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Abstract: (1) Background: The latest research illustrates that microglia phenotype is not the binary
‘resting’ and ‘activated’ profiles. Instead, there is wide diversity in microglia states. Similarly, when
testing different stimulation protocols for BV2 microglia, we discovered differences in the response of
the cells in terms of the production of intracellular ROS (iROS), nitric oxide (NO), CD40 expression,
and migratory capacity. (2) Methods: BV2 microglia were treated with single interferon gamma
(IFN-γ) stimulation, LPS/IFN-γ co-stimulation, and priming with IFN-γ followed by stimulation
with LPS for 24 h. The responses of BV2 microglia were then assessed using the H2DCFDA test
for iROS, the Griess assay for NO, immunophenotyping for CD40/CD11b/MHC II, and migration
using a transwell apparatus. (3) Results: Single stimulation with IFN-γ induced NO but not ROS in
BV2 microglia. Co-stimulation with LPS200IFN-γ2.5 induced a higher iROS production (a 9.2-fold
increase) and CD40 expression (28031 ± 8810.2 MFI), compared to priming with primedIFN-γ50LPS100

(a 4.0-fold increase in ROS and 16764 ± 1210.8 MFI of CD40). Co-stimulation also induced cell
migration. On the other hand, priming BV2 microglia (primedIFN-γ50LPS100) resulted in a higher NO
production (64 ± 1.4 µM) compared to LPS200IFN-γ2.5 co-stimulation (44 ± 1.7 µM). Unexpectedly,
priming inhibited BV2 migration. (4) Conclusions: Taken together, the findings from this project reveal
the ability of co-stimulation and priming in stimulating microglia into an inflammatory phenotype,
and the heterogeneity of microglia responses towards different stimulating approaches.

Keywords: microglia; interferon gamma; lipopolysaccharide; reactive oxygen species; nitric
oxide; neuroinflammation

1. Introduction

BV2 microglia are a v-raf/v-myc-immortalised murine cell line [1] commonly used
in in vitro studies of microglia. They can be stimulated into a reactive, inflammatory
phenotype using various stimulators, including lipopolysaccharide (LPS) and interferon
gamma (IFN-γ).

Microglia develop from yolk sac hematopoietic progenitors [2,3] and have important
homeostatic and immune functions within the central nervous system (CNS). In brain
development, microglia regulate the size of the neural precursor pool by inducing neural
precursor death [4] and phagocytosis [5], pruning synapses [6,7], and govern the wiring of
the embryonic [8] and postnatal [9] brain. Infection or tissue injury in the brain triggers
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microglia into a ‘reactive’ phenotype, with microglia expressing reactive oxygen species
(ROS), nitric oxide (NO), and proinflammatory cytokines. Recently studies have revealed
that microglia in the mouse [10] and human [11] brain are in a much diverse cell state than
previously thought. Instead of the dichotomous ‘resting’ and ‘activated’ phenotypes of
microglia, the studies reveal up to nine transcriptionally distinct microglial subtypes that
shift with age and injury states. Differences in microglia reactivity to in vitro stimulation
are also apparent. For instance, ATP induces BV2 microglia migration [12], but not NO (un-
published data). Noting the differences in stimulation profiles will assist with selecting the
ideal stimulant for the purposes of a particular study and, more importantly, to determine
the receptor-induced cell signaling that leads to each reactive phenotype.

Here, we test different microglia stimulation protocols to stimulate BV2 cells into
an inflammatory and potentially neurotoxic phenotype. Our laboratory is developing a
culture model of microglia-induced neuronal damage, and we seek to profile the responses
of BV2 microglia to IFN-γ alone, LPS /IFN-γ co-stimulation, and IFN-γ priming followed
by LPS stimulation. LPS is a component of a Gram-negative bacteria cell wall that activates
microglia into an inflammatory phenotype via toll-like receptor 4 (TLR4)-signaling. IFN-γ
is a cytokine expressed as a consequence of tissue damage. It represents an endogenous
response to tissue damage and activates microglia and other tissue macrophages. Both LPS
and IFN-γ have been used individually [13–16] and in combination [17,18] to stimulate
microglia in vitro and in vivo. The response profiles of BV2 cells to the different stimula-
tion protocols were determined by their iROS and NO production, expression of surface
markers CD40/CD11b/MHC II, as well as the ability to migrate towards the stimulants.
Experiments were performed concurrently with 1000 ng/mL LPS and single doses of IFN-γ
and LPS at the respective concentrations for comparison. We intend to develop a culture
model of microglia-mediated neurotoxicity, and the iROS and NO parameters may be
indicative of subsequent neurotoxic effects of microglial inflammatory responses.

2. Materials and Methods
2.1. BV2 Microglia Cell Culture

The BV2 microglia cell line was a generous gift from Prof. Dr. Johnson Stanslas, Univer-
siti Putra Malaysia. The cells were cultured in Dulbecco modified Eagle medium with 5%
heat-inactivated foetal bovine serum, 100 U/mL penicillin, and 100 µg/mL streptomycin,
1.25 µg/mL amphotericin B, 0.01 µg/mL gentamycin, 1× non-essential amino acid (all
from Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA), 6.25 µg/mL insulin, and
1.5 g/L sodium bicarbonate (both from Sigma-Aldrich, St. Louis, MO, USA). Cultures were
maintained at 37 ◦C with 95% humidified air and 5% CO2. Cells were trypsinised with
0.25% trypsin-EDTA (Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) for 5 min
at 37 ◦C. Cell viability was determined using the trypan blue exclusion assay.

2.2. BV2 Microglia Stimulation Protocols
2.2.1. Single Stimulation with IFN-γ

BV2 microglia cells were seeded at 6.25× 104 cells/cm2 in 96-well plates and incubated
at 37 ◦C with 95% humidified air and 5% CO2 overnight for cell attachment. The next
day, supernatant was removed and added with media containing 2.5, 5, or 10 ng/mL of
recombinant IFN-γ (R&D system Inc., Minneapolis, MN, USA; Cat. No.: 485-MI) and
incubated for 24, 48, and 72 h.

2.2.2. LPS/IFN-γ Co-Stimulation

Figure 1 is a schematic representation of the co-stimulation and priming protocol for
the BV2 cultures.
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Figure 1. Schematic representation of co-stimulation and priming protocols for BV2 cultures. Diagram
outlines the timing of the cell culture and stimulation, duration, and time of analyses.

Co-stimulation was performed by simultaneously adding LPS (Sigma-Aldrich,
St. Louis, MO, USA; Cat. No.: L8274) and recombinant IFN-γ to BV2 cells. Three different
co-stimulation concentrations were used, namely 10 ng/mL LPS and 10 ng/mL IFN-γ
(LPS10IFN-γ10), 100 ng/mL LPS and 5 ng/mL IFN-γ (LPS100IFN-γ5), and 200 ng/mL LPS
and 2.5 ng/mL IFN-γ (LPS200IFN-γ2.5). Single stimulation with 10, 100, and 200 ng/mL
LPS or 2.5, 5, and 10 ng/mL IFN-γ were also tested to determine the augmentation of ROS
or NO production after adding both stimulants. LPS 1000 ng/mL was used as a positive
control.

BV2 cells were seeded at 6.25 × 104/cm2 in a 96-well plate and incubated at 37 ◦C
with 95% humidified air and 5% CO2 overnight. The supernatant was removed, and
media containing LPS (10, 100, 200, 1000 ng/mL), IFN-γ (2.5, 5, 10 ng/mL), or LPS/IFN-γ
(LPS10IFN-γ10, LPS100IFN-γ5, and LPS200IFN-γ2.5) were added for 24 h.

2.2.3. IFN-γ Priming Followed by Stimulation with LPS

Priming was performed by adding DMEM containing IFN-γ into BV2 cells for 24 h,
followed by changing the supernatant with media containing LPS for another 24 h. Cells
stimulated with LPS alone were included as the control.

BV2 cells were seeded at 3.125 × 104 cells/cm2 in a 96-well plate and incubated at
37 ◦C with 95% humidified air and 5% CO2 overnight. For unstimulated cells, a media
change was performed twice, at the first and second 24 h. For cells stimulated with LPS
alone, spent media were changed with fresh media for the first 24 h, followed by media
containing respective doses of LPS for the second 24 h. For priming, cells were added with
media containing 10 ng/mL IFN-γ (primedIFN-γ10) or 50 ng/mL IFN-γ (primedIFN-γ50) for
the first 24 h. The supernatant was then removed, and media containing 10 ng/mL LPS
(LPS10), 100 ng/mL LPS (LPS100), 200 ng/mL LPS (LPS200), or 1000 ng/mL LPS (LPS1000)
were added for the subsequent 24 h.

2.3. Intracellular ROS Measurement

Intracellular ROS was detected using 2′,7′-dichlorodihydrofluorescein diacetate assay
(H2DCFDA; Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA, USA; Cat. No.: D399).
Briefly, stimulated BV2 cells were washed twice with 1× PBS. Cells were incubated with
20 µM of H2DCFDA reagent in 100 µL of phenol red-free DMEM for 1 h, at 37 ◦C with
95% humidified air and 5% CO2. Then, the supernatant was discarded, and cells were
washed twice with 1× PBS, followed by an addition of 100 µL phenol red-free DMEM.
Fluorescence was quantitated using a Hybrid multi-mode microplate reader (Synergy H1,
BioTek, Winooski, VT, USA), at ex/em of 493 nm/520 nm. Results are reported in Relative
Fluorescence Units (RFUs). RFUs’ values of all wells were deducted with RFUs’ values of
phenol red-free DMEM, which serves as the background reading.
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2.4. NO Measurement

NO was detected in the supernatant of BV2 cells using the Griess assay. Fifty mi-
crolitres of the supernatant from BV2 cells were transferred into a 96-well plate in triplicate,
and the same volume of the Griess reagent was added (both 1% sulphanilamide and 0.1%
NED dissolved in 2.5% phosphoric acid) (all from Sigma-Aldrich, St. Louis, MO, USA).
The plate was incubated at room temperature for 10 min, and absorbance was read at
530 nm with a microplate reader. Nitrite concentration was calculated using the formula
generated from a standard curve of two-fold serial diluted sodium nitrite (NaNO2; 100, 50,
25, 12.5, 6.25, 3.125, 1.5625, and 0 µM). Absorbance values of all wells were deducted with
the absorbance of 0 µM of NaNO2 to eliminate the background reading. The results are
displayed as concentration of NO2

− in µM.

2.5. Immunophenotyping

BV2 cells were immunophenotyped against three surface markers, which were CD40
(Cat. No.: 558695), CD11b (Cat. No.: 553310), and MHC II (Cat. No.: 554929) (all from BD
Biosciences, Franklin Lakes, NJ, USA). BV2 cells were seeded at 6.25 × 104 cells/cm2 and
3.125 × 104 cells/cm2 in a 6-well plate for co-stimulation and priming, respectively, followed
by incubating the cells at 37 ◦C with 95% humidified air and 5% CO2 overnight. Cells were
stimulated with LPS10IFN-γ10, LPS200IFN-γ2.5, primedIFN-γ10LPS100, or primedIFN-γ50LPS100
as described in Sections 2.2.2 and 2.2.3. Following stimulation, cells were trypsinised using
0.25% trypsin-EDTA for 5 min at 37 ◦C, and the pellet was resuspended in 0.2% BSA in
1× PBS. Cell viability was determined using trypan blue exclusion assay.

Cells were distributed at a density of 5.0 × 105 cells/tube and washed with 1 mL
of 0.2% BSA in 1× PBS twice, followed by incubating with 5 µL of each antibody in
100 µL of 0.2% BSA in 1× PBS, at 4 ◦C for 30 min. Cells were again washed twice and
resuspended with 500 µL of 0.2% BSA in 1× PBS. Ten thousand gated events were recorded.
For each antibody, gating was determined based on appropriate isotype-stained controls.
An unstained sample was prepared to reveal cellular autofluorescence to exclude it as the
background. Data were analysed using BD FACSDiva™ Software version 8.0.

2.6. Transwell Migration Assay

The transwell migration assay was carried out with polycarbonate cell culture inserts
with a pore size of 8 µm (Falcon; Corning Inc., Corning, NY, USA; Cat. No.: 353097) in
a 24-well plate. For LPS/IFN-γ co-stimulation, BV2 cells were seeded (3.33 × 105/cm2)
in transwell inserts in 500 µL of serum-free media. The 24-well plate was incubated at
37 ◦C with 5% carbon dioxide for 30 min for cell adherence. Then, 500 µL of a stimulant
containing LPS10IFN-γ10 or LPS200IFN-γ2.5 in serum-free media was added to the 24-well
plate.

For priming, BV2 cells were seeded (3.125 × 104/cm2) in a 6-well plate and incubated
at 37 ◦C with 95% humidified air and 5% CO2 overnight. The supernatant was then
removed, and cells were primed with media containing 10 or 50 ng/mL of IFN-γ for 24 h.
IFN-γ primed cells were trypsinised and seeded at 3.33 × 105/cm2 in the transwell inserts
in 500 µL of serum-free media. The 24-well plate was incubated at 37 ◦C with 5% carbon
dioxide for 30 min for cell adherence. A stimulant containing 100 ng/mL LPS in serum-free
media was added to the 24-well plate.

Cells were incubated in the incubator for 12 h to allow the cells to migrate across
the polycarbonate cell culture insert. Then, the supernatant in the transwell insert was
discarded, and the transwell inserts were rinsed twice with 1× PBS. The transwell inserts
were fixed using 2% paraformaldehyde (PFA) for 1 h, and cells were permeabilised using
0.01% Triton-X for another 1 h, followed by staining the cells using crystal violet (Sigma-
Aldrich, St. Louis, MO, USA; Cat. No.: 111885) for 30 min. The transwell inserts were
rinsed twice in 1× PBS between the fixation, permeabilization, and staining steps. Once
the transwell inserts were free from excess stain, unmigrated cells were swabbed carefully
using a cotton bud dipped into 1× PBS. The membranes of the transwell inserts were cut



Biomedicines 2023, 11, 2648 5 of 14

with a scalpel and mounted on a microscope slide with DPX. Migrated cells were then
viewed under the microscope and representative images were taken. Semi-quantitative
scoring was performed blinded by two investigators to estimate the extent of migration.

2.7. Statistical Analysis

Statistical analysis was carried out in GraphPad Prism 8.0.1 (San Diego, CA, USA).
Significance was assessed using one-way analysis of variance (ANOVA) followed by the
Tukey’s post hoc test.

3. Results
3.1. LPS/IFN-γ Co-Stimulation

A single dose of IFN-γ stimulated NO production by BV2 microglia (Figure S1) but
did not increase perceivable amounts of iROS (Figure S2). LPS (1000 ng/mL) induced
6606 ± 244.1 RFU iROS at 24 h, which then decreased at 48 h to 2689 ± 45.2 RFU and
1503 ± 130.5 RFU at 72 h (Figure S2). The 24 h timepoint was thereafter chosen for future
iROS analysis.

LPS/IFN-γ co-stimulation induced high amounts of iROS in BV2 cells compared
to unstimulated cells (Figure 2A; p < 0.0001). The highest iROS levels corresponded
with LPS200IFN-γ2.5 with 7277 ± 3104.3 RFUs, a 9.2-fold increase in iROS compared to
unstimulated cells. All LPS/IFN-γ co-stimulation concentrations induced greater iROS
production compared to single stimulation with corresponding doses of LPS or IFN-γ,
although not all were statistically different (Figure 2A). For instance, cells stimulated
with LPS200 induced iROS levels of 4082 ± 615.1 RFUs and IFN-γ2.5 alone only induced
1288 ± 388.9 RFUs (p < 0.01).
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1000 ng/mL), IFN-γ (2.5, 5, 10 ng/mL), or LPS/IFN-γ (LPS10IFN-γ10, LPS100IFN-γ5, and LPS200IFN-
γ2.5), for 24 h. (A) iROS was determined using the H2DCFDA assay, and (B) NO was determined
using the Griess assay. Results are expressed as mean ± SD of three independent experiments
with at least three replicates. * p < 0.0001 compared to unstimulated cells; # p < 0.001 compared to
1000 ng/mL LPS-stimulated cells; one-way ANOVA with Tukey’s post hoc test.

LPS/IFN-γ co-stimulation also induced NO production in BV2 cells (Figure 2B;
p < 0.0001). LPS10IFN-γ10 induced the highest NO of 49 ± 3.7 µM, higher compared
to 1000 ng/mL LPS (40 ± 1.8 µM; p < 0.001).

The co-stimulation protocols that induced the highest iROS and NO were then fur-
ther characterised by examining phenotypic markers of microglia. Triple-staining im-
munophenotyping with CD40, CD11b, and MHC II markers was performed. Gating strat-
egy and isotype controls used for immunophenotyping are demonstrated and described in
(Figure S3). All cells regardless of stimulation had more than95% of the cell population pos-
itive for CD40 and CD11b. However, less than 5% of cells expressed MHC II in all groups
(Figure 3A). LPS200IFN-γ2.5 induced the highest expression of CD40 (28031 ± 8810.2 MFI),
compared to 1000 ng/mL LPS (12557 ± 2440.8 MFI) (Figure 3B; p < 0.0001). However,
changes in MFI of CD11b and MHC II remained unremarkable.
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BV2 cells (6.25 × 104 cells/cm2) were seeded in a 6-well plate and stimulated with 1000 ng/mL
LPS, LPS10IFN-γ10, and LPS200IFN-γ2.5 for 24 h. Cells positive for CD40, CD11b, and MHC II were
determined by flow cytometry. (A) Numbers in the right quadrant within each dot plot indicate the
percentage of BV2 cells positive for each marker. Dot plots are representative of three independent
experiments. (B) Median fluorescence intensity (MFI) of CD40, CD11b, and MHC II of BV2 microglia.
Results are expressed as mean ± SD of three independent experiments. * p < 0.0001 compared to
unstimulated cells. # p < 0.0001 compared to 1000 ng/mL LPS-stimulated cells; one-way ANOVA
with Tukey’s post hoc test.

The two co-stimulation doses also caused BV2 cell migration, with LPS200IFN-γ2.5
inducing the most migration (Figure 4).
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a 24-well plate containing LPS10IFN-γ10 or LPS200IFN-γ2.5. For priming, BV2 cells (3.125 × 104/cm2) 
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Figure 4. BV2 microglia migration following LPS/IFN-γ co-stimulation and primedIFN-γ/LPS
stimulation. For co-stimulation, BV2 cells (3.33 × 105/cm2) were seeded in transwell inserts
and placed in a 24-well plate containing LPS10IFN-γ10 or LPS200IFN-γ2.5. For priming, BV2 cells
(3.125 × 104/cm2) were seeded in a 6-well plate and incubated overnight. BV2 cells were then
primed with IFN-γ10 or IFN-γ50 for 24 h. IFN-γ primed cells were trypsinised and seeded at
3.33 × 105/cm2 in transwell inserts and placed in a 24-well plate containing 100 ng/mL LPS. Migra-
tion was assessed at 12 h. (A) Representative fields of migrated cells for each stimulation protocol.
(B) Semi-quantitative scores of BV2 migration from two independent experiments. Semi-quantitative
scoring of migration indicated with + (low number of migrated cells), ++ (moderate number of
migrated cells), +++ (high number migrated cells), ++++ (very high number of migrated cells),
− (negligible number of migrated cells).

3.2. IFN-γ Priming Followed by LPS Stimulation

All primed protocols induced iROS in BV2 cells (Figure 5A; p < 0.0001), with a ~4-fold
increase compared to unstimulated cells. primedIFN-γ10LPS100 induced the highest iROS
levels of 9034 ± 882.6 RFUs. Interestingly, priming BV2 microglia with IFN-γ prior to LPS
stimulation did not induce a remarkable iROS increase compared to cells without IFN-γ
priming.

Priming microglia with IFN-γ did, however, induce higher NO compared to cells
without IFN-γ priming (p < 0.0001). The highest increment was observed in primedIFN-
γ50LPS10 as compared to LPS10, where NO increased by 84.4% (from 33 ± 3.2 µM to
61 ± 2.28 µM). Also, the highest NO concentration was induced with primedIFN-γ50LPS100,
with NO levels of 64 ± 1.4 µM, compared to unstimulated cells (2 ± 0.9 µM) (Figure 5B).

These priming concentrations were immunophenotyped against CD40/CD11b/MHC
II markers. The gating strategy used for immunophenotyping is demonstrated in
(Figure S3). More than 90% of primedIFN-γ/LPS cells expressed CD40 and CD11b, similar
to unstimulated and LPS-stimulated cells (Figure 6A). However, less than 5% of primedIFN-
γ/LPS cells expressed MHC II. All primedIFN-γ/LPS were able to induce CD40 expression in
BV2 cells (Figure 6A; p < 0.0001). primedIFN-γ50LPS100 induced the highest CD40 expression
with 16764 ± 1210.8 MFI, compared to 1000 ng/mL LPS with 9288 ± 4024.2 MFI (Figure 6B;
p < 0.0001). Meanwhile, changes in MFI of CD11b and MHC II remained unremarkable.
Interestingly, priming BV2 cells appeared to inhibit their migration (Figure 4).
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Figure 5. Intracellular ROS and NO production of primedIFN-γ/LPS in BV2 microglia. BV2 cells
(3.125 × 104 cells/cm2) were seeded in a 96-well plate and primed with IFN-γ10 or IFN-γ50 for 24 h.
Supernatant was removed, and cells were subsequently stimulated with LPS10, LPS100, LPS200, and
LPS1000 for another 24 h. Cells were also stimulated with corresponding doses of LPS without IFN-γ
priming. (A) iROS was determined using the H2DCFDA assay, and (B) NO was determined using
the Griess assay. Results are expressed as mean ± SD of three independent experiments with at least
three replicates. * p < 0.0001 compared to unstimulated cells. # p < 0.001 compared to 1000 ng/mL
LPS-stimulated cells; one-way ANOVA with Tukey’s post hoc test.
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Figure 6. CD40, CD11b, and MHC II expression of primedIFN-γ/LPS of BV2 microglia. BV2 cells
(3.125 × 104 cells/cm2) were seeded in a 6-well plate and primed with IFN-γ10 or IFN-γ50 for 24 h.
The supernatant was removed, and cells were subsequently stimulated with LPS100 for another 24 h.
Cells positive for CD40, CD11b, and MHC II were determined by flow cytometry. (A) Numbers in
the right quadrant within each dot plot indicate the percentage of BV2 cells positive for each marker.
Dot plots are representative of three independent experiments. (B) Median fluorescence intensity
(MFI) of CD40, CD11b, and MHC II of BV2 microglia. Results are expressed as mean ± SD of three
independent experiments. * p < 0.0001 compared to unstimulated cells. # p < 0.0001 compared to
1000 ng/mL LPS-stimulated cells; one-way ANOVA with Tukey’s post hoc test.
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To summarise, co-stimulation induced higher iROS and CD40 expression than priming.
Of the two co-stimulation concentrations, LPS200IFN-γ2.5 induced the highest iROS increase
of 9.2-fold (p < 0.001). Meanwhile, primedIFN-γ50LPS100 induced the highest NO levels in
BV2 cells. However, primedIFN-γ inhibits migration of BV2 cells towards LPS (Table 1).

Table 1. Summary of findings of IFN-γ single stimulation, LPS/IFN-γ co-stimulation, and primedIFN-
γ /LPS priming protocols on iROS and NO production, CD40 expression and migration in BV2
cells. Difference between the highest induction value (grey column) was compared with the other
co-stimulation and priming values and tested for significance.

Unstimulated LPS 1000 ng/mL IFN-γ 2.5
ng/mL

IFN-γ 5
ng/mL

IFN-γ 10
ng/mL LPS10IFN-γ10 LPS200IFN-γ2.5

primedIFN-
γ10LPS100

primedIFN-
γ50LPS100

iROS (fold
increase) 1 3–6 1.1 0.7 1.4 8.8 9.2 * 4.3 4.0

NO (µM) 2 40–41 10 ± 5.9 18 ± 7.9 25 ± 4.2 49 ± 3.7 44 ± 1.7 52 ± 4.8 64 ± 1.4 **
CD40 (MFI) 800–1000 9000–13,000 N/A N/A N/A 22,418 ± 8846.6 28,031 ± 8810.2 15,501 ± 1274.9 16,764 ± 1210.8
Migration + ++ N/A N/A N/A ++ +++ − −

Columns shaded with grey indicate the highest induction for each of the measured parameters across all stimu-
lation protocols. Semi-quantitative scoring of migration was indicated with + (low number of migrated cells),
++ (moderate number of migrated cells), +++ (high number migrated cells), − (negligible number of migrated
cells). * p < 0.0001 compared to primedIFN-γ10LPS100, primedIFN-γ50LPS100. ** p < 0.0001 compared to LPS10IFN-γ10,
LPS200IFN-γ2.5, primedIFN-γ10LPS100.

4. Discussion

Three different protocols for stimulating BV2 microglia using IFN-γ and LPS, namely
single IFN-γ stimulation, LPS/IFN-γ co-stimulation, and priming with IFN-γ followed
by stimulation with LPS, were investigated. A single dose of IFN-γ (2.5, 5 or 10 ng/mL)
induced NO production in our BV2 cultures but failed to induce intracellular ROS (iROS).
Spencer and colleagues also reported a lack of iROS production with 10 and 50 ng/mL
IFN-γ [19]. It appears that IFN-γ receptor signaling alone appears unremarkable for iROS
production in BV2 microglia, although it induces NO production.

Although LPS can induce iROS expression, the addition of IFN-γ (in the co-stimulation
protocol) boosts iROS levels. Adding 10 ng/mL IFN-γ with 10 ng/mL LPS (LPS10IFN-γ10)
boosted BV2 microglia production of iROS by 3.2-fold, whilst 2.5 ng/mL IFN-γ added
with 200 ng/mL LPS increased ROS levels by 1.8-fold compared to LPS alone at the
corresponding doses. Priming microglia with IFN-γ, however, did not augment LPS-
induced iROS levels (a 1.1- to 1.4-fold change). This contradicts Spencer et al. [19], who
primed BV2 microglia with IFN-γ, followed by stimulation with ATP. They demonstrated
that 10 ng/mL and 50 ng/mL of IFN-γ increased iROS production in ATP-stimulated
BV2 cells by 3.2-fold and 9.3-fold, respectively. However, it is noteworthy that ATP alone
did not induce iROS [19]. It appears that LPS, but not ATP, is a good stimulator of iROS
production.Priming BV2 microglia with IFN-γ led to significantly higher NO amounts
in LPS-stimulated cells compared to cells stimulated with LPS alone. The priming effect
of IFN-γ on NO has been described [20,21]. Pre-treatment of murine macrophage RAW
264.7 cells with IFN-γ augmented LPS-induced NF-κB activation and was accompanied
by increased nitrite production. As described above, the same augmentation does not
seem to occur for iROS expression indicating that the IFN-γ priming effect may not occur
for all LPS-induced responses [22] and that the priming effect varies depending on the
secondary stimuli. Interestingly for co-stimulation, the highest NO production was induced
by LPS10IFN-γ10, whilst the highest iROS was induced by LPS200 IFN-γ2.5, demonstrating
that the concentration that yielded the highest iROS did not necessarily cause the highest
NO production, and vice versa. Similarly, primedIFN-γ10LPS100 induced the highest ROS,
and primedIFN-γ50LPS100 induced the highest NO.

Our aim is to stimulate microglia into an inflammatory, neurotoxic phenotype for
developing a culture model of microglia-induced neuronal damage. Interestingly, Papa-
georgiou and colleagues demonstrated on hippocampal slice cultures that, although chronic
activation with LPS renders the microglia reactive, neuronal damage is caused only in the
presence of the IFN-γ receptor signaling [23]. Importantly, they go on to demonstrate that
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NO is responsible for neuron damage. LPS is a component of the cell wall of Gram-negative
bacteria and represents an exogenous, infectious agent. It induces reactive phenotypes of
microglia through TLR4 signaling and activation of the NFκB inflammatory pathway [24].
IFN-γ, on the other hand, is an inflammatory cytokine and part of the endogenous tissue
response to inflammation. There are also aging-related increases in IFN-γ. IFN-γ binds
to the IFN-γ receptor present on microglia to activate multiple effector genes, including
inducible nitric oxide synthase (iNOS), and CD40 through the JAK/STAT pathway [25].
LPS and IFN-γ synergistically up-regulate proteins of the TLR4 signaling pathway, namely
CD14, TLR4, MD-2, and MyD88 expression [24]. Therefore, when both IFN-γ and LPS
signaling is induced, for instance, in our LPS/IFN-g co-stimulation protocol, it causes
amplification of STAT1 activation. Thus, co-stimulation involves up-regulation of both
NF-κB and STAT1.

In our study, primedIFN-γ50LPS100 induced the highest NO levels across all stimulation
protocols tested. All other tested parameters, namely iROS, CD40 expression, and migra-
tion, were highest with LPS200IFN-γ2.5 co-stimulation. For priming, namely when IFN-g
administered prior LPS stimulation, IFN-γ may act by upregulating CD14, increasing its
sensitivity towards secondary stimulus, and augmenting NF-κB activation. Unexpectedly,
priming BV2 microglia inhibited BV2 cells migration towards LPS. Interestingly, migration
of BV2 cells is enhanced when IFN-γ is added simultaneously with LPS. IFN-γ, therefore,
can have opposing effects on cell migration depending on the stimulation protocol. The
literature demonstrates several different effects of priming with IFN-γ on migration. IFN-
γ-primed macrophages have enhanced migration towards chemokine CCL2/MCP-1 [26],
although it had negligible effect on migration towards adenosine diphosphate (ADP) [27].
Rat microglia primed with IFN-γ decreased migration of microglia in response to zymosan-
activated serum [28]. Additionally, IFN-γ priming drastically suppressed CCL2-induced
primary human monocyte migration. Notably, inhibition of migration increased with the
IFN-γ pre-incubation duration [29].

5. Conclusions

The activation state of microglia varies depending on stimulation protocols. LPS/IFN-
γ co-stimulation induced higher ROS production, CD40 expression, and migration com-
pared to IFN-γ-priming of LPS-stimulated BV2 cells. However, priming resulted in a higher
NO production compared to co-stimulation, and migration was inhibited in IFN-γ-primed
BV2 microglia cells.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines11102648/s1, Figure S1: Single-dose IFN-γ (2.5, 5, 25,
50, 100 ng/mL) stimulation and NO production in BV2 microglia; Figure S2: IFN-γ does not stim-
ulate substantial amounts of intracellular ROS; Figure S3: Isotype control and gating strategy for
immunophenotyping analysis of BV2 cells.
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