) Adduct Found at

Mass (Da)
Error
(ppm) MS/MS Product Ions Identified

with
Peak
Area

1 Epigallocatechin C15H14O7 306.0740 4.33
[M + H]+ 307.0810 −0.8 139.0386, 163.0389, 135.0429, 177.0540 # 2327
[M − H]− 305.0667 0.0 125.0250, 137.0248, 139.0401,165.0194,167.0346 7248

2 Catechin C15H14O6 290.0790 4.72
[M + H]+ 291.0864 0.2 139.0386, 123.0440, 147.0438, 207.0648 # 2764

[M − H]− 289.0717 −0.1 203.0714, 123.0456, 109.0305, 151.0402,
125.0250 7820

3 Norisoboldine C18H19NO4 313.1314 5.41
[M + H]+ 314.1390 0.9 237.0918, 265.0864, 205.0655, 297.1130 # 247,192
[M − H]− 312.1243 0.6 297.1015, 282.0772, 254.0824, 239.0711 17,959

4 Epicatechin C15H14O6 290.0790 5.68
[M + H]+ 291.0864 0.3 139.0394, 123.0453, 147.0444, 207.0646 # 3693
[M − H]− 289.0717 −0.4 203.0721, 123.0453, 245.0827, 109.0307 15,349

5 Boldine C19H21NO4 327.1471 5.71
[M + H]+ 328.1545 0.6 265.0862, 237.0913, 297.1122, 205.0651,

177.0697 # 41,973

[M − H]− 326.1398 0.0 311.1156, 296.0934, 268.0732, 239.0688 1958
6 Aesculitannin B C45H36O18 864.1902 5.92 [M − H]− 863.1838 1.1 411.0719, 711.1382, 289.0714, 451.1036 * 65,301
7 Reticuline C19H23NO4 329.1627 6.21 [M + H]+ 330.1699 −0.1 192.1026, 137.0601, 143.0494, 175.0757 # 26,257

8 Lyoniresinol 3a-O-b-
D-glucopyranoside C28H38O13 582.2312 6.71 [M − H]− 581.2239 0.0 419.1696, 404.1477, 371.1115, 401.1591 * 7223

9 Alangionoside L C19H32O7 372.2148 7.70 [M + H]+ 373.2219 −0.5 175.1482, 133.1017, 119.0864, 193.1583 * 2927

10 Norboldine C18H19NO4 313.1314 10.00
[M + H]+ 314.1386 −0.3 177.0544, 145.0283, 121.0650, 89.0396

*
3697

[M − H]− 312.1241 −0.2 148.0532, 178.0501, 190.0508, 297.1008 3645
11 Unknown C21H28N2O 324.2202 11.37 [M + H]+ 325.2276 0.5 91.0556, 86.0980, 233.1655, 84.0824 * 125,079

12 Linderalactone C15H16O3 244.1099 11.88
[M + H]+ 245.1171 −0.5 141.0700, 156.0934, 165.0698, 105.0702, 91.0552

*
20,652

[M − H]− 243.1026 −0.4 183.0811, 199.1122, 197.0965, 182.0727,
155.0859 19,844

13 Hydroxylindestenolide
or linderanolide G C15H18O3 246.1256 13.15 [M + H]+ 247.1330 0.4 91.0561, 107.0868, 153.0699, 168.0931, 141.0701 * 28,925

14 Isolinderalactone C15H16O3 244.1099 16.48
[M + H]+ 245.1172 0.1 199.1111, 141.0696, 156.0928, 143.0853,

165.0694 *
85,662

[M − H]− 243.1028 −0.3 183.0815, 199.1121, 182.0739, 130.9660 20,421

15 Lindenanolide E or
Linderane C15H16O4 260.1049 17.57 [M + H]+ 261.1121 0.0 173.0955, 145.1007, 158.0725, 129.0696,

130.0779 * 24,396

16 Lindenanolide H C17H20O4 288.1362 18.20 [M + H]+ 289.1433 0.2 155.0854, 183.1164, 168.0937, 229.1229 * 4131

17 Unknown C15H16O 212.1201 18.53 [M + H]+ 213.1273 −0.3 165.0705, 128.0624, 141.0704, 155.0859,
180.0933 * 68,194

# In-house ms/ms library and online database; such as GNPS, MASS bank, or Metlin. * Extract MS with isotope mass.
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Figure 1. Representative base peak chromatogram (BPC) identified in LR using LC-ESI-QTOF MS/MS
analysis in positive (A) and negative ion modes (B).

3.2. Cotreatment with LR and 43 ◦C Hyperthermia Synergistically Inhibits AGS Cell Proliferation

The effect of simultaneous treatment with LR and hyperthermia at 37 ◦C and 43 ◦C was
investigated using MTT assays. When LR was administered at the same dose (120 µg/mL),
the combination of LR and 43 ◦C significantly reduced AGS cell viability to a greater extent
than the combination of LR and 37 ◦C (Figure 2A). The degree of synergy between LR
and hyperthermia was determined using a combination index. In Figure 2B, trypan blue
staining indicates the statistical significance of the effect of LR treatment, which is notably
enhanced under hyperthermic conditions. We also performed an MTT assay to examine
the effect of cotreatment on human gastric normal cells (GES-1). The results confirm that
hyperthermia and LR cotreatment showed minimal toxicity on GES-1 cells (Figure 2C).

Morphological observations revealed that the cotreatment led to distinct changes in
cell shape. These alterations result from the inhibitory effect of the cotreatment on cell
growth (Figure 2D). The morphological features, such as cell shrinkage and membrane
blebbing, were consistent with the well-known hallmarks of apoptotic cell death, pro-
viding further evidence for the induction of apoptosis through the cotreatment approach
(Figure 2D). In addition, crystal violet staining of AGS cells showed that colony formation
was notably decreased after cotreatment with LR and 43 ◦C compared with cotreatment
with LR and 37 ◦C (Figure 2E). Furthermore, we demonstrated that cotreatment with LR
and hyperthermia suppressed cell migration (Figure 2F). These findings indicate that the
combination of LR and hyperthermia exerts an antiproliferative effect on AGS cells.
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decreased the expression of pro-caspase 8 and 9 (Figure 3B). Moreover, cotreatment with 
LR and 43 °C significantly reduced the expression levels of antiapoptotic members of the 
B-cell lymphoma (Bcl)-2 family, including Bcl-2, Bcl-xL, and survivin, in a dose-dependent 
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pression of Cyclin D1, VEGF, MMP-2, and MMP-9 (Figure 3C) [23–25]. These findings 

Figure 2. Effect of combined LR and hyperthermia on AGS cell viability. AGS cells were exposed to
various concentrations of LR (0, 80, 100, and 120 µg/mL) with or without hyperthermia at 43 ◦C for
24 h. (A) MTT assay was used to calculate the percentage of cell viability, and Compusyn software
was used to calculate the combination index. (B) Cell viability under cotreatment with LR and
hyperthermia was compared with that under normothermia by performing a trypan blue assay.
(C) MTT assay was used to investigate the effect of cotreatment on GES-1, human gastric normal cells.
(D) Morphological changes indicating apoptosis were observed under a regular light microscope.
(E) Crystal violet staining was used for the clonogenic experiment. (F) Wound-healing assay was
conducted. * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. control group; # p < 0.05, ## p < 0.01, and
### p < 0.001 vs. 43 ◦C + 0 µg/mL group.

3.3. Cotreatment with LR and 43 ◦C Hyperthermia Induces Apoptosis in AGS Cells

To elucidate the mechanisms underlying the synergistic effects of LR and hyperthermia,
we investigated the expression levels of various factors associated with apoptosis, cell
proliferation, metastasis, and angiogenesis. Our results show that treatment with LR at
43 ◦C dose-dependently increased the expression of activated forms of caspase 3, a key
marker of programmed cell death [19,20], whereas this effect was not observed under
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normothermic conditions (37 ◦C) (Figure 3A). Additionally, cotreatment with LR and 43 ◦C
decreased the expression of pro-caspase 8 and 9 (Figure 3B). Moreover, cotreatment with
LR and 43 ◦C significantly reduced the expression levels of antiapoptotic members of the
B-cell lymphoma (Bcl)-2 family, including Bcl-2, Bcl-xL, and survivin, in a dose-dependent
manner (Figure 3B) [21,22]. Furthermore, cotreatment with LR and hyperthermia effectively
inhibited the metastatic potential and mitosis of AGS cells by suppressing the expression
of Cyclin D1, VEGF, MMP-2, and MMP-9 (Figure 3C) [23–25]. These findings support the
notion that cotreatment with LR and hyperthermia exerts a potent anticancer effect by
modulating multiple cellular pathways.
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Figure 3. Effects of LR combination with hyperthermia on the expression levels of angiogenesis,
survival, and proliferation in the treatment and control groups. LR was applied to AGS cells
(0.3 × 106 cells) with or without hyperthermia, and the cells were incubated for 24 h. Equal volumes
of lysates from whole-cell extracts were then subjected to Western blot analysis. Western blot assays
were used to determine the protein expression of (A) caspase-3; (B) caspase-8, caspase-9, Bcl-2, Bcl-xL,
and Survivin; and (C) Cyclin D1, VEGF, MMP-9, and MMP-2. β-actin was used as a loading control.

3.4. Cotreatment with LR and 43 ◦C Hyperthermia Synergistically Induces Apoptosis and Cell
Cycle Arrest in AGS Cells

The rate of annexin V-related apoptosis in AGS cells was higher after cotreatment with
LR and hyperthermia than after treatment with 43 ◦C hyperthermia alone or cotreatment
with LR and normothermia (Figure 4A). A dose-dependent effect of the cotreatment was
evident as the ratio of apoptotic cells increased by nearly 2.34-fold at the highest LR dose
(17.28%). Furthermore, flow cytometric analysis revealed that cotreatment with LR and
hyperthermia induced cell cycle arrest at the G2/M phase (Figure 4B). Such a finding was
supported by the significant reduction in the expression of cyclin B1 in AGS cells treated
with LR at 43 ◦C hyperthermia (Figure 4C). These results suggest that cotreatment with
LR and hyperthermia induces apoptosis and cell cycle arrest in AGS cells, which may
contribute to the anticancer effect of cotreatment.
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Figure 4. Effect of LR and hyperthermia combination on the apoptosis and cell cycle in AGS cells.
AGS cells (0.3 × 106 cells) were treated with LR (0 or 120 µg/mL) with or without hyperthermia.
Apoptotic cells were detected through annexin V and PI staining and then analyzed using a flow
cytometer. Flow cytometric analysis on (A) apoptosis profile and (B) cell cycle profile was performed.
(C) Cyclin B1 expression was measured through Western blot assay. β-actin was used as a loading
control. * p < 0.05 vs. control group; # p < 0.05 vs. 43 ◦C + 0 µg/mL group.
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3.5. Cotreatment with LR and 43 ◦C Hyperthermia Suppresses HT-Induced Heat Shock Responses

HSPs are molecular chaperones that maintain protein stability, facilitate transport,
and transmit signals within cells [26–28]. HSPs also play a crucial role in protecting cells
from stress and preventing the degradation of severely damaged proteins [29,30]. The
expression levels of HSP27, 70, and 90 were increased in the AGS cells treated with 43 ◦C
hyperthermia (Figure 5A). However, LR treatment significantly reduced the expression
of HSPs under both normothermic and hyperthermic conditions. HSF1 is a transcription
factor that is activated by stress factors, such as heat shock, leading to the synthesis of HSPs.
HSF1 is overexpressed in cancer cells and contributes to tumor cell migration, invasion, and
proliferation [31,32]. Hyperthermia treatment at 43 ◦C can induce HSF1 phosphorylation.
In this study, we observed that cotreatment with LR inhibited HSF1 phosphorylation, even
when AGS cells were exposed to 6 h of hyperthermia (Figure 5B).
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Figure 5. Effect of LR and hyperthermia cotreatment on HSP and ROS correlation in AGS cells. AGS
cells (0.3 × 106 cells) were treated with LR (0 or 120 µg/mL) with or without hyperthermia. Protein
expression of (A) HSP27, HSP70, and HSP90 and (B) p-HSF1 and HSF were assessed using Western
blot. β-actin was used as a loading control.

3.6. Cotreatment with LR and 43 ◦C Hyperthermia Synergistically Increases ROS Generation and
MAPK Phosphorylation in AGS Cells

HSPs regulate the intracellular levels of reactive ROS; thus, a decreased expression of
heat shock proteins can increase ROS levels in cancer cells [29]. Accordingly, we examined
the underlying mechanism by which cotreatment with LR and hyperthermia induces
AGS cell death to determine the role of ROS in the proapoptotic effect of the combination
therapy. Flow cytometric analyses (Figure 6A) showed that cotreatment with LR and 43 ◦C
hyperthermia significantly increased ROS levels when compared with LR treatment at 37 ◦C
(panel 3). Next, we pretreated cells with N-acetylcysteine (NAC), a free radical scavenger
used as a ROS inhibitor [33]. NAC pretreatment nullified the effects of LR and hyperthermia
on ROS generation (Figure 6A). Considering that increased ROS levels can activate MAPKs,
which can consequently induce apoptosis [34], we investigated the effect of ROS on MAPK
activation. As shown in Figure 6B, cotreatment with LR boosted the phosphorylation of
MAPKs, including JNK, p38, and ERK, induced by 43 ◦C hyperthermia [35].

Figure 6C shows that NAC pretreatment decreased ROS production in the cotreated
AGS cells. Then, we determined whether a decrease in ROS levels could mitigate the
effects of the cotreatment. As shown in Figure 6D, LR and 43 ◦C cotreatment synergistically
induced apoptosis in AGS cells, whereas NAC pretreatment decreased the population
of apoptotic cells from 28.3% to 21.09%. In line with this, we confirmed that NAC pre-
treatment reversed the expression changes of caspase-3, HSP27, and HSP70 induced by
the cotreatment, indicating that the cotreatment effects were partly dependent on ROS
production and HSP expression.
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Figure 6. Effect of LR and hyperthermia on ROS generation, apoptotic markers, and MAPK path-
way in ROS-inhibited AGS cells. Before being exposed to LR (0 or 120 µg/mL) with or without
hyperthermia at 43 ◦C, AGS cells were pretreated with N-acetylcysteine (NAC, 5 mM) for 1 h.
(A) ROS production was examined using flow cytometry. (B) Western blot was used to determine
the levels of p-JNK, JNK, p-p38, p38, p-ERK, and ERK. (C) Apoptosis profiling was performed using
flow cytometry. (D) Caspase-3, HSP27, and HSP70 protein expressions. (−), absence of NAC or LR;
(+), presence of NAC or LR. * p < 0.05 vs. control group.

4. Discussion

Gastric cancer remains a significant global health threat, particularly in Asian countries,
where the prevalence and mortality rates are alarmingly high [36,37]. Various treatment
methods, including surgery, chemotherapy, and radiation therapy, are available for patients
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with gastric cancer; however, these methods have limitations, such as adverse side effects,
potential for tumor resistance, and patient tolerance [38,39]. Therefore, novel and effective
therapeutic strategies must be developed urgently to overcome these limitations and
improve patient outcomes.

One approach to overcome these limitations is the use of hyperthermia therapy [40].
Cancer hyperthermia therapy involves the use of heat to target and selectively destroy
cancer cells [41,42]. However, cancer hyperthermia therapy has limited efficacy when used
alone because it induces a heat shock response that activates HSFs and HSPs. Such defense
mechanisms against heat stimulation allow unexpected tumor cell survival and promote
tumor resistance to therapy [43].

LR is a natural herb used in traditional medicine owing to its thermogenic effects; it
has been used in the treatment of various gastrointestinal disorders, such as indigestion,
abdominal pain, and bloating [44–47]. Given its historical use and known properties,
incorporating LR into cancer hyperthermia therapy could help overcome the drawbacks
of hyperthermia treatment and enhance its therapeutic efficacy. This study was initiated
with the rationale that LR and hyperthermia cotreatment may synergistically enhance the
anticancer properties of both modalities. We conducted a series of experiments on cancer
cell proliferation and death to verify the effects and underlying mechanisms of action of LR
and hyperthermia.

First, we found through MTT assays, morphological observations, crystal violet stain-
ing, and cell migration assays that cotreatment with LR and 43 ◦C hyperthermia synergisti-
cally inhibited AGS cell proliferation. These results suggest that the combination of LR and
hyperthermia has a potent anticancer effect against AGS cells (Section 3.2).

The mechanisms underlying the synergistic effect induced by cotreatment with LR and
hyperthermia were investigated by examining the expression of various factors associated
with apoptosis, proliferation, metastasis, and angiogenesis. Apoptosis is the main mecha-
nism of programmed cell death [48,49] and is considered one of the most important targets
for anticancer therapy [50,51]. Our results show that cotreatment with LR and 43 ◦C hyper-
thermia induced apoptosis in AGS cells by increasing the expression of activated caspase 3
and decreasing the expression of pro-caspase 8 and 9, as well as antiapoptotic Bcl-2 family
members (Section 3.3). The apoptotic effect of the cotreatment with LR and hyperthermia
may be attributed to cell cycle arrest. Four distinct phases compose the eukaryotic cell
cycle: G1, S (synthesis), G2 (interphase), and M (mitosis/cytokinesis) [41,52]. LR and hy-
perthermia cotreatment significantly promoted annexin V-related apoptosis and cell cycle
arrest in the G2/M phase in AGS cells. These results suggest that the combination therapy
effectively disrupts the cell cycle and promotes programmed cell death (Section 3.4).

Cells can also be exposed to various environmental stressors, such as cellular de-
velopment or disease, temperature change, or mechanical stress [53]. Cells frequently
activate defense mechanisms in response to stress [54,55]. Particularly, heat stress induces
a heat shock response in cells, including cancer cells [56,57]. Thus, cancer cells often gain
resistance to hyperthermia. In the present study, cotreatment with LR suppressed the heat
(43 ◦C hyperthermia)-induced heat shock responses by inhibiting HSF1 phosphorylation
and reducing the expression of HSP27, HSP70, and HSP90 (Section 3.5), which are crucial
for cell survival and stress resistance [58,59].

ROS, a group of highly bioactive molecules, act as key signaling regulators in several
cellular functions [54,55]. Although low to moderate levels of ROS are essential to maintain
cellular homeostasis, excessive ROS can induce cellular stress and damage proteins, DNA,
lipids, and membranes [60,61]. ROS can induce cancer cell death through several pathways.
Thus, ROS is considered as a promising therapeutic target for cancer treatment [62–64]. In
the present study, cotreatment with LR and 43 ◦C hyperthermia synergistically increased
ROS generation and related MAPK phosphorylation in AGS cells, suggesting a potential
molecular mechanism underlying the observed synergistic effects (Section 3.6). This result
was further confirmed by showing that ROS were required for the effects of the cotreatment.
NAC pretreatment abolished the apoptotic effect of LR and 43 ◦C hyperthermia cotreatment
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in AGS cells, demonstrating the crucial role of ROS in mediating the observed anticancer
effects (Section 3.6).

Our study demonstrates that LR enhances the sensitivity of gastric cancer cells to
hyperthermia treatment. This effect can be attributed to the following bioactive compounds
in LR: norisoboldine (O3), boldine (O5), aesculitannin B (O6), norboldine (O10), linder-
alactone (O12), lindenanolide E (O15), and lindenanolide (O16). These compounds exhibit
various biological activities that contribute to their synergistic effects. Norisoboldine (O3)
and boldine (O5) exert anticancer activities by modulating the expression of genes related
to cell cycle progression, apoptosis, and metastasis [65–68]. Aesculitannin B (O6) and
norboldine (O10) exhibit antitumor properties by inducing cell cycle arrest and apoptosis
in cancer cells [69,70]. Linderalactone (O12), lindenanolide E (O15), and lindenanolide
(O16) also exert cytotoxic effects on various cancer cell lines [71–73]. Furthermore, these
phytochemicals may potentiate the effects of hyperthermia by modulating the expression
of HSPs, which play a crucial role in protecting cells from thermal stress. These compounds
can increase the sensitivity of cancer cells to hyperthermia by inhibiting the expression or
activity of HSPs. However, further investigation is warranted to completely elucidate the
hyperthermia-potentiating effects of the components of LR.

Despite these promising results, this study has several limitations, mainly due to its
in vitro nature. Further research is required to confirm these findings in animal models and
human clinical trials. A number of attempts have been made to demonstrate the effect of
hyperthermia in vivo. One of the most easily integrated and convenient methods involves
using magnetic nanoparticles [74]. However, clinical application of nanoparticles is still
questionable, so instead we are seeking a method that resembles the function of clinically
available hyperthermia devices. At the moment, it is difficult to share all the details of
what we are designing, but we are mainly referring to two previous studies: one equipped
with a microwave hyperthermia system [75] and another demonstrating a magnetic field
method [76]. So, to address the gap between our study and clinical applications, we are cur-
rently engaged in collaborative research with engineers to develop a sophisticated animal
experimental model to provide translational evidence. Our approach goes beyond simply
raising the temperature in animal cages; we are planning to attach magnetically responsive
materials to tumor masses, enabling targeted and effective hyperthermia treatment. This
novel methodology forms the cornerstone of our future investigations, aiming to elucidate
the precise molecular mechanisms underlying the observed synergistic effects, and to deter-
mine the optimal dosage and duration of the combined treatment. The anticipated in vivo
studies will not only validate the in vitro findings but will also pave the way for potential
clinical applications, enhancing our understanding of this promising therapeutic strategy.

In conclusion, our study provides evidence that cotreatment with LR and hyperther-
mia exerts a synergistic anticancer effect on AGS cells by inducing apoptosis, promoting
cell cycle arrest, and suppressing heat-induced heat shock responses. Our research en-
deavors to lay the groundwork for the development of groundbreaking and more efficient
therapeutic strategies for patients with gastric cancer, ultimately enhancing their quality
of life and survival rates. Future investigations should focus on validating these results
in vivo, unraveling the molecular pathways underlying the observed effects, and refining
treatment protocols.
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