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Abstract: Atrial fibrillation (AF) is a prevalent cardiac arrhythmia worldwide and is characterized by
a high risk of thromboembolism, ischemic stroke, and fatality. The precise molecular mechanisms
of AF pathogenesis remain unclear. The purpose of this study was to use bioinformatics tools to
identify novel key genes in AF, provide deeper insights into the molecular pathogenesis of AF,
and uncover potential therapeutic targets. Four publicly available raw RNA-Seq datasets obtained
through the ENA Browser, as well as proteomic analysis results, both derived from atrial tissues,
were used in this analysis. Differential gene expression analysis was performed and cross-validated
with proteomics results to identify common genes/proteins between them. A functional enrichment
pathway analysis was performed. Cross-validation analysis revealed five differentially expressed
genes, namely FGL2, IGFBP5, NNMT, PLA2G2A, and TNC, in patients with AF compared with those
with sinus rhythm (SR). These genes play crucial roles in various cardiovascular functions and may be
part of the molecular signature of AF. Furthermore, functional enrichment analysis revealed several
pathways related to the extracellular matrix, inflammation, and structural remodeling. This study
highlighted five key genes that constitute promising candidates for further experimental exploration
as biomarkers as well as therapeutic targets for AF.

Keywords: atrial fibrillation; bioinformatics; fibrosis; atrial remodeling; transcriptomics; proteomics

1. Introduction

Among cardiac arrhythmias, atrial fibrillation (AF) is the most common type world-
wide, and its pathophysiology is not yet fully understood. It consists of a significant burden
on healthcare systems, and it is considered a “growing epidemic” [1,2] since, nowadays,
more than 37 million people worldwide suffer from it, and this number is projected to
grow in the next few decades [3,4]. The incidence of AF increases with age, and AF is also
the most frequent cause of ischemic stroke incidents in the elderly [5]. The risk factors for
AF include comorbidities such as hypertension, congestive heart failure, coronary artery
disease, valvular heart disease, and diabetes mellitus. These conditions may induce AF
by promoting atrial pressure and dilation [6,7]. AF contributes to cardiac morbidity and
mortality since its major complications are thrombosis and thromboembolism, which are
often life-threatening [8,9].

Despite its prevalence, the therapeutic arsenal of clinicians to treat AF is limited due
to inadequate knowledge of its pathophysiological mechanisms, so to date, there is still no
effective treatment to improve the prognosis of AF patients [10–12]. To date, AF manage-
ment is based on symptom alleviation with medications, such as direct oral anticoagulants
(DOACs), which are used as the cornerstone treatment for stroke prevention in AF. They
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offer a prominent therapeutic strategy but also exhibit a risk of serious adverse bleeding
complications [13]. Other treatments, such as amiodarone and β-blockers, are also used in
AF management for rate and rhythm control, but with limited efficacy and several adverse
reactions and contradictions [14,15]. Hence, understanding the molecular causes of AF
would be beneficial for its effective prevention and treatment, not just alleviating symptoms.

AF is a progressive disease because it usually manifests as paroxysmal events that
progress into long-term morbidity, leading to chronic, persistent, and subsequently perma-
nent AF [16]. This progression has been linked to changes in the structure and function of
the atria due to extensive structural, contractile, and electrical remodeling, rendering the
arrhythmia constant and more long-lasting [16–18]. However, the mechanisms and factors
that govern AF progression are far from clear.

Bioinformatics in cardiovascular research have helped uncover the molecular mecha-
nisms of heart disease and reveal new pharmacological targets [19–21]. The role of atrial
remodeling in AF has already raised scientific awareness. Dysregulation of molecular path-
ways has been proposed to cause the progression of atrial remodeling and, subsequently,
AF [22]. Prior studies have highlighted certain genes involved in the development of atrial
remodeling, such as ion channel genes [9,23], signal transduction molecules [24], as well as
genes of the atrial extracellular matrix compartment [25]. Thus, atrial remodeling stands as
a potential therapeutic target, but its exact mechanisms have yet to be explored [26].

Despite the progress in identifying the components of the pathophysiological mech-
anisms of AF, there is further new knowledge to be gained. Herein, based on publicly
available transcriptomic and proteomic data, we explored samples from the left atrial ap-
pendages (LAA) and right atrial appendages (RAA) cardiac tissue of patients with AF and
controls (SR, sinus rhythm). With this in silico approach, we aimed to detect the key genes
in AF, elucidate its molecular pathophysiology, and contribute to precision medicine by
aiding in AF diagnosis, subtyping, and enhancing our understanding of AF mechanisms.

2. Materials and Methods
2.1. Data Source
2.1.1. RNA-SEQ Datasets Retrieval

To retrieve publicly available RNA-Seq datasets, we searched for the keyword “atrial
fibrillation” in the European Nucleotide Archive (ENA Browser; https://www.ebi.ac.uk/
ena/browser/home (accessed on 10 January 2023)) [27]. The option “Study” was used
as a filter, while only studies that included human samples were selected. Similarly, for
statistical significance, studies that included at least 3 patients with persistent or permanent
AF and 3 controls were preferred. The post-operational AF datasets were excluded from
the analysis. From the dataset PRJNA531935 only samples derived from persistent AF
patients were included in the study. From PRJEB42485 only RAA samples from sustained
AF and non-diseased patients were used. Furthermore, datasets containing only samples
from the LAA and/or RAA were chosen, which were obtained from patients undergoing
open-heart surgeries.

After screening, the datasets PRJNA526687, PRJNA531935, PRJNA667522, and PR-
JEB42485 were selected. A total of 24 patients (13 with persistent AF, 5 with permanent
AF, and 6 with sustained AF) and 25 controls (SR) were included in our analyses. All raw
RNA-Seq data were generated using Illumina sequencing platforms. The demographics
and characteristics of the RNA-seq datasets are presented in Table 1.

https://www.ebi.ac.uk/ena/browser/home
https://www.ebi.ac.uk/ena/browser/home
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Table 1. RNA-SEQ Dataset demographics and characteristics.

Dataset Samples Age (Years) Sex M/F Country Tissue Type Platform Reference

PRJNA526687
5 Permanent AF 73.6 ± 5.12 5/0 United

Kingdom
Paired LAA

and RAA
GPL18573 [28]5 SR 62.4 ± 6.87 5/0

PRJNA531935
3 Persistent AF 57 (51–64) 2/1

China LAA GPL20795 [29]3 SR 39 (38–42) 2/1

PRJNA667522
10 Persistent AF 53 ± 8 5/5

China LAA GPL16791 [30]10 SR 55 ± 8 6/4

PRJEB42485
6 Sustained AF 67.5 ± 1.7 6/0 Germany RAA GPL20301 [31]7 SR 55.8 ± 8.3 4/3

2.1.2. Proteomics Data Retrieval

Differential protein expression analysis results were retrieved from the study by Liu
et al., as the raw data were not provided [32]. The study included 18 LAA samples from
patients with mitral stenosis undergoing cardiac surgery, 9 with persistent AF, and 9 with
SR. The patient characteristics are presented in Table 2. In each clinical condition, three
samples that had been stained were mixed in a pooled sample (pooled sample). Proteomic
analysis was performed using high-performance liquid chromatography–tandem mass
spectrometry (HPLC–MS/MS), and the results were analyzed using MaxQuant software
v2.4.4.0.

Table 2. Proteomic data, demographics, and characteristics.

Samples Age (Years) Sex M/F Country Tissue Type Platform Reference

9 Persistent AF 55.5 ± 9.0 4/5
China LAA

Agilent 300Extend
Q/ExactiveTM Plus (Thermo) [32]9 SR 50.5 ± 6.5 5/4

2.2. Data Processing
2.2.1. Identification of Differential Expression Genes

Differential gene expression analysis was performed via RaNA-Seq (v.1.0, Salamanca,
Spain) [33], an open bioinformatics cloud tool for RNA-Seq data, in order to detect differen-
tially expressed genes (DEGs). The ENA Study Accession numbers were used as inputs to
RaNA-Seq, which then processed the raw sequences for quality control and quantification.
Differential expression analysis of the RNA-Seq datasets was performed using the DESeq2
algorithm on the RaNA-Seq platform. Thresholds of absolute Fold Change (|FC|) ≥ 1.5
and p-value < 0.05 were used. All samples were used, both RAA and LAA.

2.2.2. Selection of Differential Expression Proteins

The analysis of differential protein expression was performed by Liu and his group in
order to identify the differentially expressed proteins (DEPs). They reported that Pearson’s
correlation analysis showed good reproducibility between samples, while the mass accuracy
of the AF data met the requirement, and the peptide length distribution agreed with the
properties of the tryptic peptides. The Benjamini–Hochberg method was used to calculate
the False Discovery Rate (FDR). Proteins considered important and selected for our study
had thresholds of FDR < 0.1 and |FC| values ≥ 2.

2.2.3. Defining the AF Molecular Background

The differentially expressed genes and proteins (DEGs and DEPs) were used to gener-
ate a Venn diagram from the Molbiotools.com tools [34]. The intersection shared between
DEGs and DEPs constitutes the molecular signature of AF. The results of this join were
used for subsequent analyses.



Biomedicines 2023, 11, 2632 4 of 14

2.2.4. Functional Enrichment Analysis

Functional enrichment analysis of the molecular signature of AF was performed using
NetworkAnalyst 3.0 (https://www.networkanalyst.ca/ (accessed on 1 March 2023)) [35].
An enriched protein–protein interaction network (PPI) was created and visualized. Using
the official acronyms of the genes defined in the molecular signature of AF as gene input,
a PPI network was created by selecting the STRING Interactome database to retrieve
interacting genes/proteins, while a confidence score cut-off > 400 and the requirement of
experimental evidence were also selected [36].

2.2.5. Pathway Enrichment Analysis

Pathway enrichment analysis of the five genes was performed using the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) database and presented using NetworkAnalyst
3.0. Only pathways with a significance value < 0.05 are presented. Using the ExpressAn-
alyst web tool (https://www.expressanalyst.ca/ (accessed on 1 March 2023)), the same
analysis was performed by selecting Gene Ontology (GO) database to visualize the data
from Biological Processes, and Cellular Components.

The methodological approach that was followed is summarized in Figure 1.
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Figure 1. Illustration of methodology steps used in this study. The logos of the platforms used in
each step are shown in the figure.

3. Results
3.1. Differential Gene Expression Analysis

Using public transcriptional profiles of atrial tissues derived from RNA-Seq experi-
ments, DEGs were identified among the four datasets. A total of 569 genes were found to
be differentially expressed with an FC > 1.5 and a p-value < 0.05. (Supplementary Materials
File S1).

3.2. Differential Protein Expression Analysis

The proteomic profile of atrial tissues derived from mass spectrophotometry experi-
ments revealed 59 DEPs. The selection of DEPs was based on FC > 2 and p-value < 0.05
(Supplementary Materials File S1).

https://www.networkanalyst.ca/
https://www.expressanalyst.ca/
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3.3. Defining the Molecular Background of AF

The intersection of DEGs and DEPs revealed five differentially regulated genes
in AF patients compared to patients with normal heart rhythm. The five genes are
FGL2 (fibrinogen-like protein 2), IGFBP5 (insulin-like growth factor-binding protein 5),
NNMT (nicotinamide N-methyltransferase), PLA2G2A (phospholipase A2 group IIA), TNC
(tenascin C). The intersection defining the molecular signature of AF is shown in Figure 2.
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Figure 2. Intersection of RNA-SEQ and proteomics dysregulated genes and the five common genes.

3.4. Functional Enrichment Analysis

The molecular signature of AF was used as an input for the functional enrichment
analysis and PPI network generation. The generated network consisted of 97 nodes and
99 edges (Figure 3). The network, in addition to the molecular signature, was enriched by
NetworkAnalyst 3.0 with another 94 molecules, of which 5 had a degree greater than 1
and betweenness greater than 195: EGFR, FN1, THBS1, ITGB1, and ITGB3 (Supplementary
Materials File S1).

3.5. Pathway Enrichment Analysis

The formed network was analyzed using the KEGG database, and the pathways
involved in this network were identified. A total of 42 pathways emerged, of which 23
had a significance value lower than p < 0.001. Specifically, the detected 23 pathways
were involved in the regulation of the extracellular matrix, cytoskeleton, and various
cardiomyopathies. The pathways are listed in Table 3.

Table 3. Pathways from pathway enrichment analysis using the KEGG database.

KEGG Pathways Total Expected Hits p-Value FDR

Extracellular matrix (ECM)–receptor interaction 82 0.784 25 1.84 × 10−32 5.85 × 10−30

Focal adhesion 199 1.9 28 3.2 × 10−26 5.08 × 10−24

Regulation of actin cytoskeleton 214 2.05 28 2.59 × 10−25 2.75 × 10−23

Hypertrophic cardiomyopathy (HCM) 85 0.813 21 4.95 × 10−25 3.48 × 10−23

Arrhythmogenic right ventricular
cardiomyopathy (ARVC) 72 0.689 20 5.47 × 10−25 3.48 × 10−23

Dilated cardiomyopathy 91 0.87 21 2.42 × 10−24 1.28 × 10−22

PI3K-Akt signaling pathway 354 3.39 30 1.46 × 10−21 6.63 × 10−20
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Table 3. Cont.

KEGG Pathways Total Expected Hits p-Value FDR

Complement and coagulation cascades 79 0.756 13 3.00 × 10−13 1.19 × 10−11

Proteoglycans in cancer 201 1.92 17 3.55 × 10−12 1.25 × 10−10

Cell adhesion molecules (CAMs) 146 1.4 14 6.7 × 10−11 2.13 × 10−9

Hematopoietic cell lineage 97 0.928 10 2.22 × 10−8 6.42 × 10−7

Phagosome 152 1.45 11 1.69 × 10−7 4.48 × 10−6

Pathways in cancer 530 5.07 17 7.3 × 10−6 0.000179
Rap1 signaling pathway 206 1.97 10 2.34 × 10−5 0.000531
Small cell lung cancer 93 0.889 7 2.7 × 10−5 0.000572
Bladder cancer 41 0.392 4 0.000597 0.0119
Leishmaniasis 74 0.708 5 0.000673 0.0126
Platelet activation 124 1.19 6 0.00114 0.0197
Malaria 49 0.469 4 0.00118 0.0197
Bacterial invasion of epithelial cells 74 0.708 4 0.00536 0.0851
Pertussis 76 0.727 4 0.00589 0.0891
Ras signaling pathway 232 2.22 7 0.0065 0.094
Tuberculosis 179 1.71 6 0.00711 0.0983
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The enrichment of GO terms performed with ExpressAnalyst, from our results, al-
lowed for the generation of two networks that showcase the possible interactions and
commonalities between cellular (Figure 4) and functional components (Figure 5). These
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networks utilize the GO cellular component and GO biological process ontologies, respec-
tively. Figure 4 provides a comprehensive overview of the cellular compartments in which
our genes primarily exert their activity within the cell, thus shedding light on their cellular
localization. Notably, our analysis highlighted the extracellular region and extracellular
space as the most significant cell compartments associated with the five identified genes.
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Figure 5 illustrates the biological processes enriched among the identified genes in AF
and offers an informative visualization of the processes in which these genes are involved,
thereby enhancing insights into the biological mechanisms underlying AF. Specifically, in
our analysis, the five identified genes were involved in biological processes such as skeletal
muscle tissue development, organ morphogenesis, gland development, striated muscle
tissue development, muscle cell differentiation, and muscle organ development.

4. Discussion

AF is a complex and multifactorial cardiovascular disease with increasing preva-
lence. The existing pharmacological approaches to AF are limited because of insufficient
understanding of its pathophysiological mechanisms, while early diagnosis and spot-on
treatment can improve the prognosis of patients with AF. In recent years, bioinformatics
has helped untangle complex pathophysiological mechanisms and discover innovative
therapeutic targets in cardiovascular research.

Presently, there is a significant scientific interest in designing novel interventional or
pharmacological treatments to prevent or terminate AF. Elucidating the molecular signature
of AF through bioinformatics may help reveal innovative therapeutic genes or pathway
targets and biomarkers of AF, consequently pursuing precision medicine for AF patients.
The nature of AF occurrence and maintenance implicates the complicated regulation of
gene expression in atrial tissue. Thus, it is pivotal to understand the mechanisms of AF and
gain ground for finding innovative mechanism-based therapeutic approaches.

In the present multi-omics study, the intersection of RNA-Seq and mass spectrometry
analysis led to the identification of five genes that constitute part of the AF molecular
signature. A total of 569 DEGs were obtained from RNA-Seq data analysis, and 59 DEPs
were identified from mass spectrometry data. The intersection of the two types of expres-
sion data highlighted five common genes: FGL2, IGFBP5, NNMT, PLA2G2A, and TNC.
Pathway enrichment and PPI network analyses performed on these genes pinpointed the
dysregulated pathways in AF.

The FGL2 gene encodes a protein involved in both blood clotting and immune system
regulation. FGL2 is a protein with both pro- and anti-inflammatory effects [37]. Membrane-
bound FGL2 acts as an immunocoagulant molecule that can directly cleave prothrombin to
thrombin, which then converts fibrinogen to fibrin, bypassing both intrinsic and extrinsic
coagulation pathways [38]. FGL2 deletion in mice hearts induced early death and dilated
cardiomyopathy, while FGL2 depletion led to ventricular dilatation and remodeling, high-
lighting the importance of FGL2 in heart function [39]. This is the first study in human
tissues to suggest that the FGL2 gene may be involved in the pathogenesis of AF. FGL2
is characterized by complexity and multifunctionality and is involved in cardiovascular
diseases and conditions, including the progression of pulmonary hypertension [38], COVID-
19-generated thrombosis [40], autoimmune myocarditis, and dilated cardiomyopathy in
mice [41], and in an AF porcine model [42].

IGFBP5 is a member of a family of secreted proteins that bind insulin-like growth fac-
tors. It is involved in the regulation of growth and metabolism, as well as vascular smooth
muscle cell proliferation [43], and it is expressed during myoblast differentiation [44] and
heart development in early embryogenesis [45]. Several pieces of evidence suggest that
IGFBP5 plays a role in heart fibrosis [45–47] and porcine AF [48,49]. Moreover, knock-in
of IGFBP5 in mice led to an increase in extracellular matrix protein production that can
induce fibrosis [50]. Thus, IGFBP5 may play a role in the structural remodeling that occurs
during the pathogenesis of AF.

This study is the first to find a connection between the NNMT gene and AF. NNMT en-
codes an enzyme involved in the metabolism of nicotinamide, a precursor of nicotinamide
adenine dinucleotide (NAD+), and an important cofactor in cellular energy metabolism [51].
NNMT silencing in human lung fibroblasts downregulates extracellular matrix proteins,
and it is proposed as a compelling target for progressive fibrotic disorders [52]. NNMT
expression is modified in various cardiovascular conditions and participates in oxidative
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stress, fibrosis, and inflammation, which are two processes implicated in the pathogenesis
of AF [47,53,54].

PLA2G2A encodes phospholipase A2, an enzyme that plays a key role in lipid metabolism,
including the breakdown of phospholipids, which are important components of the cell
membrane. PLA2G2A has been implicated in various biological processes, including
inflammation and immunity [55]. Knockout experiments with PLA2G2A support its role
in proinflammatory disorders [56]. This is the seminal work to correlate its expression
with AF. However, there are indications for the involvement of PLA2G2A in coronary heart
disease and myocardial infarction [57], hypertrophic [58], and dilated cardiomyopathy [59].

TNC encodes a large extracellular matrix glycoprotein that is mainly expressed during
embryonic development and wound healing [60]. TNC is a well-studied molecule involved
in various cellular processes, such as migration, proliferation, differentiation [61], inflamma-
tory and immune responses, as well as tissue repair and regeneration [60,62]. Specifically,
in the heart, TNC contributes to extracellular matrix remodeling in response to pathological
stimuli, such as ischemia and inflammation, and is involved in the development of cardiac
fibrosis [60,61,63]. Dysregulated expression of TNC has been associated with various car-
diac pathologies, including hypertension, atherosclerosis, myocardial infarction, and heart
failure [62–64]. Several in vivo studies investigating the functional role of TNC support its
proinflammatory and profibrotic action in the heart [65–67]. There are no direct associations
between TNC and AF beyond the present work; however, the evidence that it induces atrial
fibrosis and remodeling supports the idea of its contribution to AF pathogenesis.

Together, these genes appear to be involved in the development and progression of
AF through various mechanisms, mainly inflammation, fibrosis, and structural remodeling.
Concurrently, these genes participate in several pathways, most notably the extracellular
matrix-receptor interaction, focal adhesion, and regulation of the actin cytoskeleton. These
pathways are interrelated processes that function together to regulate cell adhesion, mi-
gration, and survival, while also playing critical roles in tissue growth, wound healing,
and cardiac fibrosis [68–71]. The interplay between extracellular matrix receptors and
regulation of the actin cytoskeleton is important for maintaining myocardial structural
integrity and contractility [72–74]. Focal adhesions are specialized structures that connect
the extracellular matrix to the actin cytoskeleton, thereby allowing the transmission of
mechanical forces [72,75]. Disruption of these pathways can lead to changes in the cellular
structure of cardiomyocytes and potentially contribute to the development of AF [73,75,76].

Hypertrophic cardiomyopathy (HCM), arrhythmogenic right ventricular cardiomy-
opathy (ARVC), and dilated cardiomyopathy are three different pathways that were found
to be involved with AF in our analysis. They constitute clinical conditions that are the
result of chronic inflammation and fibrosis [77–79] and require further investigation for
their role in AF pathogenesis.

The PI3K-Akt signaling pathway is involved in various cellular processes, including
cell survival, proliferation, and growth [80,81]. It has been implicated in the pathophysi-
ology of AF, as activation of this pathway can lead to changes in ion channel expression
and electrical remodeling of the atrial [80,82–84]. Complement and coagulation cascades
have also been shown to be involved in the development of AF [85]. Activation of these
pathways can lead to inflammation and fibrosis in the myocardium, which can promote
the development and maintenance of AF [85,86].

In summary, these pathways are complex and interconnected, and their dysregulation
may contribute to the pathophysiology of AF. Moreover, the five genes identified may
serve as noteworthy biological regulators, as their dysregulation has been cross-validated
at the transcriptomic and proteomic levels. These genes and pathways deserve further
exploration in future studies for their roles in fibrosis, structural remodeling, and cardiac
inflammation, as they can serve as biomarkers for predicting the onset and progression of
AF. Several multi-omics efforts have been made to address the AF burden by incorporating
epigenomics and/or transcriptomics and/or proteomics data [32,87–90]. Given the burden
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and complex nature of AF, additional advanced AF translational research, including multi-
omics approaches, is pivotal.

By integrating multiple RNA-Seq datasets and proteomic data for cross-validation,
this study provides a notable advantage in mitigating the occurrence of false-positive
results as well as gaining a more comprehensive understanding of biological processes.
Moreover, it is important to acknowledge that differences between transcriptomic and
proteomic profiles may arise as a result of post-transcriptional modifications; not all mRNA
molecules result in functional proteins, highlighting that alterations in transcriptomes
do not necessarily translate into observable differences in the proteome. To the best of
our knowledge, this is the first investigation to combine multiple RNA-Seq datasets and
proteomic data in a multi-omics approach to identify the molecular mechanisms of AF.
Moreover, rigorous statistical analysis using stringent cut-offs ensures that results are less
susceptible to random fluctuations.

This study has some limitations that should be considered. As this is an in silico study,
mechanistic in vivo and in vitro studies are required to validate the results. Specifically,
to qualify as a component of the AF molecular signature, each of the five identified genes
should be validated by RT-qPCR in independent clinical samples. Follow-up experiments
will either confirm or negate our bioinformatics findings, but in any case, they will provide
valuable information on the pathophysiological mechanisms of AF. Such an experimental
approach will bridge the gap between in silico predictions and clinical practice applications,
thereby improving the reliability and translational potential of our research. There is an
inherent bias in using datasets generated by different experimental procedures, which we
attempted to reduce by analyzing them separately and looking for commonalities between
them. Furthermore, this study incorporated datasets originating from diverse geographic
locations and encompassing various racial compositions. It is important to acknowledge
that, because of the nature of publicly available datasets, as in this case, it is common for
detailed clinical parameters (e.g., medication regimens, individual disease courses, and
comorbidities) and demographic characteristics (e.g., age, gender, race, and ethnicity) to
be missing from the metadata. This information gap may introduce variability into the
expression profiles and potentially limit the depth of our analysis. Although we attempted
to include patient demographics and characteristics from published articles associated with
these datasets, the unavailability of comprehensive metadata remains a notable limitation
that could have significantly enriched our study. However, it is plausible to hypothesize
that a considerable proportion of patients shared similar medication regimens and comor-
bidities, thereby implying the presence of comparable confounding factors across the entire
study population.

Furthermore, in bioinformatics studies, the results can only successfully account for
the association and not the causation between differentially expressed genes/proteins and
disorders. The present bioinformatics study is primarily hypothesis-generating and unfit to
determine causal relationships. Bridging the gap between the identification of AF-related
genes and their practical application in clinical settings remains a substantial challenge. AF
is a multifactorial and intricate condition and the five genes we have identified comprise
only a small part of its genetic landscape. In order to gain a deeper comprehension of
the interplay between these genes and their collective impact on AF susceptibility, it is
pivotal to carry out specifically designed experiments to reveal causations, such as in vivo
knock-out/in of the genes identified in laboratory animals. Finally, the molecular pathways
in which these genes participate have yet to be fully explored and still remain far from
translation into clinical practice.

5. Conclusions

This study defined a part of the molecular signature of AF using bioinformatics
tools. By incorporating transcriptome and proteome data, we highlighted five genes as
crucial regulators of AF pathophysiology: FGL2, IGFBP5, NNMT, PLA2G2A, and TNC.
The proposed genes and pathways should be further validated with in vitro and in vivo
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experimental models, which may lead to major breakthroughs in AF treatment strategies.
Overall, this study provides new insights into the molecular pathogenesis of AF and
suggests several new promising genes that may serve as therapeutic targets and biomarkers
to contribute to the prevention and treatment of AF, improve patients’ quality of life, and
reduce the burden of AF on society.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biomedicines11102632/s1.

Author Contributions: Conceptualization, V.G.M.; methodology, N.A. and N.D.; formal analysis,
N.A. and N.D.; writing—original draft preparation, N.A.; writing—review and editing, N.A., N.D.,
G.R., K.P., G.K. and V.G.M.; funding acquisition, V.G.M.; final approval, V.G.M. All authors have read
and agreed to the published version of the manuscript.

Funding: Financial support for project IMPReS (MIS 5047189) was provided by the Program “Com-
petitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) co-financed by Greece and the
European Union (European Regional Development Fund).

Institutional Review Board Statement: This study did not require ethical approval.

Informed Consent Statement: Not applicable.

Data Availability Statement: Datasets available on ENA Browser (https://www.ebi.ac.uk/ena/
browser/home) Accession Numbers: PRJNA526687, PRJNA531935, PRJNA667522, PRJEB42485.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lip, G.Y.; Kakar, P.; Watson, T. Atrial fibrillation--the growing epidemic. Heart 2007, 93, 542–543. [CrossRef]
2. Chugh, S.S.; Blackshear, J.L.; Shen, W.K.; Hammill, S.C.; Gersh, B.J. Epidemiology and natural history of atrial fibrillation: Clinical

implications. J. Am. Coll. Cardiol. 2001, 37, 371–378. [CrossRef]
3. Roger, V.L.; Go, A.S.; Lloyd-Jones, D.M.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; Fox, C.S.; et al.

Heart Disease and Stroke Statistics—2012 Update. Circulation 2012, 125, e2–e220. [CrossRef]
4. Lippi, G.; Sanchis-Gomar, F.; Cervellin, G. Global epidemiology of atrial fibrillation: An increasing epidemic and public health

challenge. Int. J. Stroke 2021, 16, 217–221. [CrossRef]
5. Hart, R.G.; Halperin, J.L. Atrial Fibrillation and Stroke. Stroke 2001, 32, 803–808. [CrossRef]
6. Lau, D.H.; Nattel, S.; Kalman, J.M.; Sanders, P. Modifiable Risk Factors and Atrial Fibrillation. Circulation 2017, 136, 583–596.

[CrossRef]
7. Nattel, S. New ideas about atrial fibrillation 50 years on. Nature 2002, 415, 219–226. [CrossRef]
8. Chugh, S.S.; Havmoeller, R.; Narayanan, K.; Singh, D.; Rienstra, M.; Benjamin, E.J.; Gillum, R.F.; Kim, Y.-H.; McAnulty, J.H., Jr.;

Zheng, Z.-J.; et al. Worldwide epidemiology of atrial fibrillation: A Global Burden of Disease 2010 Study. Circulation 2014, 129,
837–847. [CrossRef]

9. Jalife, J. Mechanisms of persistent atrial fibrillation. Curr. Opin. Cardiol. 2014, 29, 20–27.
10. Forleo, G.B.; Tondo, C. Atrial fibrillation: Cure or treat? Ther. Adv. Cardiovasc. Dis. 2009, 3, 187–196. [CrossRef]
11. Bertaglia, E.; Tondo, C.; De Simone, A.; Zoppo, F.; Mantica, M.; Turco, P.; Iuliano, A.; Forleo, G.; La Rocca, V.; Stabile, G.

Does catheter ablation cure atrial fibrillation? Single-procedure outcome of drug-refractory atrial fibrillation ablation: A 6-year
multicentre experience. Europace 2010, 12, 181–187. [CrossRef]

12. Nesheiwat, Z.; Goyal, A.; Jagtap, M. Atrial Fibrillation. In StatPearls; StatPearls Publishing Copyright © 2023; StatPearls Publishing
LLC: Treasure Island, FL, USA, 2023.

13. Chai-Adisaksopha, C.; Hillis, C.; Isayama, T.; Lim, W.; Iorio, A.; Crowther, M. Mortality outcomes in patients receiving direct oral
anticoagulants: A systematic review and meta-analysis of randomized controlled trials. J. Thromb. Haemost. 2015, 13, 2012–2020.
[CrossRef]

14. Boos, C.J.; Carlsson, J.; More, R.S. Rate or rhythm control in persistent atrial fibrillation? QJM Int. J. Med. 2003, 96, 881–892.
[CrossRef]

15. Meyer, M.; Lustgarten, D. Beta-blockers in atrial fibrillation—Trying to make sense of unsettling results. Europace 2023, 25,
260–262. [CrossRef]

16. Wijffels, M.C.E.F.; Kirchhof, C.J.H.J.; Dorland, R.; Allessie, M.A. Atrial Fibrillation Begets Atrial Fibrillation. Circulation 1995, 92,
1954–1968. [CrossRef]

17. Nattel, S.; Harada, M. Atrial Remodeling and Atrial Fibrillation: Recent Advances and Translational Perspectives. J. Am. Coll.
Cardiol. 2014, 63, 2335–2345. [CrossRef]

https://www.mdpi.com/article/10.3390/biomedicines11102632/s1
https://www.mdpi.com/article/10.3390/biomedicines11102632/s1
https://www.ebi.ac.uk/ena/browser/home
https://www.ebi.ac.uk/ena/browser/home
https://doi.org/10.1136/hrt.2006.110791
https://doi.org/10.1016/s0735-1097(00)01107-4
https://doi.org/10.1161/CIR.0b013e31823ac046
https://doi.org/10.1177/1747493019897870
https://doi.org/10.1161/01.STR.32.3.803
https://doi.org/10.1161/CIRCULATIONAHA.116.023163
https://doi.org/10.1038/415219a
https://doi.org/10.1161/CIRCULATIONAHA.113.005119
https://doi.org/10.1177/1753944709104495
https://doi.org/10.1093/europace/eup349
https://doi.org/10.1111/jth.13139
https://doi.org/10.1093/qjmed/hcg147
https://doi.org/10.1093/europace/euad010
https://doi.org/10.1161/01.CIR.92.7.1954
https://doi.org/10.1016/j.jacc.2014.02.555


Biomedicines 2023, 11, 2632 12 of 14

18. Walters, T.E.; Nisbet, A.; Morris, G.M.; Tan, G.; Mearns, M.; Teo, E.; Lewis, N.; Ng, A.; Gould, P.; Lee, G.; et al. Progression of
atrial remodeling in patients with high-burden atrial fibrillation: Implications for early ablative intervention. Heart Rhythm 2016,
13, 331–339. [CrossRef]

19. Khomtchouk, B.B.; Tran, D.-T.; Vand, K.A.; Might, M.; Gozani, O.; Assimes, T.L. Cardioinformatics: The nexus of bioinformatics
and precision cardiology. Brief. Bioinform. 2020, 21, 2031–2051. [CrossRef]

20. Xiao, S.; Zhou, Y.; Liu, Q.; Zhang, T.; Pan, D. Identification of Pivotal MicroRNAs and Target Genes Associated with Persistent
Atrial Fibrillation Based on Bioinformatics Analysis. Comput. Math. Methods Med. 2021, 2021, 6680211. [CrossRef]

21. Li, J.; Wu, Z.; Zheng, D.; Sun, Y.; Wang, S.; Yan, Y. Bioinformatics analysis of the regulatory lncRNA-miRNA-mRNA network and
drug prediction in patients with hypertrophic cardiomyopathy. Mol. Med. Rep. 2019, 20, 549–558. [CrossRef]

22. Botto, G.L.; Luzi, M.; Sagone, A. Atrial fibrillation: The remodelling phenomenon. Eur. Heart J. Suppl. 2003, 5, H1–H7. [CrossRef]
23. Bennett, P.B.; Guthrie, H.R. Trends in ion channel drug discovery: Advances in screening technologies. Trends Biotechnol. 2003, 21,

563–569. [CrossRef]
24. Goette, A.; Lendeckel, U.; Klein, H.U. Signal transduction systems and atrial fibrillation. Cardiovasc. Res. 2002, 54, 247–258.

[CrossRef]
25. Barth, A.S.; Merk, S.; Arnoldi, E.; Zwermann, L.; Kloos, P.; Gebauer, M.; Steinmeyer, K.; Bleich, M.; Kääb, S.; Hinterseer, M.; et al.

Reprogramming of the Human Atrial Transcriptome in Permanent Atrial Fibrillation. Circ. Res. 2005, 96, 1022–1029. [CrossRef]
26. Nattel, S.; Burstein, B.; Dobrev, D. Atrial Remodeling and Atrial Fibrillation. Circ. Arrhythmia Electrophysiol. 2008, 1, 62–73.

[CrossRef]
27. Harrison, P.W.; Ahamed, A.; Aslam, R.; Alako, B.T.F.; Burgin, J.; Buso, N.; Courtot, M.; Fan, J.; Gupta, D.; Haseeb, M.; et al. The

European Nucleotide Archive in 2020. Nucleic Acids Res. 2021, 49, D82–D85. [CrossRef]
28. Thomas, A.M.; Cabrera, C.P.; Finlay, M.; Lall, K.; Nobles, M.; Schilling, R.J.; Wood, K.; Mein, C.A.; Barnes, M.R.; Munroe, P.B.;

et al. Differentially expressed genes for atrial fibrillation identified by RNA sequencing from paired human left and right atrial
appendages. Physiol. Genom. 2019, 51, 323–332. [CrossRef]

29. Sun, H.; Zhang, J.; Shao, Y. Integrative analysis reveals essential mRNA, long non-coding RNA (lncRNA), and circular RNA
(circRNA) in paroxysmal and persistent atrial fibrillation patients. Anatol. J. Cardiol. 2021, 25, 414–428. [CrossRef]

30. Zhu, X.; Tang, X.; Chong, H.; Cao, H.; Fan, F.; Pan, J.; Wang, D.; Zhou, Q. Expression Profiles of Circular RNA in Human Atrial
Fibrillation with Valvular Heart Diseases. Front. Cardiovasc. Med. 2020, 7, 597932. [CrossRef]

31. Darkow, E.; Nguyen, T.T.; Stolina, M.; Kari, F.A.; Schmidt, C.; Wiedmann, F.; Baczkó, I.; Kohl, P.; Rajamani, S.; Ravens, U.; et al.
Small Conductance Ca2+ -Activated K+ (SK) Channel mRNA Expression in Human Atrial and Ventricular Tissue: Comparison
Between Donor, Atrial Fibrillation and Heart Failure Tissue. Front. Physiol. 2021, 12, 650964. [CrossRef]

32. Liu, Y.; Bai, F.; Tang, Z.; Liu, N.; Liu, Q. Integrative transcriptomic, proteomic, and machine learning approach to identifying
feature genes of atrial fibrillation using atrial samples from patients with valvular heart disease. BMC Cardiovasc. Disord. 2021, 21,
52. [CrossRef]

33. Prieto, C.; Barrios, D. RaNA-Seq: Interactive RNA-Seq analysis from FASTQ files to functional analysis. Bioinformatics 2020, 36,
1955–1956. [CrossRef]

34. Tools, M.B. Molecular Biology Tools. Available online: https://molbiotools.com (accessed on 1 March 2023).
35. Zhou, G.; Soufan, O.; Ewald, J.; Hancock, R.E.W.; Basu, N.; Xia, J. NetworkAnalyst 3.0: A visual analytics platform for

comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019, 47, W234–W241. [CrossRef]
36. Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.;

Tsafou, K.P.; et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2015, 43,
D447–D452. [CrossRef]

37. Yu, J.; Li, J.; Shen, J.; Du, F.; Wu, X.; Li, M.; Chen, Y.; Cho, C.H.; Li, X.; Xiao, Z.; et al. The role of Fibrinogen-like proteins in Cancer.
Int. J. Biol. Sci. 2021, 17, 1079–1087. [CrossRef]

38. Fan, C.; Wang, J.; Mao, C.; Li, W.; Liu, K.; Wang, Z. The FGL2 prothrombinase contributes to the pathological process of
experimental pulmonary hypertension. J. Appl. Physiol. (1985) 2019, 127, 1677–1687. [CrossRef]

39. Fan, C.; Chen, H.; Liu, K.; Wang, Z. Fibrinogen-like protein 2 contributes to normal murine cardiomyocyte maturation and heart
development. Exp. Physiol. 2021, 106, 1559–1571. [CrossRef]

40. Hozayen, S.M.; Zychowski, D.; Benson, S.; Lutsey, P.L.; Haslbauer, J.; Tzankov, A.; Kaltenborn, Z.; Usher, M.; Shah, S.; Tignanelli,
C.J.; et al. Outpatient and inpatient anticoagulation therapy and the risk for hospital admission and death among COVID-19
patients. eClinicalMedicine 2021, 41, 101139. [CrossRef]

41. Zheng, Z.; Yu, L.; Wu, Y.; Wu, H. FGL2 knockdown improves heart function through regulation of TLR9 signaling in the
experimental autoimmune myocarditis rats. Immunol. Res. 2018, 66, 52–58. [CrossRef]

42. Cerveró, J.; Segura, V.; Macías, A.; Gavira, J.J.; Montes, R.; Hermida, J. Atrial fibrillation in pigs induces left atrial endocardial
transcriptional remodelling. Thromb. Haemost. 2012, 108, 742–749. [CrossRef]

43. Lee, D.H.; Kim, J.E.; Kang, Y.J. Insulin Like Growth Factor Binding Protein-5 Regulates Excessive Vascular Smooth Muscle Cell
Proliferation in Spontaneously Hypertensive Rats via ERK 1/2 Phosphorylation. Korean J. Physiol. Pharmacol. 2013, 17, 157–162.
[CrossRef]

44. James, P.L.; Jones, S.B.; Busby, W.H.; Clemmons, D.R.; Rotwein, P. A highly conserved insulin-like growth factor-binding protein
(IGFBP-5) is expressed during myoblast differentiation. J. Biol. Chem. 1993, 268, 22305–22312. [CrossRef]

https://doi.org/10.1016/j.hrthm.2015.10.028
https://doi.org/10.1093/bib/bbz119
https://doi.org/10.1155/2021/6680211
https://doi.org/10.3892/mmr.2019.10289
https://doi.org/10.1016/S1520-765X(03)90017-4
https://doi.org/10.1016/j.tibtech.2003.09.014
https://doi.org/10.1016/s0008-6363(01)00521-1
https://doi.org/10.1161/01.RES.0000165480.82737.33
https://doi.org/10.1161/CIRCEP.107.754564
https://doi.org/10.1093/nar/gkaa1028
https://doi.org/10.1152/physiolgenomics.00012.2019
https://doi.org/10.14744/AnatolJCardiol.2020.57295
https://doi.org/10.3389/fcvm.2020.597932
https://doi.org/10.3389/fphys.2021.650964
https://doi.org/10.1186/s12872-020-01819-0
https://doi.org/10.1093/bioinformatics/btz854
https://molbiotools.com
https://doi.org/10.1093/nar/gkz240
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.7150/ijbs.56748
https://doi.org/10.1152/japplphysiol.00396.2019
https://doi.org/10.1113/EP089450
https://doi.org/10.1016/j.eclinm.2021.101139
https://doi.org/10.1007/s12026-017-8965-4
https://doi.org/10.1160/th12-05-0285
https://doi.org/10.4196/kjpp.2013.17.2.157
https://doi.org/10.1016/S0021-9258(18)41529-3


Biomedicines 2023, 11, 2632 13 of 14

45. Hoffmann, S.; Schmitteckert, S.; Raedecke, K.; Rheinert, D.; Diebold, S.; Roeth, R.; Weiss, B.; Granzow, M.; Niesler, B.; Griesbeck,
A.; et al. Network-driven discovery yields new insight into Shox2-dependent cardiac rhythm control. Biochim. Biophys. Acta
BBA-Gene Regul. Mech. 2021, 1864, 194702. [CrossRef]

46. Wass, S.Y.; Offerman, E.J.; Sun, H.; Hsu, J.; Rennison, J.H.; Cantlay, C.C.; McHale, M.L.; Gillinov, A.M.; Moravec, C.; Smith, J.D.;
et al. Identifying functional genes and pathways towards a unifying model for atrial fibrillation. medRxiv 2021. [CrossRef]

47. Linscheid, N.; Poulsen, P.C.; Pedersen, I.D.; Gregers, E.; Svendsen, J.H.; Olesen, M.S.; Olsen, J.V.; Delmar, M.; Lundby, A.
Quantitative Proteomics of Human Heart Samples Collected In Vivo Reveal the Remodeled Protein Landscape of Dilated Left
Atrium without Atrial Fibrillation. Mol. Cell Proteom. 2020, 19, 1132–1144. [CrossRef]

48. Chen, C.-L.; Lin, J.-L.; Lai, L.-P.; Pan, C.-H.; Huang, S.K.S.; Lin, C.-S. Altered expression of FHL1, CARP, TSC-22 and P311 provide
insights into complex transcriptional regulation in pacing-induced atrial fibrillation. Biochim. Biophys. Acta BBA-Mol. Basis Dis.
2007, 1772, 317–329. [CrossRef]

49. Chilukoti, R.K.; Giese, A.; Malenke, W.; Homuth, G.; Bukowska, A.; Goette, A.; Felix, S.B.; Kanaan, J.; Wollert, H.G.; Evert, K.;
et al. Atrial fibrillation and rapid acute pacing regulate adipocyte/adipositas-related gene expression in the atria. Int. J. Cardiol.
2015, 187, 604–613. [CrossRef]

50. Nguyen, X.-X.; Sanderson, M.; Helke, K.; Feghali-Bostwick, C. Phenotypic Characterization of Transgenic Mice Expressing
Human IGFBP-5. Int. J. Mol. Sci. 2021, 22, 335. [CrossRef]

51. Lu, S.; Ke, S.; Wang, C.; Xu, Y.; Li, Z.; Song, K.; Bai, M.; Zhou, M.; Yu, H.; Yin, B.; et al. NNMT promotes the progression of
intrahepatic cholangiocarcinoma by regulating aerobic glycolysis via the EGFR-STAT3 axis. Oncogenesis 2022, 11, 39. [CrossRef]

52. Rehan, M.; Deskin, B.; Kurundkar, A.R.; Yadav, S.; Matsunaga, Y.; Manges, J.; Smith, N.; Dsouza, K.G.; Burow, M.E.; Thannickal,
V.J. Nicotinamide N-methyltransferase mediates lipofibroblast-myofibroblast transition and apoptosis resistance. J. Biol. Chem.
2023, 299, 105027. [CrossRef]

53. Liu, M.; He, A.; Chu, J.; Chen, C.; Zhang, S.; He, Y.; Tao, W.; Lu, M.; Hua, M.; Ju, W.; et al. Serum N(1)-methylnicotinamide is
Associated with Left Ventricular Systolic Dysfunction in Chinese. Sci. Rep. 2018, 8, 8581. [CrossRef]

54. Song, Z.; Zhong, X.; Li, M.; Gao, P.; Ning, Z.; Sun, Z.; Song, X. 1-MNA Ameliorates High Fat Diet-Induced Heart Injury by
Upregulating Nrf2 Expression and Inhibiting NF-κB in vivo and in vitro. Front. Cardiovasc. Med. 2021, 8, 721814. [CrossRef]

55. Lemaitre, R.N.; Bartz, T.M.; King, I.B.; Brody, J.A.; McKnight, B.; Sotoodehnia, N.; Rea, T.D.; Johnson, C.O.; Mozaffarian, D.;
Hesselson, S.; et al. Circulating n-3 fatty acids and trans-fatty acids, PLA2G2A gene variation and sudden cardiac arrest. J. Nutr.
Sci. 2016, 5, e12. [CrossRef]

56. Boilard, E.; Lai, Y.; Larabee, K.; Balestrieri, B.; Ghomashchi, F.; Fujioka, D.; Gobezie, R.; Coblyn, J.S.; Weinblatt, M.E.; Massarotti,
E.M.; et al. A novel anti-inflammatory role for secretory phospholipase A2 in immune complex-mediated arthritis. EMBO Mol.
Med. 2010, 2, 172–187. [CrossRef]

57. Mallat, Z.; Lambeau, G.; Tedgui, A. Lipoprotein-Associated and Secreted Phospholipases A2 in Cardiovascular Disease. Circulation
2010, 122, 2183–2200. [CrossRef]

58. Cui, Y.; Liu, C.; Luo, J.; Liang, J. Dysfunctional Network and Mutation Genes of Hypertrophic Cardiomyopathy. J. Healthc. Eng.
2022, 2022, 8680178. [CrossRef]

59. Newman, M.S.; Nguyen, T.; Watson, M.J.; Hull, R.W.; Yu, H.G. Transcriptome profiling reveals novel BMI- and sex-specific gene
expression signatures for human cardiac hypertrophy. Physiol. Genom. 2017, 49, 355–367. [CrossRef]

60. Park Woo, J.; Jeong, D.; Oh Jae, G. Tenascin-C in Cardiac Hypertrophy and Fibrosis. J. Am. Coll. Cardiol. 2017, 70, 1616–1617.
[CrossRef]

61. Shimojo, N.; Hashizume, R.; Kanayama, K.; Hara, M.; Suzuki, Y.; Nishioka, T.; Hiroe, M.; Yoshida, T.; Imanaka-Yoshida, K.
Tenascin-C may accelerate cardiac fibrosis by activating macrophages via the integrin αVβ3/nuclear factor-κB/interleukin-6 axis.
Hypertension 2015, 66, 757–766. [CrossRef]

62. Imanaka-Yoshida, K.; Tawara, I.; Yoshida, T. Tenascin-C in cardiac disease: A sophisticated controller of inflammation, repair, and
fibrosis. Am. J. Physiol.-Cell Physiol. 2020, 319, C781–C796. [CrossRef]

63. Imanaka-Yoshida, K. Tenascin-C in Heart Diseases-The Role of Inflammation. Int. J. Mol. Sci. 2021, 22, 5828. [CrossRef]
64. Golledge, J.; Clancy, P.; Maguire, J.; Lincz, L.; Koblar, S. The role of tenascin C in cardiovascular disease. Cardiovasc. Res. 2011, 92,

19–28. [CrossRef]
65. Song, L.; Wang, L.; Li, F.; Yukht, A.; Qin, M.; Ruther, H.; Yang, M.; Chaux, A.; Shah, P.K.; Sharifi, B.G. Bone Marrow-Derived

Tenascin-C Attenuates Cardiac Hypertrophy by Controlling Inflammation. J. Am. Coll. Cardiol. 2017, 70, 1601–1615. [CrossRef]
66. Podesser, B.K.; Kreibich, M.; Dzilic, E.; Santer, D.; Förster, L.; Trojanek, S.; Abraham, D.; Krššák, M.; Klein, K.U.; Tretter, E.V.; et al.

Tenascin-C promotes chronic pressure overload-induced cardiac dysfunction, hypertrophy and myocardial fibrosis. J. Hypertens.
2018, 36, 847–856. [CrossRef]

67. Perera-Gonzalez, M.; Kiss, A.; Kaiser, P.; Holzweber, M.; Nagel, F.; Watzinger, S.; Acar, E.; Szabo, P.L.; Gonçalves, I.F.; Weber, L.;
et al. The Role of Tenascin C in Cardiac Reverse Remodeling Following Banding-Debanding of the Ascending Aorta. Int. J. Mol.
Sci. 2021, 22, 2023. [CrossRef]

68. Bachir, A.I.; Horwitz, A.R.; Nelson, W.J.; Bianchini, J.M. Actin-Based Adhesion Modules Mediate Cell Interactions with the
Extracellular Matrix and Neighboring Cells. Cold Spring Harb. Perspect. Biol. 2017, 9, a023234. [CrossRef]

69. Yang, S.; Plotnikov, S.V. Mechanosensitive Regulation of Fibrosis. Cells 2021, 10, 994. [CrossRef]

https://doi.org/10.1016/j.bbagrm.2021.194702
https://doi.org/10.1101/2021.09.20.21263861
https://doi.org/10.1074/mcp.RA119.001878
https://doi.org/10.1016/j.bbadis.2006.10.017
https://doi.org/10.1016/j.ijcard.2015.03.072
https://doi.org/10.3390/ijms22010335
https://doi.org/10.1038/s41389-022-00415-5
https://doi.org/10.1016/j.jbc.2023.105027
https://doi.org/10.1038/s41598-018-26956-7
https://doi.org/10.3389/fcvm.2021.721814
https://doi.org/10.1017/jns.2016.2
https://doi.org/10.1002/emmm.201000072
https://doi.org/10.1161/CIRCULATIONAHA.110.936393
https://doi.org/10.1155/2022/8680178
https://doi.org/10.1152/physiolgenomics.00122.2016
https://doi.org/10.1016/j.jacc.2017.08.014
https://doi.org/10.1161/hypertensionaha.115.06004
https://doi.org/10.1152/ajpcell.00353.2020
https://doi.org/10.3390/ijms22115828
https://doi.org/10.1093/cvr/cvr183
https://doi.org/10.1016/j.jacc.2017.07.789
https://doi.org/10.1097/hjh.0000000000001628
https://doi.org/10.3390/ijms22042023
https://doi.org/10.1101/cshperspect.a023234
https://doi.org/10.3390/cells10050994


Biomedicines 2023, 11, 2632 14 of 14

70. Sandbo, N.; Dulin, N. Actin cytoskeleton in myofibroblast differentiation: Ultrastructure defining form and driving function.
Transl. Res. 2011, 158, 181–196. [CrossRef]

71. Abreu-Blanco, M.T.; Watts, J.J.; Verboon, J.M.; Parkhurst, S.M. Cytoskeleton responses in wound repair. Cell. Mol. Life Sci. 2012,
69, 2469–2483. [CrossRef]

72. Ohashi, K.; Fujiwara, S.; Mizuno, K. Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and
mechanotransduction. J. Biochem. 2017, 161, 245–254. [CrossRef]

73. Meagher, P.B.; Lee, X.A.; Lee, J.; Visram, A.; Friedberg, M.K.; Connelly, K.A. Cardiac Fibrosis: Key Role of Integrins in Cardiac
Homeostasis and Remodeling. Cells 2021, 10, 770. [CrossRef]

74. Portokallidou, K.; Dovrolis, N.; Ragia, G.; Atzemian, N.; Kolios, G.; Manolopoulos, V.G. Multi-omics integration to identify the
genetic expression and protein signature of dilated and ischemic cardiomyopathy. Front. Cardiovasc. Med. 2023, 10, 1115623.
[CrossRef]

75. Kim, M.C.; Kim, C.; Wood, L.; Neal, D.; Kamm, R.D.; Asada, H.H. Integrating focal adhesion dynamics, cytoskeleton remodeling,
and actin motor activity for predicting cell migration on 3D curved surfaces of the extracellular matrix. Integr. Biol. 2012, 4,
1386–1397. [CrossRef]

76. Samarel, A.M. Focal adhesion signaling in heart failure. Pflug. Arch. 2014, 466, 1101–1111. [CrossRef]
77. Buckley, B.J.R.; Harrison, S.L.; Gupta, D.; Fazio-Eynullayeva, E.; Underhill, P.; Lip, G.Y.H. Atrial Fibrillation in Patients with

Cardiomyopathy: Prevalence and Clinical Outcomes From Real-World Data. J. Am. Heart Assoc. 2021, 10, e021970. [CrossRef]
78. Yeung, C.; Enriquez, A.; Suarez-Fuster, L.; Baranchuk, A. Atrial fibrillation in patients with inherited cardiomyopathies. Europace

2019, 21, 22–32. [CrossRef]
79. Nuzzi, V.; Cannatà, A.; Manca, P.; Castrichini, M.; Barbati, G.; Aleksova, A.; Fabris, E.; Zecchin, M.; Merlo, M.; Boriani, G.; et al.

Atrial fibrillation in dilated cardiomyopathy: Outcome prediction from an observational registry. Int. J. Cardiol. 2021, 323, 140–147.
[CrossRef]

80. Ezeani, M.; Prabhu, S. Pathophysiology and therapeutic relevance of PI3K(p110α) protein in atrial fibrillation: A non-
interventional molecular therapy strategy. Pharmacol. Res. 2021, 165, 105415. [CrossRef]

81. Walkowski, B.; Kleibert, M.; Majka, M.; Wojciechowska, M. Insight into the Role of the PI3K/Akt Pathway in Ischemic Injury and
Post-Infarct Left Ventricular Remodeling in Normal and Diabetic Heart. Cells 2022, 11, 1553. [CrossRef]

82. Ezeani, M.; Elom, S. Necessity to evaluate PI3K/Akt signalling pathway in proarrhythmia. Open Heart 2017, 4, e000596. [CrossRef]
83. McMullen, J.R.; Boey, E.J.; Ooi, J.Y.; Seymour, J.F.; Keating, M.J.; Tam, C.S. Ibrutinib increases the risk of atrial fibrillation,

potentially through inhibition of cardiac PI3K-Akt signaling. Blood 2014, 124, 3829–3830. [CrossRef]
84. Su, F.; Zhao, L.; Zhang, S.; Wang, J.; Chen, N.; Gong, Q.; Tang, J.; Wang, H.; Yao, J.; Wang, Q.; et al. Cardioprotection by

PI3K-mediated signaling is required for anti-arrhythmia and myocardial repair in response to ischemic preconditioning in
infarcted pig hearts. Lab. Investig. 2015, 95, 860–871. [CrossRef]

85. Kornej, J.; Büttner, P.; Hammer, E.; Engelmann, B.; Dinov, B.; Sommer, P.; Husser, D.; Hindricks, G.; Völker, U.; Bollmann, A.
Circulating proteomic patterns in AF related left atrial remodeling indicate involvement of coagulation and complement cascade.
PLoS ONE 2018, 13, e0198461. [CrossRef]

86. Ren, J.; Tsilafakis, K.; Chen, L.; Lekkos, K.; Kostavasili, I.; Varela, A.; Cokkinos, D.V.; Davos, C.H.; Sun, X.; Song, J.; et al.
Crosstalk between coagulation and complement activation promotes cardiac dysfunction in arrhythmogenic right ventricular
cardiomyopathy. Theranostics 2021, 11, 5939–5954. [CrossRef]

87. Liu, B.; Shi, X.; Ding, K.; Lv, M.; Qian, Y.; Zhu, S.; Guo, C.; Zhang, Y. The Joint Analysis of Multi-Omics Data Revealed the
Methylation-Expression Regulations in Atrial Fibrillation. Front. Bioeng. Biotechnol. 2020, 8, 197. [CrossRef]

88. Wang, B.; Lunetta, K.L.; Dupuis, J.; Lubitz, S.A.; Trinquart, L.; Yao, L.; Ellinor, P.T.; Benjamin, E.J.; Lin, H. Integrative Omics
Approach to Identifying Genes Associated with Atrial Fibrillation. Circ. Res. 2020, 126, 350–360. [CrossRef]

89. Liu, L.; Huang, J.; Wei, B.; Mo, J.; Wei, Q.; Chen, C.; Yan, W.; Huang, X.; He, F.; Qin, L.; et al. Multiomics Analysis of Genetics and
Epigenetics Reveals Pathogenesis and Therapeutic Targets for Atrial Fibrillation. BioMed Res. Int. 2021, 2021, 6644827. [CrossRef]

90. Assum, I.; Krause, J.; Scheinhardt, M.O.; Müller, C.; Hammer, E.; Börschel, C.S.; Völker, U.; Conradi, L.; Geelhoed, B.; Zeller, T.;
et al. Tissue-specific multi-omics analysis of atrial fibrillation. Nat. Commun. 2022, 13, 441. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.trsl.2011.05.004
https://doi.org/10.1007/s00018-012-0928-2
https://doi.org/10.1093/jb/mvw082
https://doi.org/10.3390/cells10040770
https://doi.org/10.3389/fcvm.2023.1115623
https://doi.org/10.1039/c2ib20159c
https://doi.org/10.1007/s00424-014-1456-8
https://doi.org/10.1161/JAHA.121.021970
https://doi.org/10.1093/europace/euy064
https://doi.org/10.1016/j.ijcard.2020.08.062
https://doi.org/10.1016/j.phrs.2020.105415
https://doi.org/10.3390/cells11091553
https://doi.org/10.1136/openhrt-2017-000596
https://doi.org/10.1182/blood-2014-10-604272
https://doi.org/10.1038/labinvest.2015.64
https://doi.org/10.1371/journal.pone.0198461
https://doi.org/10.7150/thno.58160
https://doi.org/10.3389/fbioe.2020.00187
https://doi.org/10.1161/CIRCRESAHA.119.315179
https://doi.org/10.1155/2021/6644827
https://doi.org/10.1038/s41467-022-27953-1

	Introduction 
	Materials and Methods 
	Data Source 
	RNA-SEQ Datasets Retrieval 
	Proteomics Data Retrieval 

	Data Processing 
	Identification of Differential Expression Genes 
	Selection of Differential Expression Proteins 
	Defining the AF Molecular Background 
	Functional Enrichment Analysis 
	Pathway Enrichment Analysis 


	Results 
	Differential Gene Expression Analysis 
	Differential Protein Expression Analysis 
	Defining the Molecular Background of AF 
	Functional Enrichment Analysis 
	Pathway Enrichment Analysis 

	Discussion 
	Conclusions 
	References

